JPH0219743B2 - - Google Patents

Info

Publication number
JPH0219743B2
JPH0219743B2 JP59236474A JP23647484A JPH0219743B2 JP H0219743 B2 JPH0219743 B2 JP H0219743B2 JP 59236474 A JP59236474 A JP 59236474A JP 23647484 A JP23647484 A JP 23647484A JP H0219743 B2 JPH0219743 B2 JP H0219743B2
Authority
JP
Japan
Prior art keywords
width
short side
speed
mold
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236474A
Other languages
Japanese (ja)
Other versions
JPS61115656A (en
Inventor
Kazuhiko Tsutsumi
Takeyoshi Ninomya
Wataru Oohashi
Masami Tenma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59236474A priority Critical patent/JPS61115656A/en
Priority to AU47023/85A priority patent/AU554019B2/en
Priority to CA000490523A priority patent/CA1233011A/en
Priority to EP85306509A priority patent/EP0182468B1/en
Priority to DE8585306509T priority patent/DE3578554D1/en
Priority to ZA857092A priority patent/ZA857092B/en
Priority to ES547211A priority patent/ES8702811A1/en
Priority to BR8504644A priority patent/BR8504644A/en
Priority to US06/783,589 priority patent/US4660617A/en
Priority to ES554807A priority patent/ES8704368A1/en
Publication of JPS61115656A publication Critical patent/JPS61115656A/en
Priority to US06/883,395 priority patent/US4727926A/en
Publication of JPH0219743B2 publication Critical patent/JPH0219743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は鋼の連続鋳造法に関し、詳しくは連続
鋳造中に鋳型短辺を移動せしめて鋳片幅を拡大も
しくは縮小する幅変更方法に関する。 〔従来の技術〕 近年、連続鋳造、特に鋼の連続鋳造において
は、稼働率の向上および鋳片歩留の向上等の要請
から、鋳型への鋳込を停止することなく鋳片幅の
変更を行なう連続鋳造法が実施されるようになつ
てきた。特に最近、連続鋳造工程と圧延工程を直
結化する方法が実用化され、製品板幅に応じて連
続鋳造中の鋳片幅を変更する技術はますます重要
さを増している。連続鋳造機の運転を止めずに鋳
片幅を変更する場合においては、幅が変化する部
分の長さを出来るかぎり短かくし、要求される幅
に直ちに変更することが重要である。このために
は幅変更速度を上昇させることが必要となつてき
た。 連続鋳造における鋳片幅の変更においては、鋳
型短辺を何らかの方法で鋳型の中心側または反中
心側へ移動させる操作がおこなわれる。第2図は
鋳型長辺を固定し短辺を移動させる幅変更装置の
一例を概念的に示したものである。すなわち一対
の短辺1a,1bが鋳型振動テーブル(図示せ
ず)に固定された長辺2a,2bに挾持されてお
り、短辺に取りつけられた電動または油圧式の駆
動装置3a,3bにより駆動され、鋳片4の幅を
鋳造を止めることなく変更する装置である。かか
る装置において幅変更速度を高速化する場合、短
辺を駆動する力の増大並びに鋳片欠陥の危険性の
増大があり、このことが幅変更の高速化を阻んで
いた。 而して従来の幅変更方法としては、例えば特開
昭53−60326号公報および特公昭54−33772号公報
で開示され、第3図および第4図に示すような方
法が一般的に実施されていた。即ち第3図は幅縮
小の場合を説明するものであつて、aで示す第1
ステツプでは短辺1を点線aの如く傾斜させ、第
2ステツプでbの如く平行移動した後、ついで第
3ステツプでcの如く傾斜をもとに戻す方法を示
し、又第4図は幅拡大の場合を説明するものであ
つて、aで示す第1ステツプで短辺1を点線aの
如く傾斜させ、第2ステツプでbの如く平行移動
したのち、第3ステツプでcの如く傾斜を少なく
する方法を示している。 つまり、従来は第3図及び第4図a,cにおけ
るテーパー変更動作と同図bにおける平行移動動
作とは完全に分離して行なわれていた。 しかし、前記従来方法では、テーパー変更時期
に時間がかかりすぎ、平行移動速度Vmを高速化
しても幅可変移行部長さを減少させる効果は非常
に少なく、歩留り向上の妨げとなつていた。 前記問題を解決するために、平行移動速度Vm
をより高めるための試みも種々行われている。と
ころが鋳型内で凝固したシエル(凝固殻)を破断
することなく、かつ、このシエルの変形抵抗力に
打ち勝つて平行移動速度Vmを高めるためには、
第3図および第4図aにおける傾斜変更角△φを
大きくしなければならない。 一方、前記傾斜変更角△φを大きくすると、短
辺1と鋳片4との間に隙間、即ちエアーギヤツプ
が生じ、このエアーギヤツプが大きくなると鋳片
4に割れが生じたり、ブレークアウトが発生する
等の問題がある。このため前記従来方法では平行
移動速度Vmを高めることに限界があり、而して
幅変更時間を短縮することには制限があつた。係
る問題を解決するために、本出願人は前記第1ス
テツプ及び第3ステツプにおいて短辺の上下端を
同時に移動させ、該期間の所要時間を短縮させる
方法を開発し、先に特願昭57−184103号及び特願
昭58−143157号として出願した。しかしながらこ
の方法においても平行移動の実施を基本的思想と
したものであり、平行移動に達するまでの時間を
出来るだけ速くすることは可能となつたが、それ
でもなお幅変更の全所要時間を短縮するには限界
があつた。 〔発明が解決しようとする問題点〕 本発明は前述した従来方法における問題点を抜
本的に解決すると共に前記特願昭57−184103号及
び特願昭58−143157号の更に改良を図るもので、
連続鋳造中に鋳片幅を拡大もしくは縮小する幅変
更を最小時間で行わせることにより幅変更部分を
少なくして歩留りを向上させると共にブレークア
ウト(以下BOと言う)や鋳片割れ等の鋳造欠陥
の発生がない安定した操業を可能ならしめる方法
を提供するものである。 〔問題点を解決するための手段〕 本発明は、前記連続鋳造中に鋳型短辺を移動せ
しめて鋳片幅を拡大もしくは縮小する鋼の連続鋳
造法において、前記短辺の移動を該短辺を鋳型中
心側へ順次傾ける前傾期と鋳型反中心側へ順次傾
ける後傾期とに区分し、各期間における短辺上下
端部の水平方向移動速度の増速率αを予め許容シ
エル変形抵抗力をパラメータとして求めると共に
前記上下端部の移動速度の差△Vを下記(1)式で定
め、当該期間中、前記増速率α及び速度差△Vを
一定に維持して幅変更を行うことを特徴とする鋼
の連続鋳造法に関する。 △V=α・L/Uc (1) 但し△V;短辺上端と下端の速度差(mm/
min) α;短辺上下端部の増速率(mm/min2) L;鋳型短辺長さ(mm) Uc;鋳造速度(mm/min) なお、前記幅変更において幅縮小変更開始時の
初期短辺下端部速度を零として幅変更を行うこ
と、又は幅拡大変更開始時の初期短辺上端部速度
を零として幅変更を行うことが好ましい。 〔作用〕 第1図は本発明に基づく幅変更時における短辺
の上端部及び下端部の水平方向移動速度(以下、
移動速度と言う)を説明するための線図であつ
て、第1図aが幅縮小を、第1図bが幅拡大を示
すものである。又速度は鋳型中心側への移動速度
を+(正)、鋳型反中心側への移動速度−(負)と
して表した。 而してまず第1図aに基づき幅縮小の場合につ
いて説明する。図において破線xは短辺上端部
(鋳型内のメニスカスに相当する位置をいい、以
下短片上端部とは係る意味で用いる。)の移動速
度(以下、上端部速度と言い、Vuで表す)を、
実線yは短辺下端部の移動速度(短辺下端部とは
短辺の下端をいい、Vlで表す)である。幅縮小
にあたつては短辺を鋳型中心方向に移動させる
が、その前半では短辺を鋳型中心側へ傾ける前傾
操作を行い、目標とする幅変更量の略半量に達し
たら平行移動を行うことなく直ちに短辺を鋳型反
中心側へ傾ける後傾操作を行わしめ、一連の幅変
更操作を終わる。第1図の例は2種類の幅変更の
パターンを示すもので、目標幅変更量を幅変更時
間Tw1、Tw2で表し、前傾期から後傾期への折
返し時間をTr1、Tr2で表した。第5図はこの幅
縮小時の短辺の移動状況を示す模式図であり、前
記前傾期には短辺の上端部速度Vuを下端部速度
Vlより常に一定速度だけ速く移動させることに
よつて1点鎖線で示す水平線zに対する短辺1の
傾斜角βが順次大きくなり、前傾量は増してい
く。逆に後傾期には上端速度Vuより下端速度Vl
を常に一定速度速めることによつて前記傾斜角β
は順次小さくなり、前傾量が減つていく。(本発
明においては前記傾斜角βが大きくなる方向、即
ち鋳型中心側に傾いていく移動期間を前傾期、逆
に前記傾斜角βが小さくなる方向、即ち鋳型反中
心側に傾いていく移動期間を後傾期とそれぞれ定
義して用いた。) 一方、上下部速度Vu、Vlは前記前後傾期にお
いて一定の増速率α、即ち前傾期においては正方
向つまり前傾量が順次増加する増速度αを、また
後傾期においては負方向、つまり後傾量が順次増
加する増速率α(正方向を基準とすれば減速率と
なるが本発明では増速率に統一して用い、それを
特に区別して表す必要があるときはその符合で増
速を(+)、減速を(−)で表すことにする。ま
たこれを総称して言うときは以下増速率αと言
う。)を有し、それぞれ時間と共に前傾量もしく
は後傾量が増加する。而して第1図においては前
傾期の増速率をa1、上下端部速度Vu、Vlの速度
差を△V1で表し、減速する後傾期の増速率をα2
α21で、又上下端部速度Vu、Vlの速度差を△V2
△V21で表した。 次ぎに幅拡大の場合を前記第1図b及び第6図
の模式図に基づいて説明する。幅拡大を実施する
に当たつては前記幅縮小とは逆に短辺を鋳型反中
心方向に移動させていくが、まずその前半では下
端部速度Vlを上端部速度Vuより常に一定の速度
だけ高める後傾操作を行い、所定量の移動を行わ
せた後直ちに上端部速度Vuを下端部速度Vlより
高める前傾操作を行う。この場合においても上下
端部速度Vu、Vlは前述したように一定の増速率
αを有し、それぞれ時間と共に前傾量もしくは後
傾量が増加する。 以上のように、本発明では前記増速率αを後述
するように許容シエル変形抵抗をパラメータとし
て鋼種や鋳片サイズ、鋳造速度、等に応じて予め
求めて設定すると共に上端部速度Vuと下端部速
度Vlの速度差△Vを前記(1)式に基づいて定め、
前傾期及び後傾期のそれぞれの期間中それを一定
に維持して幅変更を実施することにより後述する
種々の多大な効果を挙げることに成功したのであ
る。尚、短辺の駆動装置としては、短辺の上、下
端部の速度Vu、Vlを前述のように所定の速度に
制御できるものであれば、前記第2図の駆動装置
に限定されるものではない。例えば第19図に示
すような周知の装置、即ち、短辺1の背面に、水
平方向に移動自在で、かつ球面座12を支点とし
てカム機構14の回転駆動により揺動可能に構成
された1本のスピンドル13を連接し、このスピ
ンドル13によつて短辺1の水平方向への移動と
旋回動作を同時に行う構造のものを用いることも
可能である。第19図において15は電動モータ
ーであり、スクリユウシヤフト16を介して前記
スピンドル13を水平方向に移動せしめる。 しかしながら本発明者らの経験では、前記第1
9図に示すような装置では、例えば幅変更速度を
大きくとつたり、短辺1は球面座12より離れ
る、つまり鋳片幅を狭くするに従つて短辺1の上
端又は下端が鋳造方向にずれを生じ、特に最近、
積極的に採用されている湾曲型鋳型においては前
記ずれによつて長辺と短辺との間に間隙を生じ、
鋳造欠陥発生を誘発する可能性がある。かかる点
などを勘案すると前記第2図に示すような鋳造方
向に対して上下2本のシリンダー装置によつて駆
動する構造のものが総ての鋳型において本発明の
機能を発揮でき、優れていた。 次ぎに前述した増速率α及び速度差△Vを制御
因子とすることにより本発明の幅変更が効率的に
実施出来る理由について説明する。 前述したように幅変更時の速度を高速化するに
は、幅変更中にBOや鋳片の欠陥等を生じさせな
いための配慮が必要である。このためには幅変更
実施の全期間中において鋳片と短辺との間にエア
ーギヤツプを生じさせず、かつ短辺によつて過度
に鋳片を押し込むことがないように常に適正な押
し込みを確保することが肝要である。第7図は短
辺の移動と前記エアーギヤツプの生成条件を説明
する概念図であつて、Xu、Xlは短辺上端部およ
び下端部の任意時点(幅変更開始から任意時間t
経過した時点)における移動量を示し、βは当該
時点での前述した短辺と水平線zとの傾斜角を、
又θは垂直線に対する傾斜角をθ=β−90゜とし
て表すものである。 さて、微小時間dtの間に短辺上端がdXu、下端
がdXl移動するものとすると、この間鋳片は鋳造
速度をUcとして〔Uc・dt〕だけ下方に移動し、
第7図aにおけるd点はd1点へ、e点はe1点へ移
動する。この間に短辺1の進む距離が小さいと、
短辺と鋳片との間に前記エアーギヤツプ(第7図
aにおけるη)を生じる結果となる。これを避け
るためには第7図bに示すようにdtの間に短辺が
〔Uc・dt・tanθ〕以上移動すればよい。即ち短辺
上端部の移動量と下端部移動量に関して下記(2)、
(3)式が成り立てばよいことになる。 dXu≧Uc・dt・tanθ −(2) dXl≧Uc・dt・tanθ −(3) ここに、tanθは下記(4)式で表せることから、前
記(2)、(3)式でdtで割り、整理することによつて下
記(5)、(6)式が得られる。 tanθ=(Xu−Xl)/L −(4) dXu/dt=Vu≧(Xu−Xl)・Uc/L−(5′) Vu−(Xu−Xl)・Uc/L≧0 −(5) dXl/dt=Vl≧(Xu−Xl)・Uc/L (6′) Vl−(Xu−Xl)・Uc/L≧0 −(6) 従つて上端部速度Vu及び下端部速度Vlを前記
(5)、(6)式を常に満足するように設定すると、前記
エアーギヤツプηが生じることなく幅変更を行な
えることが判つた。 次に鋳片上の任意の点が鋳型内を通過する間に
受ける総変形量(以下これを押込量δと言う)を
第8図に基づいて説明する。任意時刻tにおいて
短辺上端で生成された点dはL/Uc時間後に短
辺下端を通過する。この時短辺が移動している
と、鋳片はT=t+L/Ucの時点の短辺下端位
置との差分だけ変形されて鋳型を出る。この鋳型
内を通過時に鋳片が受ける総変形量、つまり前記
押込量δは下記(7)式で表すことができる。 δ=Xl(t+l/Uc)−Xu(t) −(7) 而して該押込量δと前述したエアーギヤツプを
生じない条件によつて鋳片の押込状態は表され、
この二つの条件を幅変更中の経過時間に対して変
化させないように制御することにより前述した鋳
造欠陥の生じることのない安定した押込状態を維
持出来ることが判つた。従つて本発明者等は前記
