JPH02197536A - Manufacture of metal-matrix composite material - Google Patents

Manufacture of metal-matrix composite material

Info

Publication number
JPH02197536A
JPH02197536A JP1693189A JP1693189A JPH02197536A JP H02197536 A JPH02197536 A JP H02197536A JP 1693189 A JP1693189 A JP 1693189A JP 1693189 A JP1693189 A JP 1693189A JP H02197536 A JPH02197536 A JP H02197536A
Authority
JP
Japan
Prior art keywords
composite material
metal
molten metal
molten
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1693189A
Other languages
Japanese (ja)
Inventor
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1693189A priority Critical patent/JPH02197536A/en
Publication of JPH02197536A publication Critical patent/JPH02197536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily obtain the composite material of which short fibers are uniformly dispersed into a molten metal by immersing a composite material reinforced with short fibers or the like into the molten metal of a matrix metal and giving high frequency vibration to the composite material while a brush is brought into contact therewith. CONSTITUTION:A composite material 16 constituted of a metal reinforced compositely with fine short fibers or grains is fixed to a supporting matter 18 of ceramics or the like and is immersed to hold into the molten metal 22 of the matrix metal such as Al alloy. Bristles 26 of a heat-resistant brush 28 planted with the ones constituted of Al fibers, etc., are brought into contact with the composite material 16 to oscillate the brush 28 by an ultrasonic oscillator 30 via a horn 32. Together with this, the molten metal 22 is stirred with a propeller 34 and the short fibers or grains in the composite material 16 are dispersed into the molten metal 22. The short fibers or grains are uniformly dispersed in the condition of tight adhesion with the matrix metal, by which the composite material contg. no flaws such as void can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属基複合材料に係り、更に詳細にはその製
造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a metal matrix composite material, and more particularly to a method for producing the same.

従来の技術 比較的低体積率の微細な短繊維若しくは粒子を強化材と
する金属基複合材料の製造方法として、例えば昭和60
年に(社)軽金属協会より出版された「アルミニウム材
料の基礎と工業技術」 (軽金属協会編)の第396頁
〜第399頁に記載されている如く、半溶融状態のマト
リックス金属の溶湯を撹拌しつつその溶湯中に強化材を
添加するコンポキャスト法や、マトリックス金属の粉末
と強化材とを混合しその混合物を焼結する粉末冶金法が
従来より知られている。
2. Prior Art As a method for manufacturing a metal matrix composite material using fine short fibers or particles with a relatively low volume fraction as a reinforcing material, for example, in the 1980s,
As described on pages 396 to 399 of "Basics of Aluminum Materials and Industrial Technology" (edited by the Light Metals Association), published by the Light Metals Association in 2010, a molten matrix metal in a semi-molten state is stirred. Conventionally, a composite casting method in which a reinforcing material is added to the molten metal, and a powder metallurgy method in which a matrix metal powder and a reinforcing material are mixed and the mixture is sintered are known.

これらの方法によれば、強化材の成形体が形成され、該
成形体中にマトリックス金属の溶湯が加圧によって浸透
せしめられる加圧鋳造法に比して、比較的低体積率の微
細な強化材にて複合強化された複合材料を容易に製造す
ることができる。
According to these methods, a molded body of the reinforcing material is formed, and compared to the pressure casting method in which a molten matrix metal is infiltrated into the molded body under pressure, fine reinforcement with a relatively low volume fraction is produced. It is possible to easily manufacture composite materials reinforced with materials.

発明が解決しようとする課題 しかしコンポキャスト法に於ては、強化材が溶湯に対す
る濡れ性に優れた強化材でなければ強化材をマトリック
ス金属の溶湯中に分散させることができず、また例えば
直径1μ以下の粒子の如く非常に微細な強化材はクラス
ター(集合塊)を形成し易く、そのため強化材が均一に
分散された複合材料を製造することが困難である。更に
溶湯を半溶融状態に維持するための厳密な温度制御等が
必要であり、従って複合材料を容易に製造することが困
難である。
Problems to be Solved by the Invention However, in the composite casting method, the reinforcing material cannot be dispersed in the molten matrix metal unless the reinforcing material has excellent wettability to the molten metal. Very fine reinforcing materials such as particles of 1 μm or less tend to form clusters, making it difficult to produce composite materials in which the reinforcing materials are uniformly dispersed. Furthermore, strict temperature control is required to maintain the molten metal in a semi-molten state, making it difficult to easily manufacture composite materials.

