JPH02196413A - Compound semiconductor mirror surface wafer - Google Patents

Compound semiconductor mirror surface wafer

Info

Publication number
JPH02196413A
JPH02196413A JP1585689A JP1585689A JPH02196413A JP H02196413 A JPH02196413 A JP H02196413A JP 1585689 A JP1585689 A JP 1585689A JP 1585689 A JP1585689 A JP 1585689A JP H02196413 A JPH02196413 A JP H02196413A
Authority
JP
Japan
Prior art keywords
wafer
sides
mirror
mirror surface
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1585689A
Other languages
Japanese (ja)
Inventor
Yoshinobu Oyama
大山 佳伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1585689A priority Critical patent/JPH02196413A/en
Publication of JPH02196413A publication Critical patent/JPH02196413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

PURPOSE:To obtain a wafer wherein the wafer position before rectangular working can correspond with the wafer position after rectangular working by forming at least one side out of all sides of a rectangle before mirror surface working, and forming the other sides after mirror surface working. CONSTITUTION:A rectangular compound semiconductor wafer is subjected to mirror surface working. At least one side 3 out of all sides of a rectangle is formed before mirror surface working, and the other sides 4-6 are formed after mirror surface working. For example, growth crystal 1 is sliced, and a side 3 parallel to a free face 2 is formed by cleavage before surface working. After the wafer surface is subjected to mirror surface working, the other sides 4-6 except the side 3 are formed by cleavage. Since the side 3 is formed before mirror surface working, surface sagging is caused. By confirming the surface sagging, it can be confirmed that the side 3 was a surface parallel to the free face 2 of growth crystal, and it can be known that the other sides 4-6 have corresponded with which positions of the wafer before rectangular working.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、化合物半導体鏡面ウェハに関するものであ
り、特に矩形の化合物半導体鏡面ウェハに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a compound semiconductor mirror wafer, and particularly to a rectangular compound semiconductor mirror wafer.

[従来の技術] 従来より、矩形の鏡面ウェハは、成長結晶をスライスし
たものの四辺をダイヤモンド砥粒等によって切断するか
、あるいは結晶自身のへき間外を利用して切断し、矩形
化されている。この矩形化は、鏡面加工前に行なう場合
と、鏡面加工後に行なう場合がある。
[Prior Art] Traditionally, rectangular mirror-finished wafers have been made into rectangles by slicing a grown crystal and cutting the four sides with diamond abrasive grains, or by cutting using the outside of the gap between the crystals themselves. . This rectangularization may be performed before mirror polishing or after mirror polishing.

[発明が解決しようとする課題] 円形の鏡面ウェハでは、オリエンテーションフラットの
ような直線部分を形成することにより、スライスする前
の成長結晶での位置と、ウニ八面内での位置とを対応さ
せて、結晶欠陥密度の分布や不純物濃度の分布等の情報
を後工程へ活用している。しかしながら、矩形の鏡面ウ
ェハでは、それぞれの四辺に特徴がないため、矩形加工
前の位置と、矩形加工後の位置との対応関係がわからず
、結晶欠陥密度の分布等の情報を後工程へ活用すること
ができないという間居点があった。また、たとえばGa
Asのような■−■族化合物半導体ウェハの場合、へき
開面の面に応じて、メサ方向および逆メサ方向が定まる
が、正方形のウェハの場合には、各辺が対応するべき開
面を識別することができず、このためメサ方向が容易に
判断できず、一部破壊検査をしなければならないという
問題点があった。
[Problem to be solved by the invention] In a circular mirror-finished wafer, by forming a straight line portion such as an orientation flat, the position in the grown crystal before slicing corresponds to the position in the octahedral surface of the sea urchin. Information such as crystal defect density distribution and impurity concentration distribution is utilized in subsequent processes. However, since each of the four sides of a rectangular mirror-finished wafer has no characteristics, it is difficult to know the correspondence between the position before rectangular processing and the position after rectangular processing, and information such as the distribution of crystal defect density is used in subsequent processes. There was a moment when I was unable to do so. Also, for example, Ga
In the case of a ■-■ group compound semiconductor wafer such as As, the mesa direction and reverse mesa direction are determined depending on the plane of the cleavage plane, but in the case of a square wafer, the cleavage plane to which each side should correspond is identified. Therefore, the direction of the mesa cannot be easily determined and a partial destructive inspection is required.

この発明の目的は、かかる従来の問題点を解消し、矩形
加工する前のウェハの位置と、矩形加工後のウェハの位
置とが対応可能なようにした化合物半導体鏡面ウェハを
提供することにある。
An object of the present invention is to solve such conventional problems and to provide a compound semiconductor mirror-finished wafer in which the position of the wafer before rectangular processing corresponds to the position of the wafer after rectangular processing. .

[課題を解決するための手段] この発明の化合物半導体鏡面ウェハでは、矩形のすべて
の辺ではない少なくとも一辺を鏡面加工前に形成し、他
の辺を鏡面加工後に形成している。
[Means for Solving the Problems] In the compound semiconductor mirror-finished wafer of the present invention, at least one side of the rectangle, but not all sides, is formed before mirror-finishing, and the other sides are formed after mirror-finishing.