条件を満足させるために更に研究を継続した。 さて前記条件を満足させるためには、前記(5)〜
(7)式を同時に満足するVu、Vlを求める必要があ
る。下記(8)、(9)式及び(10)式は前記(5)、(6)式及び(7
)
式をそれぞれ時間で微分して得られた式であり、
この(8)〜(10)を連立して下記(11)式が得られる。 dVu/dt−Uc/L・(Xu−Xl)=0 −(8) dVl/dt−Uc/L・(Vu−Vl)=0 −(9) Vl(t+l/Uc)−Vu(t)=0 −(10) dVu/dt={Vu(t) −Vu(t−L/Uc)}/(L/Uc) −(11) 前記(11)式の解を一般解の式で表すと下記(12)式と
なる。 Vu=A・t+B −(12) (12)式においてA、及びBは定数である。又、前
記(12)式を前記(9)式に代入することによつてVlが
下記(13)式で表わされる。 Vl=A・t+(B−A・L/Uc) −(13) つまり該(12)及(13)式より、前述した安定した
押込状態を維持するには、Vu及びVlを幅変更開
始からの経過時間tとの1次関数で設定すれば良
く、又VuとVlは常に一定の速度差に保てば良い
という新知見が得られた。 本発明者等は該知見に基づき実操業の連続鋳造
中における幅変更においてさらに研究を重ねた結
果、前記(12)及び(13)式の定数Aを許容変形抵抗
力をパラメーターとして求めた値に設定すること
により、前記知見を工業的規模で適用することが
可能であることを確認した。 而して本発明における前記定数Aは零以外の値
であつて、このためVu及びVlは時間と共に増速
もしくは減速される。この幅変更期間中Vu及び
Vlを増速もしくは減速させる定数Aを本発明で
は増速率αとして用いた。又前記(12)及び(13)式
における定数Bは短辺上端部の幅変更開始時の初
期速度であり、幅変更やその時の操業条件によつ
て予め適宜決定すればよい。前記増速率αが設定
されるとVuとVlの速度差は前記(13)式の短辺
長さL及び鋳造速度Ucから △V=Vu−Vl=α・L/Uc −(1) と求められ、前述した(1)式が得られる。 因に増速率αが零の場合は前記(1)式の△V=0
となり、Vu=Vl即ち短辺の上下端部速度が同一
速度となる。これは従来法の幅変更における平行
移動と結果的に同一の状態になる。確かに従来法
の平行移動期間中は押込状態が安定した状態に保
たれるためこの部分での鋳造欠陥の発生はなく、
従来はこの平行移動を中心として幅変更パターン
が実施されていたわけである。しかしながらこの
ような従来法では前述したように平行移動期の前
後に傾斜角度変更期が必要となり、この期間で適
正な押込量を確保することが困難となつたり、幅
変更時間の短縮に限界が生じる等の問題があつ
た。本発明は係る従来の問題を、増速率αを零以
外でかつ許容シエル変形抵抗力から求められる値
に設定することによつて抜本的な解決を可能とし
たものである。 次に増速率αの具体的な求め方について説明す
る。 さて、増速率αを高くしていくと幅変更時間は
短縮されていくが、或る値を越えると鋳片が座屈
を生じて表面のシエルが破断したり、或いは変形
抵抗が大きくなり短辺を移動せしめる駆動力が不
足して幅変更が出来なくなる等の現象を生じるよ
うになる。本発明者等は多くの実験を繰返した結
果、前記増速率αを許容シエル変形抵抗力から最
適の範囲を求めることが可能であることを確認し
た。許容シエル変形抵抗力はシエル強度から決定
される場合と前記鋳型短辺駆動力から決定される
場合とがある。 而してまず鋳片シエルの強度から求める方法に
ついて説明する。鋳型短辺により鋳片を押し込む
と、鋳片表面に生成された凝固殻、即ちシエルに
は歪が生じる。この際前記シエルにはその歪速度
に応じた抵抗力が発生する。ところで該抵抗力が
シエルの限界強度以上である場合には、シエルが
座屈変形をおこし鋳造欠陥を生じる結果となる。
このような欠陥の発生を避けるためには、シエル
に生じる歪速度をシエル強度に対応する限界歪速
度以下にしなければならない。本発明の幅変更法
における前記シエルの歪速度を第9図に基づいて
説明する。短辺上端部からの任意の距離Eの位置
における微小押込量をdX(E)とし、微小時間dtの
間に上端部がdXu、下端部がdXl動いたとすると
前記E点にある鋳片が受ける微小押込量dX(E)は
下記(14)式で表せる。 dX(E)={(dXl−dXu)/L}・E +dXu−Uc・dt・tanθ −(14) 従つて単位時間当りの押込率は下記(15)式で
表せる。 dX(E)/dt=(Vl−Vu)・E/L +Vu−Uc・tanθ −(15) ところで幅変更の前半期(幅縮小時は前傾期、
幅拡大時は後傾期)では前述のようにVu、Vlは
下記(16)、(17)式で表せる。 Vu=α1・t+B1 −(16) Vl=α1・t+B1−α1・L/Uc −(17) 但しα1;幅変更の前半期における増速率 B1;幅変更の前半期における短辺上端部の初期
速度 又、幅変更の後半期(幅縮小時は後傾期、幅拡
大期は前傾期)では下記(18)、(19)式で表せ
る。 Vu=α2・(t−Tr)+B2 −(18) Vl=α2・(t−Tr)+B2−α2・L/Uc
−(19) 但しα2;幅変更の後半期における増速率 B2;幅変更の後半期における短辺上端部の初期
速度 Tr;前半期から後半期への折返し時間 従つて前記(16)、(17)式を前記(15)式に代
入すると共に tanθ=(Xu−Xl)/L を考慮すると前半期の押込率は下記(20)式とな
る。 dX(E)/dt=B1−α1・E/Uc −(20) 同様に後半期の押込率は下記(20′)式となる。 dX(E)/dt=B2−α2・E/Uc−α1・Tr
−(20′) 前記(20)、(20′)式の{dX(E)/dt)を片側の
短辺が受け持つ鋳片幅2Wの半量(1/2)・Wで割
ると、幅変更前半期と後半期の鋳片の歪速度ε〓1(E)
とε〓2(E)は下記(21)、(22)式のように求められ
る。 ε〓1(E)=(B1−α1・E/Uc)・1/W −(21) ε〓2(E)=(B2−α2・E/Uc−α1・Tr)・1/W
−(22) これを図示すると第10図及び第11図のよう
に表せる。即ち第10図は幅縮小を示し、第10
図aが前半期、第10図bが後半期である。又、
第11図は幅拡大を示し、第11図aが前半期、
第11図bが後半期である。第10図及び第11
図において縦軸はメニスカスからの垂直距離、横
軸は歪速度ε〓であり、それぞれ上下端部の歪速度ε〓
を設定することによつてα、Bは決定される。 ところで前記歪速度ε〓はそれが負(−)となる
とエアーギヤツプが生じ、或る値以上となると鋳
片が座屈現象を起こし前述したように安定した鋳
造ができなくなる。而して歪速度ε〓の適正範囲は
零以上で、かつ許容される最大値ε〓max以下(0
≦ε〓≦ε〓max)である必要がある。 本発明者等は前記ε〓maxについて種々調査した
結果、ε〓maxは鋳片の上部と下部とで異なり、通
常の連続鋳造で製造される鋼種では第1表に示す
値を適用することにより、本発明の機能を確実に
発揮できることが確認できた。
[Industrial Application Field] The present invention relates to a method for continuous casting of steel, and more particularly to a method for changing the width of a slab by moving the short side of the mold during continuous casting. [Prior art] In recent years, in continuous casting, especially continuous casting of steel, it has become necessary to change the slab width without stopping pouring into the mold due to demands for improved operating efficiency and slab yield. Continuous casting methods have come into use. Particularly recently, a method of directly linking the continuous casting process and the rolling process has been put into practical use, and the technology of changing the width of the slab during continuous casting according to the width of the product sheet is becoming increasingly important. When changing the slab width without stopping the operation of the continuous casting machine, it is important to make the length of the portion where the width changes as short as possible and to immediately change the width to the required width. For this purpose, it has become necessary to increase the width change speed. To change the width of a slab in continuous casting, the short side of the mold is moved toward the center or away from the center of the mold by some method. FIG. 2 conceptually shows an example of a width changing device that fixes the long sides of the mold and moves the short sides. That is, a pair of short sides 1a and 1b are held between long sides 2a and 2b fixed to a mold vibration table (not shown), and are driven by electric or hydraulic drive devices 3a and 3b attached to the short sides. This device changes the width of the slab 4 without stopping casting. When increasing the width changing speed in such equipment, there is an increase in the force driving the short side and an increased risk of slab defects, which has hindered the speeding up of the width changing. As a conventional width changing method, for example, the method disclosed in Japanese Patent Application Laid-Open No. 53-60326 and Japanese Patent Publication No. 54-33772 and shown in FIGS. 3 and 4 is generally practiced. was. That is, FIG. 3 explains the case of width reduction, and the first
In the step, the short side 1 is tilted as shown by the dotted line a, and in the second step it is translated in parallel as shown in b, and then in the third step the slope is returned to the original as shown in c. In this example, in the first step shown by a, the short side 1 is inclined as shown by the dotted line a, in the second step it is translated in parallel as shown in b, and then in the third step the inclination is reduced as shown in c. It shows you how to do it. That is, conventionally, the taper changing operation in FIGS. 3 and 4a and 4c and the parallel movement operation in FIG. 4b were performed completely separately. However, in the conventional method, it takes too much time to change the taper, and even if the parallel movement speed Vm is increased, the effect of reducing the length of the variable width transition part is very small, which hinders the improvement in yield. To solve the above problem, the parallel movement speed Vm
Various attempts have been made to further increase the However, in order to increase the parallel movement speed Vm without breaking the shell solidified in the mold and by overcoming the deformation resistance of this shell,