また粉末冶金法に於ては、強化材とマトリックス金属と
の密着性に優れ空孔等の欠陥を含まない複合材料を製造
することが困難であり、またマトリックス金属の粉末と
強化材とを均一に混合することが困難であるため、強化
材が均一に分散された複合材料を製造することが困難で
あり、更には強化材が短繊維である場合には金属粉末と
強化材とを混合する過程に於て短繊維が折損等を受は易
いという問題がある。
Furthermore, in the powder metallurgy method, it is difficult to produce a composite material that has excellent adhesion between the reinforcing material and the matrix metal and does not contain defects such as pores. It is difficult to mix the reinforcing material with the metal powder, making it difficult to produce a composite material in which the reinforcing material is uniformly dispersed. There is a problem in that short fibers are easily damaged during the process.

更にコンポキャスト法に於ては溶湯を半溶融状態にて撹
拌することが必須であり、粉末冶金法に於ては金属粉末
と強化材との混合物を圧縮することが必要であるため、
例えばアンダーカット部を含む部材の如く複雑な形状の
複合材料製の部材を製造することが困難である。
Furthermore, in the composite casting method, it is essential to stir the molten metal in a semi-molten state, and in the powder metallurgy method, it is necessary to compress the mixture of metal powder and reinforcing material.
For example, it is difficult to manufacture components made of composite materials that have complex shapes, such as components that include undercuts.

本発明は、コンポキャスト法及び粉末冶金法に於ける上
述の如き問題に鑑み、比較的低体積率の微細な短繊維若
しくは粒子がマトリックス金属と良好に密着した状態に
て均一に分散され空孔等の欠陥を含まない複合材料を容
易に製造することのできる方法を提供することを目的と
している。
In view of the above-mentioned problems in the composite casting method and powder metallurgy method, the present invention aims to achieve a method in which fine short fibers or particles with a relatively low volume fraction are uniformly dispersed in a state in which they are in close contact with the matrix metal, and voids are formed. The purpose of the present invention is to provide a method that can easily produce a composite material that does not contain defects such as.

課題を解決するための手段 上述の如き目的は、本発明によれば、微細な短繊維若し
くは粒子にて複合強化された金属よりなる複合材料をマ
トリックス金属の溶湯中に浸漬し、前記複合材料に耐熱
性を有するブラシを当接させ、前記ブラシに高周波振動
を与えつつ前記溶湯を撹拌することを含む金属基複合材
料の製造方法によって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned object is achieved by immersing a composite material made of a metal reinforced with fine short fibers or particles into a molten metal of a matrix metal; This is achieved by a method for manufacturing a metal matrix composite material, which includes bringing a heat-resistant brush into contact with the molten metal and stirring the molten metal while applying high-frequency vibration to the brush.

発明の作用及び効果 本発明によれば、複合材料に耐熱性を有するブラシが当
接され、そのブラシに高周波振動が与えられた状態にて
マトリックス金属の溶湯が撹拌されるので、ブラシによ
って複合材料が漸次はぐされることにより強化材、即ち
短繊維若しくは粒子が漸次マトリックス金属の溶湯中に
解放され、強化材がマトリックス金属の溶湯と共に撹拌
されることにより溶湯と混合され、これにより強化材が
溶湯に対する濡れ性の悪い強化材の場合にもクラスター
を形成することなくマトリックス金属の溶湯中に均一に
分散される。またマトリックス金属の溶湯はコンポキャ
スト法の場合の如く半溶融状態である必要はなく完全に
溶融した状態であってよいので、厳密な温度制御等は不
要であり、従ってコンポキャスト法の場合に比して容易
に複合材料を製造することができる。
Effects and Effects of the Invention According to the present invention, a heat-resistant brush is brought into contact with the composite material, and the molten matrix metal is stirred while high-frequency vibrations are applied to the brush. The reinforcing material, i.e., short fibers or particles, is gradually released into the molten matrix metal by being gradually peeled off, and the reinforcing material is mixed with the molten matrix metal by being stirred with the molten metal. Even in the case of reinforcing materials with poor wettability, they are uniformly dispersed in the molten matrix metal without forming clusters. In addition, the molten matrix metal does not need to be in a semi-molten state as in the case of the composite cast method, but may be in a completely molten state, so strict temperature control etc. are not required, and therefore, compared to the case of the composite cast method, Composite materials can be easily manufactured using this method.

また強化材は元の複合材料より解放された直後にマトリ
ックス金属の溶湯と撹拌により混合されるので、粉末冶
金法に比して強化材とマトリックス金属との密着性に侵
れ空孔等の欠陥を含まない複合材料を容易に製造するこ
とができる。また強化材は完全に溶融した状態のマトリ
ックス金属と混合されるので、強化材が固体の金属粉末
と混合されるコンポキャスト法の場合の如く強化材の折
損等の問題の発生を回避することができ、またマトリッ
クス金属の溶湯と均一に混合することができ、これによ
りコンポキャスト法の場合に比して正常な状態の強化材
が均一に分散された複合材料を容易に製造することがで
きる。
In addition, since the reinforcing material is mixed with the molten matrix metal by stirring immediately after it is released from the original composite material, the adhesion between the reinforcing material and the matrix metal is degraded and defects such as pores occur, compared to the powder metallurgy method. Composite materials that do not contain can be easily manufactured. Additionally, since the reinforcement is mixed with the matrix metal in a completely molten state, problems such as breakage of the reinforcement can be avoided as in the case of composite casting, where the reinforcement is mixed with solid metal powder. Furthermore, it can be mixed uniformly with the molten metal of the matrix metal, making it easier to produce a composite material in which the reinforcing material in its normal state is uniformly dispersed, compared to the case of composite casting.

更に本発′明によれば、比較的低体積率の微細な強化材
が均一に分散された複合金属溶湯を形成することができ
るので、ただ単に複合金属溶湯を例えば重力鋳造用の鋳
型に注湯し凝固させることにより、複雑な形状を有し全
体に亙り強化材が均一に分散された複合材料製の部材を
容易に製造することができる。
Further, according to the present invention, it is possible to form a composite metal molten metal in which fine reinforcing materials with a relatively low volume fraction are uniformly dispersed, so that the composite metal molten metal can be simply poured into a mold for gravity casting, for example. By hot water solidification, it is possible to easily manufacture a composite material member having a complex shape and having reinforcing material uniformly dispersed throughout.

本願発明者等が行った実験的研究の結果によれば、ブラ
シの振動方向がその毛の延在方向に対し垂直な方向の場
合よりも毛の延在方向に沿う方向である場合に強化材を
より一層均−に分散させることができる。従って本発明
の一つの詳細な特徴によれば、ブラシは実質的にその毛
の延在方向に沿う方向に振動せしめられる。
According to the results of experimental research conducted by the inventors of the present application, it has been found that when the vibration direction of the brush is along the direction of bristles, the reinforcement can be dispersed more evenly. According to one detailed feature of the invention, therefore, the brush is vibrated in a direction substantially along the direction of extension of its bristles.