The tilt change angle Δφ in FIGS. 3 and 4a must be increased. On the other hand, when the inclination change angle △φ is increased, a gap, ie, an air gap, is created between the short side 1 and the slab 4, and when this air gap becomes large, cracks occur in the slab 4, breakout occurs, etc. There is a problem. Therefore, in the conventional method, there is a limit to increasing the parallel movement speed Vm, and there is a limit to shortening the width changing time. In order to solve this problem, the present applicant developed a method in which the upper and lower ends of the short sides are simultaneously moved in the first and third steps to shorten the time required for this period, and the applicant first developed a method to shorten the time required for this period. -184103 and Japanese Patent Application No. 143157/1983. However, even in this method, the basic idea is to perform parallel movement, and although it is possible to make the time to reach parallel movement as fast as possible, it still shortens the total time required for width change. had its limits. [Problems to be Solved by the Invention] The present invention fundamentally solves the problems in the conventional method described above, and further improves the above-mentioned Japanese Patent Application Nos. 57-184103 and 1987-143157. ,
By expanding or reducing the width of the slab during continuous casting in the minimum amount of time, the width change area is reduced and yield is improved, and casting defects such as breakouts (BO) and slab cracks are avoided. The purpose is to provide a method that enables stable operation with no occurrence. [Means for Solving the Problems] The present invention provides a steel continuous casting method in which the short side of the mold is moved during the continuous casting to expand or reduce the slab width. is divided into a forward tilting period in which the mold is sequentially tilted toward the center of the mold and a backward tilting period in which the mold is tilted sequentially toward the mold center. is determined as a parameter, and the difference △V between the moving speeds of the upper and lower ends is determined by the following formula (1), and during the period, the width is changed while maintaining the speed increase rate α and the speed difference △V constant. Concerning the characteristic continuous casting method of steel. △V=α・L/Uc (1) However, △V: Speed difference between the top and bottom ends of the short side (mm/
min) α: Speed increase rate at the top and bottom ends of the short side (mm/min 2 ) L: Length of the short side of the mold (mm) Uc: Casting speed (mm/min) In addition, in the above width change, the initial speed at the start of the width reduction change It is preferable to change the width by setting the speed at the lower end of the short side to zero, or to change the width by setting the speed at the upper end of the short side to zero at the time of starting the width expansion change. [Operation] Figure 1 shows the horizontal movement speed (hereinafter referred to as
FIG. 1A shows width reduction and FIG. 1B shows width expansion. The speed was expressed as + (positive) for the speed of movement toward the center of the mold, and - (negative) for the speed of movement toward the side away from the center of the mold. First, the case of width reduction will be explained based on FIG. 1a. In the figure, the broken line x indicates the moving speed (hereinafter referred to as the top end speed, expressed as Vu) of the top end of the short side (the position corresponding to the meniscus in the mold, and hereinafter referred to as the top end of the short piece). ,
The solid line y is the moving speed of the lower end of the short side (the lower end of the short side refers to the lower end of the short side, expressed as Vl). When reducing the width, the short side is moved toward the center of the mold, but in the first half, the short side is tilted forward toward the center of the mold, and when it reaches approximately half of the target width change, it is moved in parallel. Immediately perform a backward tilting operation to tilt the short side toward the side opposite to the center of the mold, and the series of width changing operations is completed. The example in Figure 1 shows two types of width change patterns, where the target width change amount is represented by width change times Tw 1 and Tw 2 , and the turnaround time from the forward tilt period to the backward tilt period is Tr 1 and Tr. Expressed as 2 . FIG. 5 is a schematic diagram showing the movement status of the short side during width reduction, and during the forward tilting period, the upper end speed Vu of the short side is changed to the lower end speed.
By always moving at a constant speed faster than Vl, the inclination angle β of the short side 1 with respect to the horizontal line z indicated by the dashed-dotted line gradually increases, and the amount of forward inclination increases. Conversely, during the retrograde phase, the lower end velocity Vl is lower than the upper end velocity Vu.
By always increasing the speed at a constant speed, the inclination angle β
gradually becomes smaller, and the amount of forward tilt decreases. (In the present invention, the period of movement in which the inclination angle β increases, that is, toward the center of the mold, is the forward tilt period, and conversely, the period of movement in which the inclination angle β becomes smaller, that is, the period of movement in which the inclination angle β becomes smaller, that is, toward the center of the mold.) (The period was defined as a backward tilting period and used.) On the other hand, the upper and lower speeds Vu and Vl have a constant speed increase rate α in the forward tilting period, that is, in the forward tilting period, the positive direction, that is, the forward tilting amount increases sequentially. In the backward tilt period, the speed increase α is used in the negative direction, that is, the speed increase rate α in which the backward tilt amount increases sequentially (if the positive direction is used as a reference, it is the deceleration rate, but in the present invention, it is unified to the speed increase rate, and it is When it is necessary to specifically express the speed increase rate α, the speed increase is expressed as (+) and the deceleration is expressed as (-). However, the amount of forward tilt or backward tilt increases with time. In Fig. 1, the speed increase rate in the forward lean phase is expressed as a1, the speed difference between the upper and lower end speeds Vu and Vl is expressed as △V 1 , and the speed increase rate in the backward lean phase of deceleration is expressed as α 2 ,
α 21 , and the speed difference between the upper and lower end speeds Vu and Vl is △V 2 ,
Expressed as △V 21 . Next, the case of width expansion will be explained based on the schematic diagrams of FIG. 1b and FIG. 6. When widening the width, contrary to the width reduction described above, the short side is moved in the direction away from the center of the mold, but in the first half, the lower end speed Vl is always kept at a constant speed than the upper end speed Vu. Immediately after performing a backward tilting operation to increase the movement by a predetermined amount, a forward tilting operation is performed to increase the upper end speed Vu from the lower end speed Vl. In this case as well, the upper and lower end velocities Vu and Vl have a constant acceleration rate α as described above, and the amount of forward inclination or the amount of backward inclination increases with time. As described above, in the present invention, the speed increase rate α is determined and set in advance according to the steel type, slab size, casting speed, etc. using the allowable shell deformation resistance as a parameter, as will be described later. Determine the speed difference △V of the speed Vl based on the above formula (1),