また本発明の方法に於ては、予め準備される複合材料の
マトリックス金属はそれが浸漬されるマトリックス金属
と同一の組成の金属であってもよく、また異なる組成の
金属であってもよく、前者の場合には予め準備される複
合材料とマトリックス金属が同一の複合材料を製造する
ことができ、後者の場合には複合材料の製造と同時にそ
のマトリックス金属の組成を変化させることができる。
Further, in the method of the present invention, the matrix metal of the composite material prepared in advance may be a metal of the same composition as the matrix metal in which it is immersed, or may be a metal of a different composition, In the former case, a composite material prepared in advance and the same matrix metal can be manufactured, and in the latter case, the composition of the matrix metal can be changed at the same time as the composite material is manufactured.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 炭化ケイ素ウィスカ(東海カーボン株式会社製「トーカ
ウィスカ」)を圧縮成形することにより、体積率約30
%の炭化ケイ素ウィスカよりなり20X40X100m
mの寸法を有する成形体を形成した。次いで成形体を4
50℃に予熱した後、第1図に示されている如(成形体
10を鋳型12内に配置し、該鋳型内に740℃のアル
ミニウム合金(JIS規格AC4C)を注渇し、該溶湯
を鋳型に嵌合するプランジャ14により約1000 k
g/C−の圧力に加圧し、その加圧状態を溶湯が完全に
凝固するまで保持することにより、体積率30%の炭化
ケイ素ウィスカにて複合強化されたアルミニウム合金よ
りなる複合材料を含む鋳物を形成した。
Example 1 By compression molding silicon carbide whiskers (“Toka Whiskers” manufactured by Tokai Carbon Co., Ltd.), a volume ratio of approximately 30
Made of % silicon carbide whiskers 20X40X100m
A molded body having dimensions of m was formed. Next, the molded body was
After preheating to 50°C, as shown in FIG. Approximately 1000 k by the plunger 14 that fits into
A casting containing a composite material made of an aluminum alloy composite reinforced with silicon carbide whiskers with a volume ratio of 30% by pressurizing the molten metal to a pressure of g/C- and maintaining the pressurized state until the molten metal completely solidifies. was formed.

次いで鋳物に対し機械加工を施すことにより鋳物より複
合材料を取出し、第2図に示されている如く、その複合
材料16をセラミックよりなる支持具18に固定し、複
合材料をヒータ20により740℃に維持された5 k
gのアルミニウム合金(JIS規格AC4C)の溶湯2
2中に浸漬保持した。次いで第2図に示されている如く
、アルミナの基板24に直径10μのアルミナ繊維より
なる毛26が植毛された耐熱ブラシ28の毛を複合材料
16に当接させ、ブラシ28を超音波発振器30により
ホーン32を介して28kHz、150Wにて基板24
の延在方向に垂直な方向、即ち毛26の延在方向に沿う
方向に加振し、これと共に溶湯22をプロペラ34によ
り撹拌した。この場合約5分経過した時点に於て全ての
炭化ケイ素ウィスカが溶湯22中に分散した。これと同
様の要領にて合計10個の複合材料を処理し、しかる後
更に30分間溶湯22を撹拌し、しかる後溶湯をそのま
ま凝固させた。
Next, the composite material is extracted from the casting by performing machining on the casting, and as shown in FIG. 5k maintained at
Molten metal 2 of aluminum alloy (JIS standard AC4C) of g
It was kept immersed in 2. Next, as shown in FIG. 2, the bristles of a heat-resistant brush 28, in which bristles 26 made of alumina fibers having a diameter of 10 μm are implanted on an alumina substrate 24, are brought into contact with the composite material 16, and the brush 28 is connected to an ultrasonic oscillator 30. 28kHz, 150W through the horn 32 to the board 24.
Vibration was applied in a direction perpendicular to the extending direction of the bristles 26, that is, in a direction along the extending direction of the bristles 26, and the molten metal 22 was simultaneously stirred by the propeller 34. In this case, all the silicon carbide whiskers were dispersed in the molten metal 22 after about 5 minutes had passed. A total of 10 composite materials were treated in the same manner, and then the molten metal 22 was further stirred for 30 minutes, and then the molten metal was allowed to solidify as it was.

次いでかくして形成された複合材料を切断しその断面を
観察したところ、炭化ケイ素ウィスカが体積率約10%
にて複合材料全体に均一に分散されており、炭化ケイ素
ウィスカとアルミニウム合金との密着も良好であること
が認められた。
Next, when the composite material thus formed was cut and its cross section was observed, it was found that silicon carbide whiskers accounted for approximately 10% by volume.
It was confirmed that the silicon carbide whiskers were uniformly dispersed throughout the composite material, and that the adhesion between the silicon carbide whiskers and the aluminum alloy was also good.

また上述の場合と同一の要領及び条件にて体積率約10
%の炭化ケイ素ウィスカが均一に分散された複合溶湯を
形成し、該溶湯を重力鋳造装置の鋳型内に注湯すること
により、長さ150mm、外径90mm、内径80關の
寸法を有し、長手方向中央部の外面に幅10mm、深さ
2I11の溝を有するスリーブを形成した。次いでかく
して形成されたスリーブをその軸線に沿う方向及び軸線
に垂直な方向に切断し、それらの断面を観察したところ
、このスリーブに於ても炭化ケイ素ウィスカが体積率約
10%にてスリーブ全体に均一に分散されており、炭化
ケイ素ウィスカとアルミニウム合金との密着も良好であ
ることが認められた。
Also, under the same procedure and conditions as above, the volume ratio is approximately 10.
% of silicon carbide whiskers are uniformly dispersed, and by pouring the molten metal into a mold of a gravity casting device, the mold has dimensions of 150 mm in length, 90 mm in outer diameter, and 80 mm in inner diameter, A sleeve having a groove having a width of 10 mm and a depth of 2I11 was formed on the outer surface of the central portion in the longitudinal direction. Next, the thus formed sleeve was cut in the direction along the axis and in the direction perpendicular to the axis, and the cross sections were observed. It was found that silicon carbide whiskers were present throughout the sleeve at a volume ratio of about 10%. It was found that the silicon carbide whiskers were uniformly dispersed and that the adhesion between the silicon carbide whiskers and the aluminum alloy was good.

実施例2 第3図に示されている如く、ブラシ28がその基板24
の延在方向に沿って加振された点を除き、上述の実施例
1の場合と同一の要領及び条件にて複合材料を形成した
Embodiment 2 As shown in FIG.
A composite material was formed in the same manner and under the same conditions as in Example 1 above, except that the vibration was applied along the extending direction.

この実施例に於ても炭化ケイ素ウィスカが体積率約10
%にて実質的に均一に分散されていたが、炭化ケイ素ウ
ィスカの分散状態の均一性は実施例1に於ける複合材料
はど良好ではなかった。
In this example as well, the volume ratio of silicon carbide whiskers is about 10.
%, but the uniformity of the dispersion state of silicon carbide whiskers was not so good in the composite material of Example 1.

比較例 ブラシ28を超音波発振器により加振するのではなく手
動的に駆動することにより複合材料がほぐされた点を除
き、上述の実施例1の場合と同一の要領及び条件にて複
合材料を形成した。
Comparative Example A composite material was prepared in the same manner and under the same conditions as in Example 1, except that the composite material was loosened by manually driving the comparative example brush 28 rather than by vibrating it with an ultrasonic oscillator. Formed.

その結果複合材料はその脆弱な部分にて大きい塊りとな
って崩れ、炭化ケイ素ウィスカが均一に分散された複合
材料を製造することはできなかった。
As a result, the composite material crumbled into large clumps at its weak points, making it impossible to manufacture a composite material in which silicon carbide whiskers were uniformly dispersed.

またブラシ28により複合材料をほぐさず、プロペラ3
4によるアルミニウム合金の溶湯の撹拌のみを行って同
様に複合材料の製造を試みたところ、複合材料はほぐれ
ず、従って炭化ケイ素ウィスカは全く溶湯22中に分散
しなかった。
In addition, the brush 28 does not loosen the composite material, and the propeller 3
When an attempt was made to manufacture a composite material in the same manner by only stirring the molten aluminum alloy according to No. 4, the composite material did not loosen, and therefore, no silicon carbide whiskers were dispersed in the molten metal 22.