By maintaining the width constant and changing the width during each of the anteversion period and the retroversion period, we succeeded in achieving various great effects as described below. The driving device for the short side is limited to the driving device shown in FIG. 2 as long as it can control the speeds Vu and Vl of the upper and lower ends of the short side to predetermined speeds as described above. isn't it. For example, there is a well-known device as shown in FIG. 19, in which a device 1 is provided on the back surface of the short side 1 and is movable in the horizontal direction and swingable by the rotational drive of a cam mechanism 14 with a spherical seat 12 as a fulcrum. It is also possible to use a structure in which a book spindle 13 is connected and the spindle 13 moves the short side 1 in the horizontal direction and rotates at the same time. In FIG. 19, reference numeral 15 denotes an electric motor, which moves the spindle 13 in the horizontal direction via a screw shaft 16. However, in the experience of the present inventors, the first
In the apparatus shown in Fig. 9, for example, as the width change speed is increased, the short side 1 is moved away from the spherical seat 12, that is, as the width of the slab is narrowed, the upper or lower end of the short side 1 is moved in the casting direction. There has been a shift, especially recently.
In curved molds that are being actively adopted, the above-mentioned deviation creates a gap between the long side and the short side,
It may induce casting defects. Taking these points into consideration, a mold with a structure driven by two cylinder devices, upper and lower in the casting direction as shown in FIG. . Next, the reason why the width change of the present invention can be efficiently implemented by using the speed increase rate α and speed difference ΔV as control factors will be explained. As mentioned above, in order to increase the speed when changing the width, it is necessary to take care to prevent BO and defects in the slab from occurring during the width change. To achieve this, during the entire period of width change implementation, it is necessary to always ensure proper pushing in so that no air gap is created between the slab and the short side, and the slab is not pushed in excessively by the short side. It is essential to do so. FIG. 7 is a conceptual diagram illustrating the movement of the short side and the conditions for generating the air gap, where Xu and Xl are arbitrary points at the upper and lower ends of the short side (any time t from the start of width change).
β indicates the inclination angle between the aforementioned short side and the horizontal line z at the relevant time point,
Further, θ represents the inclination angle with respect to the vertical line as θ=β−90°. Now, suppose that the upper end of the short side moves by dXu and the lower end moves by dXl during a minute time dt. During this time, the slab moves downward by [Uc・dt], where the casting speed is Uc,
Point d in Figure 7a moves to point d1 , and point e moves to point e1 . If the distance traveled by short side 1 during this time is small,
This results in the formation of the air gap (η in FIG. 7a) between the short side and the slab. In order to avoid this, the short side should move by more than [Uc·dt·tanθ] during dt, as shown in FIG. 7b. In other words, regarding the amount of movement of the upper end of the short side and the amount of movement of the lower end, the following (2),
It is sufficient if equation (3) holds true. dXu≧Uc・dt・tanθ −(2) dXl≧Uc・dt・tanθ −(3) Here, since tanθ can be expressed by the following equation (4), it can be divided by dt in the above equations (2) and (3). , the following equations (5) and (6) can be obtained. tanθ=(Xu−Xl)/L −(4) dXu/dt=Vu≧(Xu−Xl)・Uc/L−(5′) Vu−(Xu−Xl)・Uc/L≧0 −(5) dXl/dt=Vl≧(Xu−Xl)・Uc/L (6′) Vl−(Xu−Xl)・Uc/L≧0 −(6) Therefore, the upper end speed Vu and the lower end speed Vl are
It has been found that if the equations (5) and (6) are set so as to always be satisfied, the width can be changed without causing the air gap η. Next, the total amount of deformation (hereinafter referred to as the indentation amount δ) that any point on the slab undergoes while passing through the mold will be explained based on FIG. Point d generated at the upper end of the short side at arbitrary time t passes through the lower end of the short side after L/Uc time. If the short side is moving at this time, the slab is deformed by the difference from the lower end position of the short side at the time T=t+L/Uc and leaves the mold. The total amount of deformation that the slab receives when passing through the mold, that is, the amount of indentation δ can be expressed by the following equation (7). δ=Xl(t+l/Uc)−Xu(t)−(7) Therefore, the indentation state of the slab is expressed by the indentation amount δ and the conditions that do not cause the air gap mentioned above.
It has been found that by controlling these two conditions so as not to change with respect to the elapsed time during the width change, it is possible to maintain a stable pressed state in which the above-mentioned casting defects do not occur. Therefore, the present inventors further continued their research in order to satisfy the above conditions. Now, in order to satisfy the above conditions, (5) to
It is necessary to find Vu and Vl that simultaneously satisfy equation (7). The following equations (8), (9) and (10) are equivalent to the above equations (5), (6) and (7).
)
These are the expressions obtained by differentiating each expression with respect to time,
By combining these (8) to (10), the following equation (11) is obtained. dVu/dt-Uc/L・(Xu-Xl)=0 −(8) dVl/dt−Uc/L・(Vu−Vl)=0 −(9) Vl(t+l/Uc)−Vu(t)= 0 −(10) dVu/dt={Vu(t) −Vu(t−L/Uc)}/(L/Uc) −(11) The solution to the above equation (11) can be expressed as a general solution equation as follows. This becomes equation (12). Vu=A·t+B −(12) In equation (12), A and B are constants. Further, by substituting the above equation (12) into the above equation (9), Vl can be expressed by the following equation (13). Vl=A・t+(B−A・L/Uc) −(13) In other words, from equations (12) and (13), in order to maintain the stable pushing state described above, Vu and Vl must be adjusted from the start of width change. A new finding was obtained that it is sufficient to set it as a linear function with the elapsed time t, and that it is sufficient to always maintain a constant speed difference between Vu and Vl. Based on this knowledge, the present inventors conducted further research on changing the width during continuous casting in actual operations, and as a result, the constant A in equations (12) and (13) above was determined using the allowable deformation resistance as a parameter. It was confirmed that it is possible to apply the above findings on an industrial scale by setting the following conditions. In the present invention, the constant A has a value other than zero, and therefore Vu and Vl are accelerated or decelerated with time. During this width change period, Vu and