実施例3 平均粒径0.5μの炭化ケイ素粒子を圧縮成形すること
により、体積率約40%の炭化ケイ素粒子よりなり20
 X 40 X 100 m+sの寸法を有する成形体
を形成した。次いで成形体を600℃に予熱した後その
成形体を実施例1に於て使用された鋳型と同一の鋳型内
に配置し、該鋳型内に750℃のアルミニウム合金(J
IS規格ACIA)の溶湯を注湯し、該溶湯をプランジ
ャにより約1000kg/cdの圧力に加圧し、その加
圧状態を溶湯が完全に凝固するまで保持し、これにより
体積率40%の炭化ケイ素粒子にて複合強化されたアル
ミニウム合金よりなる複合材料を含む鋳物を形成した。
Example 3 By compression molding silicon carbide particles with an average particle size of 0.5μ, 20
A molded body with dimensions of x 40 x 100 m+s was formed. Next, after preheating the molded body to 600°C, the molded body was placed in the same mold as that used in Example 1, and an aluminum alloy (J
A molten metal of IS standard ACIA) is poured, the molten metal is pressurized to a pressure of approximately 1000 kg/cd with a plunger, and the pressurized state is maintained until the molten metal completely solidifies. A casting containing a composite material consisting of an aluminum alloy composite reinforced with particles was formed.

次いで鋳物に対し機械加工を施すことにより鋳物より複
合材料を取出し、かくして得られた複合材料が使用され
、マトリックス金属の溶湯として750℃のアルミニウ
ム合金(JIS′ML格ACIA)が使用された点を除
き、上述の実施例1の場合と同一の要領及び条件にて合
計で8個の複合材料を処理した。
Next, the composite material was extracted from the casting by performing machining on the casting, and the composite material thus obtained was used, and an aluminum alloy (JIS'ML rated ACIA) at 750°C was used as the molten metal for the matrix metal. A total of eight composite materials were treated in the same manner and under the same conditions as in Example 1 above, except for the following.

次いでかくして形成された複合材料を切断しその断面を
観察したところ、体積率11%の炭化ケイ素粒子が複合
材料全体に亙り均一に分散されており、炭化ケイ素粒子
とアルミニウム合金との密着も良好であることが認めら
れた。
Next, when the thus formed composite material was cut and its cross section was observed, silicon carbide particles with a volume fraction of 11% were uniformly dispersed throughout the composite material, and the adhesion between the silicon carbide particles and the aluminum alloy was also good. One thing was recognized.

また上述の場合と同一の要領及び条件にて体積率約11
%の炭化ケイ素粒子が均一に分散された複合溶湯を形成
し、該溶湯を重力鋳造装置の鋳型内に注湯することによ
り、実施例1のスリーブと同一の寸法及び形状を有する
スリーブを形成し、該スリーブをその軸線に沿う方向及
び軸線に垂直な方向に切断してそれらの断面を観察した
ところ、このスリーブに於ても炭化ケイ素粒子が体積率
約11%にてスリーブ全体に均一に分散されており、炭
化ケイ素粒子とアルミニウム合金との密着も良好である
ことが認められた。
Also, under the same procedure and conditions as above, the volume ratio is approximately 11.
A sleeve having the same dimensions and shape as the sleeve of Example 1 was formed by forming a composite molten metal in which % of silicon carbide particles were uniformly dispersed, and pouring the molten metal into a mold of a gravity casting device. When the sleeve was cut along the axis and in the direction perpendicular to the axis and the cross sections were observed, it was found that silicon carbide particles were uniformly dispersed throughout the sleeve at a volume percentage of about 11%. It was also confirmed that the adhesion between the silicon carbide particles and the aluminum alloy was good.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明・はこれらの実施例に限定されるもの
ではなく、本発明の範囲内にて他の種々の実施例が可能
であることは当業者にとって明らかであろう。
Although the present invention has been described in detail with reference to several embodiments above, the present invention is not limited to these embodiments, and various other embodiments may be made within the scope of the present invention. It will be obvious to those skilled in the art that this is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧鋳造工程を示す断面図、第2図は本発明の
一つの実施例に従って複合材料が製造される状態を示す
断面図、第3図はブラシに対する加振方法の他の一つの
実施例を示す解図である。 10・・・成形体、12・・・鋳型、14・・・プラン
ジャ。 16・・・複合材料、18・・・支持具、20・・・ヒ
ータ。 22・・・アルミニウム合金の溶湯、24・・・基板、
26・・・毛、28・・・ブラシ、30・・・超音波発
振器、32・・・ホーン、34・・・プロペラ 第1図
FIG. 1 is a sectional view showing a pressure casting process, FIG. 2 is a sectional view showing a state in which a composite material is manufactured according to an embodiment of the present invention, and FIG. 3 is an alternative method of vibrating a brush. FIG. 2 is an illustration showing two embodiments. 10... Molded body, 12... Mold, 14... Plunger. 16... Composite material, 18... Support, 20... Heater. 22... Molten aluminum alloy, 24... Substrate,
26... Hair, 28... Brush, 30... Ultrasonic oscillator, 32... Horn, 34... Propeller Figure 1