In the present invention, the constant A that accelerates or decelerates Vl is used as the speed increase rate α. The constant B in equations (12) and (13) is the initial speed at the start of changing the width of the upper end of the short side, and may be appropriately determined in advance depending on the width changing and the operating conditions at that time. When the speed increase rate α is set, the speed difference between Vu and Vl can be calculated from the short side length L of equation (13) and the casting speed Uc as follows: △V=Vu−Vl=α・L/Uc −(1) , and the above-mentioned equation (1) is obtained. Incidentally, if the speed increase rate α is zero, △V in the above equation (1) = 0.
Therefore, Vu=Vl, that is, the speeds of the upper and lower ends of the short side are the same speed. This results in the same state as the parallel movement in width change in the conventional method. It is true that during the parallel movement period of the conventional method, the indentation state is kept stable, so no casting defects occur in this part.
Conventionally, a width change pattern has been implemented centering on this parallel movement. However, as mentioned above, in this conventional method, an inclination angle changing period is required before and after the parallel movement period, and it is difficult to secure an appropriate pushing amount during this period, and there is a limit to shortening the width changing time. There were some problems that occurred. The present invention makes it possible to fundamentally solve the conventional problem by setting the speed increase rate α to a value other than zero and determined from the allowable shell deformation resistance force. Next, a specific method for determining the speed increase rate α will be explained. Now, as the speed increase rate α increases, the width change time will be shortened, but if it exceeds a certain value, the slab will buckle and the shell on the surface will break, or the deformation resistance will increase and the width change time will be shortened. This causes phenomena such as the inability to change the width due to insufficient driving force to move the sides. As a result of repeating many experiments, the present inventors confirmed that it is possible to determine the optimum range of the speed increase rate α from the allowable shell deformation resistance force. The allowable shell deformation resistance force may be determined from the shell strength or from the short side driving force of the mold. First, we will explain how to determine it from the strength of the slab shell. When a slab is pushed into the mold by the short sides of the mold, a solidified shell, that is, a shell, formed on the surface of the slab is strained. At this time, a resistance force corresponding to the strain rate is generated in the shell. However, if the resistance force exceeds the critical strength of the shell, buckling deformation of the shell occurs, resulting in casting defects.
In order to avoid the occurrence of such defects, the strain rate occurring in the shell must be lower than the critical strain rate corresponding to the shell strength. The strain rate of the shell in the width changing method of the present invention will be explained based on FIG. 9. Let dX(E) be the minute amount of indentation at a position at an arbitrary distance E from the top end of the short side, and if the top end moves dXu and the bottom end moves dXl during a minute time dt, the slab at the point E is affected. The minute indentation amount dX(E) can be expressed by the following equation (14). dX(E)={(dXl−dXu)/L}・E +dXu−Uc・dt・tanθ−(14) Therefore, the pushing rate per unit time can be expressed by the following equation (15). dX(E)/dt=(Vl−Vu)・E/L +Vu−Uc・tanθ−(15) By the way, the first half of the width change (when the width is reduced is the anteversion phase,
In the backward tilting phase when the width is expanded), Vu and Vl can be expressed by the following equations (16) and (17) as described above. Vu=α 1・t+B 1 −(16) Vl=α 1・t+B 1 −α 1・L/Uc −(17) However, α 1 ; Acceleration rate in the first half of the width change B 1 ; In the first half of the width change Initial velocity of the upper end of the short side Also, the latter half of the width change (backward tilting period when the width is reduced, and forward tilting period when the width is expanding) can be expressed by the following equations (18) and (19). Vu=α 2・(t-Tr)+B 2 −(18) Vl=α 2・(t-Tr)+B 2 −α 2・L/Uc
−(19) However, α 2 ; Acceleration rate B 2 in the second half of the width change; Initial speed Tr of the upper end of the short side in the second half of the width change; Turning time from the first half to the second half Therefore, the above (16), Substituting equation (17) into equation (15) above and considering tanθ=(Xu-Xl)/L, the push-in rate for the first half is given by equation (20) below. dX(E)/dt=B 1 − α 1・E/Uc − (20) Similarly, the push-in rate in the second half is expressed by the following formula (20'). dX(E)/dt=B 2 −α 2・E/Uc−α 1・Tr
−(20′) If we divide {dX(E)/dt) in the above formulas (20) and (20′) by half (1/2)・W of the slab width 2W handled by one short side, the width can be changed. Strain rate of slab in the first half and second half ε〓 1 (E)
and ε〓 2 (E) are obtained as shown in equations (21) and (22) below. ε〓 1 (E)=(B 1 −α 1・E/Uc)・1/W −(21) ε〓 2 (E)=(B 2 −α 2・E/Uc−α 1・Tr)・1/W
-(22) This can be illustrated as shown in FIGS. 10 and 11. That is, FIG. 10 shows width reduction;
Figure a shows the first half, and Figure 10 b shows the second half. or,
Figure 11 shows the width expansion; Figure 11a is the first half;
Figure 11b shows the second half. Figures 10 and 11
In the figure, the vertical axis is the vertical distance from the meniscus, the horizontal axis is the strain rate ε〓, and the strain rate ε〓 at the upper and lower ends, respectively.
α and B are determined by setting . By the way, if the strain rate ε becomes negative (-), an air gap will occur, and if it exceeds a certain value, the slab will buckle, making stable casting impossible as described above. Therefore, the appropriate range of strain rate ε〓 is greater than or equal to zero and less than or equal to the allowable maximum value ε〓max (0
≦ε〓≦ε〓max). As a result of various investigations regarding the above ε〓max, the present inventors found that ε〓max differs between the upper and lower parts of the slab, and that by applying the values shown in Table 1 for steel types manufactured by ordinary continuous casting, It was confirmed that the functions of the present invention could be reliably exhibited.

【表】 従つて前記(21)、(22)式より前半期における
上端部には下記(23)式が下端部には下記(24)
式が成立し、同様に後半期における上端部には下
記(25)式、下端部には下記(26)式がそれぞれ
成立する。 0<B1/W≦ε〓max1 −(23) 0<(B1−α1・L/Uc)・1/W≦ε〓max2 −(24) 0<(B2−α2・Tr)・1/W≦ε〓max1 −(25) 0<(B2−α2・L/Uc−α1・Tr)・1/W≦
ε〓max2 −(26) 以上の各式を満足する、即ち幅変更中において
安定鋳造を維持するための相関を整理すると下記
(a)〜(h)の各式が求まる。 B1>0 −(a) B1>α1・L/Uc −(b) B1<W・ε〓max1 −(c) B1<W・ε〓max2+α1・L/Uc −(d) B2≧α1・Tr −(e) B2≧α1・Tr+α2・L/Uc −(f) B2≦W・ε〓max1+α1・Tr −(g) B2≦W・ε〓max2+α1・Tr+α2・L/Uc −(h) 第12図はこの(a)〜(h)の関係を前述した前半期
と後半期とに区別して表したもので、第12図a
が前半期を、また第12図bが後半期を示す。更
に横軸は増速率α1、α2を、縦軸は初期速度B1
B2である。第12図におけるハツチング部Dが
鋳造欠陥の発生することのない、つまり安定した
鋳造を継続しつつ幅変更が可能な範囲を示してい
る。従つて増速率α1、α2を前記ハツチング部Dの
範囲内の任意の値を選択し設定することにより前
述した本発明の幅変更が実施できる。又前記α1
α2を設定することによつてB1、B2も決定される。 ところで幅変更は前述したように可能な限りに
おいて短時間で実施することが要求されており、
係る要求を満足すべき増速率αを前記ハツチング
部Dの範囲内より求めることが必要である。而し
て幅縮小の前半期では増速率α1及び初期速度B1
が共に正で、その絶体値が大きい程よい。このこ
とより第12図aに示した点アが最適条件とな
る。 即ち B1=α1・L/Uc=W・ε〓max1 −(27) であればよい。後半期においては前半期で通常操
業時より傾斜せしめた傾斜角を元に戻さねばなら
ないことから α1・Tr=−α2・(Tw−Tr) −(28) Tw−Tr=−(α1/α2)・Tr −(29) となり、幅変更時間を小さくするためにはα2の絶
体値は大きい程よりことになり、第12図b示し
た点ウが最適点となる。 即ち B2=α1・Tr =W・ε〓max2+α1・Tr+α2・L/Uc −(30) であればよい。 次ぎに幅拡大の前半期において幅変更時間を短
縮するには、α1、B1とも小さい程よい。従つて
第12図aに示した点イが最適条件となり、初期
速度B1は以下のようになる。 B1=0=W・ε〓max2+α1・L/Uc −(31) また幅拡大の後半期においては Tw−Tr=−(α1/α2)・Tr −(32) の関係式においてα1<0、α2>0となることから
幅変更時間を小さくするにはα2が大きい程よい。
従つて第12図bに示した点エが最適点となり、
初期速度B2は以下の通りとなる。 B2=α1・Tr+α2・L/Uc =W・ε〓max1+α1・Tr −(33) 以上のように幅変更時間を最短にする増速率α
及び初期速度Bが求められるが、下記第2表はそ
れを一覧として表したものである。
[Table] Therefore, from equations (21) and (22) above, the upper end of the first half is the following equation (23), and the lower end is the following equation (24).
Similarly, the following equation (25) holds true for the upper end in the second half, and the following equation (26) holds true for the lower end. 0<B 1 /W≦ε〓max 1 −(23) 0<(B 1 −α 1・L/Uc)・1/W≦ε〓max 2 −(24) 0<(B 2 −α 2・Tr)・1/W≦ε〓max 1 −(25) 0<(B 2 −α 2・L/Uc−α 1・Tr)・1/W≦
ε〓max 2 − (26) The correlation for satisfying each of the above formulas, that is, maintaining stable casting during width changes, is summarized as follows.
Each equation (a) to (h) is found. B 1 >0 −(a) B 1 >α 1・L/Uc −(b) B 1 <W・ε〓max 1 −(c) B 1 <W・ε〓max 2 +α 1・L/Uc − (d) B 2 ≧α 1・Tr −(e) B 2 ≧α 1・Tr+α 2・L/Uc −(f) B 2 ≦W・ε〓max 11・Tr −(g) B 2 ≦ W・ε〓max 21・Tr+α 2・L/Uc −(h) Figure 12 shows the relationship between (a) to (h) in the first half and second half, as described above. Figure 12a
shows the first half, and Figure 12b shows the second half. Furthermore, the horizontal axis shows the speed increase rates α 1 and α 2 , and the vertical axis shows the initial speed B 1 ,
B2 . The hatched portion D in FIG. 12 indicates a range in which no casting defects occur, that is, a range in which the width can be changed while stable casting is continued. Therefore, by selecting and setting the acceleration rates α 1 and α 2 to arbitrary values within the range of the hatched portion D, the above-mentioned width change of the present invention can be implemented. Moreover, the above α 1 ,
B 1 and B 2 are also determined by setting α 2 . By the way, as mentioned above, width changes are required to be carried out as quickly as possible.
It is necessary to find the speed increase rate α within the range of the hatching portion D that satisfies this requirement. Therefore, in the first half of the width reduction, the acceleration rate α 1 and the initial speed B 1
are both positive, and the larger their absolute values, the better. From this, point A shown in FIG. 12a becomes the optimum condition. That is, it is sufficient if B 11 ·L/Uc=W ·ε〓max 1 −(27). In the second half of the period, the inclination angle that was made during normal operation in the first half of the period must be returned to its original value, so α 1・Tr=−α 2・(Tw−Tr) −(28) Tw−Tr=−(α 12 )·Tr −(29) Therefore, in order to reduce the width change time, the larger the absolute value of α 2 is, the more important it becomes, and the point C shown in FIG. 12B becomes the optimum point. That is, it is sufficient if B 21 ·Tr = W ·ε〓max 2 + α 1 ·Tr + α 2 ·L/Uc − (30). Next, in order to shorten the width change time in the first half of width expansion, the smaller both α 1 and B 1 , the better. Therefore, point A shown in FIG. 12a becomes the optimum condition, and the initial speed B1 is as follows. B 1 = 0 = W・ε〓max 2 + α 1・L/Uc − (31) Also, in the latter half of width expansion, the relational expression Tw−Tr=−(α 12 )・Tr − (32) Since α 1 <0 and α 2 >0 in the equation, the larger α 2 is, the better in order to reduce the width change time.
Therefore, point E shown in Figure 12b becomes the optimal point,
The initial velocity B2 is as follows. B 2 = α 1・Tr + α 2・L/Uc = W・ε〓max 1 + α 1・Tr − (33) As shown above, the speed increase rate α that minimizes the width change time
and the initial velocity B, which are listed in Table 2 below.