Claims (1)

【特許請求の範囲】[Claims] 微細な短繊維若しくは粒子にて複合強化された金属より
なる複合材料をマトリックス金属の溶湯中に浸漬し、前
記複合材料に耐熱性を有するブラシを当接させ、前記ブ
ラシに高周波振動を与えつつ前記溶湯を撹拌することを
含む金属基複合材料の製造方法。
A composite material made of a metal reinforced with fine short fibers or particles is immersed in a molten matrix metal, a heat-resistant brush is brought into contact with the composite material, and high-frequency vibration is applied to the brush while the A method for producing a metal matrix composite material comprising stirring a molten metal.
JP1693189A 1989-01-26 1989-01-26 Manufacture of metal-matrix composite material Pending JPH02197536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1693189A JPH02197536A (en) 1989-01-26 1989-01-26 Manufacture of metal-matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1693189A JPH02197536A (en) 1989-01-26 1989-01-26 Manufacture of metal-matrix composite material

Publications (1)

Publication Number Publication Date
JPH02197536A true JPH02197536A (en) 1990-08-06

Family

ID=11929869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1693189A Pending JPH02197536A (en) 1989-01-26 1989-01-26 Manufacture of metal-matrix composite material

Country Status (1)

Country Link
JP (1) JPH02197536A (en)

Similar Documents

Publication Publication Date Title
JPH05192761A (en) Method of manufacturing part with abrasion proof face
JPH02197536A (en) Manufacture of metal-matrix composite material
JPH0344432A (en) Manufacture of fiber reinforced metallic composite material
JPS5923832A (en) Production of composite material member
JPS59226139A (en) Manufacture of preform of fiber reinforced metallic composite material
JPS62161463A (en) Production of composite metallic material
JP3668864B2 (en) Molding method
JPH024935A (en) Manufacture of metal matrix composite
JPH1129831A (en) Preform for metal matrix composite, and its production
JP2000129374A (en) Aluminum-based composite material and its manufacture
JPH08325655A (en) Production of aluminum casting
JP2002053940A (en) Method for manufacturing metal matrix composite material
JPS60115361A (en) Production of composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JP3327604B2 (en) Manufacturing method of metal products and core material used for the same
JP2002053941A (en) Method and equipment for manufacturing metal matrix composite material
JPS6099474A (en) Production of composite material member
JPS62199739A (en) Production of fibrous formed body for fiber reinforced composite material
JPH02259031A (en) Manufacture of reinforced metallic composite material
JP2679160B2 (en) Method for manufacturing metal-based composite material member
JPH0456738A (en) Manufacture of fiber reinforced metallic formed body
JPH05271827A (en) Production of al matrix composite
JPH03223431A (en) Manufacture of formed body for composite member
JPS6184345A (en) Manufacture of composite material
JPS6153420B2 (en)