【表】 而して前記第2表の条件下における上下端速度
Vu、Vlは下記第3表(幅縮小)及び第4表(幅
拡大)のようになる。
[Table] Therefore, the upper and lower end speeds under the conditions shown in Table 2 above
Vu and Vl are as shown in Table 3 (width reduction) and Table 4 (width expansion) below.

【表】【table】

〔実施例〕〔Example〕

350屯/Hの湾曲形連続鋳造機において低炭Al
キルド鋼の製造中に本発明を実施した。この連続
鋳造機の設備仕様及び操業条件は第5表に示す通
りである。
Low-coal Al in a 350 ton/H curved continuous casting machine
The invention was implemented during the production of killed steel. The equipment specifications and operating conditions of this continuous casting machine are as shown in Table 5.

〔Q:目標幅可変(縮小)量/mm片側〕[Q: Target width variable (reduction) amount/mm one side]

さて、前述のように上下部速度Vu、Vlを設定
し、幅可変時間はTwの半量Trまで前傾移動さ
せ、半量Tr到達後は、後傾移動を行い幅縮小を
実施した。第16図は目標幅変更(縮小)量に対
する幅変更時間を従来法と比較して表わしたもの
で、実線が前記本発明の実施例、破線が従来法で
ある。第16図において横軸は幅縮小量Qmm/片
側を示し、縦軸は幅変更時間Tw分を示す。 また、従来法による幅縮小は第3図に示す方法
で実施した。この場合発生エアーギヤツプ量を大
きな鋳造欠陥を生じない程度に押さえ、かつ必要
駆動力を7屯以下として幅縮小を行うためには平
行移動速度Vmは35mm/分が限界であつた。 第16図により幅縮小量の大小にかかわらず、
本発明の実施例の方が従来法に比べて幅変更時間
が短いことがわかる。また幅縮小量が大きくなる
ほど本発明の実施例による幅変更時間短縮効果は
増大する。 第17図a及びbは前記従来法(a)及び本発明の
実施例(b)の幅縮小における上シリンダー及び下シ
リンダーに作用するシエル変形抵抗力の幅変更開
始からの時間による変化を示すもので、図中、実
線は上シリンダー、破線は下シリンダーに作用し
た必要駆動力を示す。 第17図a及びbに示す上下シリンダーの最大
必要駆動力Fu max、Fl maxは従来法及び実施
例ともにほぼ同等であり、本発明の実施によつて
必要駆動力が増大することはなかつた。 また、発生エアーギヤツプについては従来法の
場合、最大1.5mm発生するのに対し本発明による
場合、殆ど零であり内部及び表面欠陥は全く認め
られなかつた。 次に幅拡大の場合も前記幅縮小と同様に前記
(37)〜(41)式より、短辺1の上下部速度Vu、
Vlが設定され、上下シリンダーの速度パターン
が以下の(63)〜(66)式で求められる。 幅拡大時の後傾期(0≦t≦Tr) Vu=−50t(mm/min) −(63) Vl=20−50t(mm/min) −(64) 幅拡大時の前傾期(Tr≦t≦Tw) Vu=20−50(Tw−t)(mm/min) −(65) Vl=−50(Tw−t)(mm/min) −(66) また、幅変更時間Tw及び折り返し時間Trは次
の(67)、(68)式で与えられる。 Tr=0.2{(1+0.5Q)1/2+1}(min) −(67) Tw=0.4{(1+0.5Q)1/2+1}(min) −(68) 〔Q:幅拡大量mm/片側〕 第18図は、本実施例に基づく幅変更時間を従
来法と比較して表わしたものである。 第18図において横軸は幅拡大量Qmm/片側を
示し、縦軸は幅変更時間Tw分を示す。また図中
実線は本発明の実施例、破線は従来法を示す。 従来法による幅拡大は第4図に示す方法で実施
し、平行移動速度|Vm|は、幅縮小の場合と同
様にエアーギヤツプ量を許容値以下にし、必要駆
動力を7屯以内とするために15mm/分が限界であ
つた。この幅拡大でも幅縮小の場合と同様に、幅
拡大量の大小にかかわらず、本発明の実施例の方
が従来法に比べて幅変更時間が著しく短いことが
わかる。 また、発生エアーギヤツプ量及び必要駆動力に
ついても発生エアーギヤツプ量は殆ど零であり、
下シリンダーの必要駆動力は7屯以下であり、幅
縮小の場合と同様にそれぞれ許容値以内であつ
た。 (発明の効果) 以上詳述したように、本発明の実施により鋳型
の幅変更が最小時間で可能となる。このため幅変
更により鋳片の幅が変化する部分が少なくでき、
歩留を著しく向上できる。 加えて鋳片幅1300〜650mmの間で任意量の幅可
変が実施でき、幅変更時のエアーギヤツプ量やシ
エル変形抵抗力を常に許容値以下とでき、鋳片割
れやブレークアウト等のない安定した操業が可能
となる。
Now, as mentioned above, the upper and lower speeds Vu and Vl were set, and during the width variable time, the width was moved forward to half the amount Tr of Tw, and after reaching the half amount Tr, the width was reduced by moving backward. FIG. 16 shows a comparison of the width change time with respect to the target width change (reduction) amount with the conventional method, where the solid line is the embodiment of the present invention and the broken line is the conventional method. In FIG. 16, the horizontal axis shows the width reduction amount Qmm/one side, and the vertical axis shows the width change time Tw. Further, the width reduction by the conventional method was carried out by the method shown in FIG. In this case, the limit for the parallel movement speed Vm was 35 mm/min in order to suppress the amount of air gap generated to an extent that does not cause large casting defects, and to reduce the width by reducing the required driving force to 7 tons or less. According to Figure 16, regardless of the size of the width reduction amount,
It can be seen that the width changing time is shorter in the embodiment of the present invention than in the conventional method. Further, as the amount of width reduction increases, the effect of shortening the width change time according to the embodiment of the present invention increases. FIGS. 17a and 17b show changes in the shell deformation resistance force acting on the upper and lower cylinders with time from the start of width change in width reduction in the conventional method (a) and the embodiment (b) of the present invention. In the figure, the solid line indicates the required driving force acting on the upper cylinder, and the broken line indicates the required driving force acting on the lower cylinder. The maximum required driving forces Fu max and Fl max of the upper and lower cylinders shown in FIGS. 17a and 17b are approximately the same for both the conventional method and the example, and the required driving force did not increase by implementing the present invention. Furthermore, in the case of the conventional method, the air gap generated was a maximum of 1.5 mm, but in the case of the present invention, it was almost zero, and no internal or surface defects were observed. Next, in the case of width expansion, the vertical velocity Vu of the short side 1,
Vl is set, and the velocity pattern of the upper and lower cylinders is determined by the following equations (63) to (66). Retroversion phase during width expansion (0≦t≦Tr) Vu=−50t (mm/min) −(63) Vl=20−50t(mm/min) −(64) Forward tilt phase during width expansion (Tr ≦t≦Tw) Vu=20−50(Tw−t)(mm/min) −(65) Vl=−50(Tw−t)(mm/min) −(66) Also, width change time Tw and turning The time Tr is given by the following equations (67) and (68). Tr=0.2{(1+0.5Q) 1/2 +1}(min) −(67) Tw=0.4{(1+0.5Q) 1/2 +1}(min) −(68) [Q: Width expansion amount mm/ One Side] FIG. 18 shows the width change time based on this embodiment in comparison with the conventional method. In FIG. 18, the horizontal axis shows the width expansion amount Qmm/one side, and the vertical axis shows the width change time Tw. Further, the solid line in the figure shows the embodiment of the present invention, and the broken line shows the conventional method. Width expansion using the conventional method is carried out using the method shown in Figure 4, and the parallel movement speed |Vm| is adjusted to keep the air gap amount below the allowable value and the required driving force within 7 tons, as in the case of width reduction. The limit was 15 mm/min. In this width expansion, as in the case of width reduction, it can be seen that the width changing time is significantly shorter in the embodiment of the present invention than in the conventional method, regardless of the amount of width expansion. Also, regarding the amount of air gap generated and the required driving force, the amount of air gap generated is almost zero,
The required driving force for the lower cylinder was 7 tons or less, and as in the case of width reduction, each was within the allowable values. (Effects of the Invention) As detailed above, by carrying out the present invention, the width of the mold can be changed in a minimum amount of time. Therefore, the area where the width of the slab changes due to width changes can be reduced.
Yield can be significantly improved. In addition, the slab width can be varied by any amount between 1300 and 650 mm, and the air gap amount and shell deformation resistance can always be kept below the allowable value when width is changed, resulting in stable operation without slab cracking or breakouts. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明に基づく幅変更時におけ
る短辺の上端部及び下端部の水平方向移動速度を
説明するための線図、第2図は周知の幅可変鋳型
の一例を示す斜視図、第3図a,b,c及び第4
図a,b,cは従来の幅変更方法の一例を示す模
式図であり、第3図が幅縮小、第4図が幅拡大の
場合である。第5図〜第18図は本発明に基づく
実施例であり、第5図は幅縮小時の短辺の移動状
況を示す模式図、第6図は幅拡大時の短辺の移動
状況を示す模式図、第7図a,bは短辺の移動と
エアーギヤツプの生成条件を説明する概念図、第
8図は鋳片上の任意の点が鋳型内を通過する間に
受ける総変形量を説明する概念図、第9図は本発
明の幅変更法におけるシエルの歪速度を説明する
概念図、第10図a,b及び第11図a,bはシ
エルの歪速度と増速率との関係を示す線図であ
り、第10図が幅縮小、第11図が幅拡大の場合
を示す。第12図a,bは鋳造欠陥の発生するこ
とのないα及びBの範囲を示す線図、第13図は
短辺を駆動する上下シリンダーの配列状態を示す
構造図、第14図は幅縮小時の短辺上下端部移動
速度の他の実施例を示す線図、第15図は必要駆
動力からαを求める方法の一例を示す線図、第1
6図は目標幅変更(縮小)量に対する幅変更時間
を従法例と比較して表わした図、第17図a,b
は従来法と本発明の実施例の幅縮小における上シ
リンダー及び下シリンダーに作用するシエル変形
抵抗力の幅変更開始からの時間による変化を示す
図、第18図は、本実施例に基づく幅変更時間を
従来法と比較して表わした図である。第19図は
短辺の駆動装置の他の例を示す断面構造図であ
る。 1,1a,1b;鋳型短辺、2a,2b;鋳型
長辺、3a,3b;駆動装置、4:鋳片。
Figures 1a and b are diagrams for explaining the horizontal movement speed of the upper and lower ends of the short sides when changing the width according to the present invention, and Figure 2 is a perspective view showing an example of a known variable width mold. Fig. 3 a, b, c and 4
Figures a, b, and c are schematic diagrams showing an example of a conventional width changing method, in which Fig. 3 shows a case of width reduction, and Fig. 4 shows a case of width expansion. Figures 5 to 18 show examples based on the present invention, where Figure 5 is a schematic diagram showing the movement of the short side when the width is reduced, and Figure 6 is a schematic diagram showing the movement of the short side when the width is expanded. Schematic diagrams, Figures 7a and 7b are conceptual diagrams explaining the movement of the short sides and the conditions for generating air gaps, and Figure 8 is a conceptual diagram explaining the total amount of deformation that any point on the slab undergoes while passing through the mold. Conceptual diagram. Figure 9 is a conceptual diagram explaining the strain rate of the shell in the width changing method of the present invention. Figures 10 a, b and 11 a, b show the relationship between the strain rate of the shell and the acceleration rate. 10 shows a case where the width is reduced, and FIG. 11 shows a case where the width is enlarged. Figures 12a and b are diagrams showing the ranges of α and B where casting defects do not occur, Figure 13 is a structural diagram showing the arrangement of the upper and lower cylinders that drive the short sides, and Figure 14 is the width reduction. Fig. 15 is a diagram showing another example of the moving speed of the upper and lower ends of the short side when
Figure 6 is a diagram showing the width change time relative to the target width change (reduction) amount in comparison with the conventional method example, Figure 17 a, b
18 is a diagram showing changes over time from the start of width change in the shell deformation resistance force acting on the upper and lower cylinders during width reduction in the conventional method and the embodiment of the present invention. FIG. FIG. 3 is a diagram showing a comparison of time with a conventional method. FIG. 19 is a cross-sectional structural diagram showing another example of the short side drive device. 1, 1a, 1b; short side of the mold; 2a, 2b; long side of the mold; 3a, 3b; drive device; 4: slab.

Claims (1)

【特許請求の範囲】 1 連続鋳造中に鋳型短辺を移動せしめて鋳片幅
を拡大もしくは縮小する鋼の連続鋳造法におい
て、前記短辺の移動を該短辺を鋳型中心側へ順次
傾ける前傾期と鋳型反中心側へ順次傾ける後傾期
とに区分し、各期間における短辺上下端部の水平
方向移動速度の増速率αを予め許容シエル変形抵
抗力をパラメータとして求めると共に前記上下端
部の移動速度の差△Vを下記(1)式で定め、当該期
間中、前記増速率α及び速度差△Vを一定に維持
して幅変更を行うことを特徴とする鋼の連続鋳造
法。 △V=α・L/Uc (1) 但し△V;短辺上端と下端の速度差(mm/
min) α;短辺上下端の増速率(mm/min2) L;鋳型短辺長さ(mm) Uc;鋳造速度(mm/min) 2 幅縮小変更開始時の初期短辺下端部速度を零
として幅変更を行う特許請求の範囲第1項記載の
方法。 3 幅拡大変更開始時の初期短辺上端部速度を零
として幅変更を行う特許請求の範囲第1項記載の
方法。
[Claims] 1. In a continuous casting method for steel in which the short side of the mold is moved during continuous casting to expand or reduce the width of the slab, the short side is moved before the short side is sequentially tilted toward the center of the mold. The acceleration rate α of the horizontal movement speed of the upper and lower ends of the short side in each period is determined in advance using the allowable shell deformation resistance force as a parameter. A continuous casting method for steel, characterized in that the difference △V in the moving speed of the parts is determined by the following formula (1), and the width is changed while maintaining the speed increase rate α and the speed difference △V constant during the period. . △V=α・L/Uc (1) However, △V: Speed difference between the top and bottom ends of the short side (mm/
min) α: Speed increase rate at the top and bottom ends of the short side (mm/min 2 ) L: Length of the short side of the mold (mm) Uc: Casting speed (mm/min) 2 Initial speed at the bottom end of the short side at the start of width reduction change The method according to claim 1, wherein the width is changed as zero. 3. The method according to claim 1, wherein the width is changed by setting the initial speed at the upper end of the short side to zero at the time of starting the width expansion change.
JP59236474A 1984-11-09 1984-11-09 Continuous casting of steel Granted JPS61115656A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP59236474A JPS61115656A (en) 1984-11-09 1984-11-09 Continuous casting of steel
AU47023/85A AU554019B2 (en) 1984-11-09 1985-09-03 Changing slab width in continuous casting
CA000490523A CA1233011A (en) 1984-11-09 1985-09-12 Method of changing width of slab in continuous casting
EP85306509A EP0182468B1 (en) 1984-11-09 1985-09-13 Method of changing width of slab in continuous casting
DE8585306509T DE3578554D1 (en) 1984-11-09 1985-09-13 METHOD FOR CHANGING THE WIDTH OF A CAST STRAND IN CONTINUOUS CASTING.
ZA857092A ZA857092B (en) 1984-11-09 1985-09-16 Method of changing width of slab in continuous casting
ES547211A ES8702811A1 (en) 1984-11-09 1985-09-23 Method for varying the width of a slab cast in a continuous-casting mould
BR8504644A BR8504644A (en) 1984-11-09 1985-09-23 PROCESS FOR CHANGING WIDTH UNDER CONTINUOUS FOUNDATION AND APPLIANCE FOR CONTINUOUS FOUNDRY MOLD, OF THE TYPE OF VARIABLE WIDTH
US06/783,589 US4660617A (en) 1984-11-09 1985-10-03 Method of changing width of slab in continuous casting
ES554807A ES8704368A1 (en) 1984-11-09 1986-05-09 Method for varying the width of a slab cast in a continuous-casting mould
US06/883,395 US4727926A (en) 1984-11-09 1986-07-29 Apparatus for changing width of slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236474A JPS61115656A (en) 1984-11-09 1984-11-09 Continuous casting of steel

Publications (2)

Publication Number Publication Date
JPS61115656A JPS61115656A (en) 1986-06-03
JPH0219743B2 true JPH0219743B2 (en) 1990-05-02

Family

ID=17001272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236474A Granted JPS61115656A (en) 1984-11-09 1984-11-09 Continuous casting of steel

Country Status (2)

Country Link
JP (1) JPS61115656A (en)
ZA (1) ZA857092B (en)

Also Published As

Publication number Publication date
ZA857092B (en) 1986-05-28
JPS61115656A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
EP3845330B1 (en) Light reduction method for continuous casting of bloom plain-barrelled roll-roller combination
JP4057119B2 (en) Method and apparatus for high speed continuous casting equipment for reducing sheet thickness during solidification
EP0372506B1 (en) Method for oscillation of mold of vertical continuous caster
JPH0219743B2 (en)
KR100707785B1 (en) Method and device for manufacturing continuous cast products
JPH0219744B2 (en)
JPH0219745B2 (en)
JPH02207945A (en) Mold for continuous casting of round cast billet
EP0134030A1 (en) Method for reducing or widening mold width during continuous casting
JP2959390B2 (en) Width change method during casting in continuous casting
JPH0557066B2 (en)
JP3541583B2 (en) How to change the width of continuous cast slab
JPS6033855A (en) Continuous casting method with variable width
JP3525530B2 (en) Continuous casting control method
JPS61189850A (en) Continuous casting method of steel slab
JPH04143057A (en) Method for oscillating mold for vertical type continuous casting
JPS6228056A (en) Continuous casting method
JP2598356B2 (en) Twin roll continuous casting method
JP2913114B2 (en) Method of expanding mold width during continuous casting
JP2002153948A (en) Width changeable mold for continuous casting
JPH038541A (en) Apparatus for continuously casting strip
JP2000288706A (en) Method for continuously casting steel
JPH03297546A (en) Method for oscillating mold for vertical type continuous casting
JPH10128501A (en) Method for reducing oscillation mark on continuously cast slab and continuous casting mold therefor
JPS59166358A (en) Continuous casting method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term