[作用] 鏡面加工前に形成した辺は、鏡面加工後面ダレを起こす
ことが知られている。この面ダレは、たとえば形成した
辺の面に螢光灯等の像を映した場合、この像が周辺部に
おいて曲がって映し出されることにより確認することが
できる。この発明では、すべての辺ではない少なくとも
一辺を鏡面加工前に形成し、他の辺を鏡面加工後に形成
することによって、鏡面加工前に形成した辺に生じた面
ダレを標識として、鏡面加工前の辺を識別し、ウェハ面
内での位置を特定する。
[Operation] It is known that the sides formed before mirror polishing cause surface sagging after mirror polishing. This surface sag can be confirmed by, for example, when an image of a fluorescent light or the like is projected onto the formed side surface, the image is projected in a curved manner at the periphery. In this invention, at least one side (not all sides) is formed before mirror polishing, and the other sides are formed after mirror polishing, so that the surface sagging that occurs on the side formed before mirror polishing is used as an indicator before mirror polishing. Identify the edge of the wafer and determine its position within the wafer plane.

[実施例] 第1図は、この発明の一実施例の製造工程を示す工程図
である。第1図に示すように、まず結晶成長を行ない化
合物半導体の結晶を製造する。第2図は、ボート法によ
り成長させた成長結晶を示す側面図であり、第3図は正
面図である。第2図および第3図に示すように、成長結
晶1の上方に形成される面はフリー面2である。
[Example] FIG. 1 is a process diagram showing the manufacturing process of an example of the present invention. As shown in FIG. 1, crystal growth is first performed to produce a compound semiconductor crystal. FIG. 2 is a side view showing a grown crystal grown by the boat method, and FIG. 3 is a front view. As shown in FIGS. 2 and 3, the surface formed above the growing crystal 1 is a free surface 2.

次に、この成長結晶をスライスし、第4図に示すように
表面加工前にフリー面2と平行な辺3をへき開して形成
する。
Next, this grown crystal is sliced, and the sides 3 parallel to the free surface 2 are cleaved before surface processing, as shown in FIG.

次にウェハの表面を鏡面加工した後、第5図に示すよう
に、辺3以外の他の辺4,5および6をへき開して形成
する。
Next, after mirror-finishing the surface of the wafer, sides 4, 5, and 6 other than side 3 are cleaved to form a wafer, as shown in FIG.

辺3は鏡面加工前に形成されたものであるので、面ダレ
が生じている。したがって、この面ダレを確認すること
により、辺3が成長結晶においてフリー面と平行な面で
あったことを確認することができ、他の辺4,5および
6がそれぞれ矩形加工前ウェハのどの位置に相当してい
たかを知ることができる。したがって、ウェハ面内での
結晶欠陥密度の分布や不純物濃度の分布等の情報を後工
程へ反映させることができる。
Since side 3 was formed before mirror finishing, surface sag has occurred. Therefore, by checking this surface sagging, it can be confirmed that side 3 was a plane parallel to the free surface in the grown crystal, and other sides 4, 5, and 6 are You can find out if it corresponds to your location. Therefore, information such as the distribution of crystal defect density and the distribution of impurity concentration within the wafer surface can be reflected in subsequent processes.

また、この発明によればメサおよび逆メサの識別も容易
に行なうことができる。たとえば、逆メサになる面に相
当する辺を鏡面加工前にへき関して形成し、鏡面加工後
に他の三辺をへき関すれば、鏡面加工前にへき関した辺
にのみ面ダレが生じており、この面ダレを確認すること
によって、逆メサとなる辺を容易に識別することができ
る。
Furthermore, according to the present invention, mesas and reverse mesas can be easily identified. For example, if the side corresponding to the surface that will become the inverted mesa is separated and formed before mirror finishing, and the other three sides are separated after mirror finishing, surface sagging will occur only on the edges that were separated before mirror finishing. By checking this surface sag, it is possible to easily identify the side that will become an inverted mesa.

以下、この発明をより具体的な実験例により説明する。This invention will be explained below using more specific experimental examples.

水平ブリッジマン法(HB法)によって成長させたGa
Asインゴットから、厚さ380μmとなるように0字
形状のウェハをスライスして切り出した。なお、このウ
ェハの面の結晶方位は(100)面であった。まず、イ
ンゴットのフリー面と平行な辺をへき開により形成した
。この辺は(011)面に沿う辺である。次に、研磨プ
レートにこのウェハをワックスで貼り付け、約50μm
をラッピングで落とし、30μmを次亜塩素酸ナトリウ
ム水溶液とスェードタイプの研磨クロスを用いてボリシ
ングを行なった。研磨プレートからウェハを剥離し洗浄
した後、他の三辺を各周縁端部から約5mmのところで
へき関し、30×308mmの矩形の鏡面ウェハを得た
Ga grown by horizontal Bridgman method (HB method)
A 0-shaped wafer with a thickness of 380 μm was sliced from an As ingot. Note that the crystal orientation of the plane of this wafer was the (100) plane. First, the sides parallel to the free surface of the ingot were formed by cleavage. This side is along the (011) plane. Next, this wafer was pasted on a polishing plate with wax, and the thickness of about 50 μm was
was removed by lapping, and a 30 μm thick layer was polished using a sodium hypochlorite aqueous solution and a suede type polishing cloth. After the wafer was peeled off from the polishing plate and washed, the other three sides were separated at about 5 mm from each peripheral end to obtain a rectangular mirror-finished wafer measuring 30 x 308 mm.

この鏡面ウェハの各辺を螢光灯の像を映し出すことによ
って目視1=より観察したところ、−辺に面ダレが観察
された。さらに、表面粗さ計(東京精密製Surfco
m)を用いて、その周辺部の形状を調べただところ、面
ダレの認められた辺は、端面から0.3mmまでの領域
で徐々に厚みが薄くなり、端面では10μm薄くなって
いることが確認された。第6図には、この面ブレの生じ
た辺の部分断面図を示す。
When each side of this mirrored wafer was visually observed by projecting a fluorescent light image, surface sag was observed on the - side. In addition, a surface roughness meter (Surfco manufactured by Tokyo Seimitsu)
When we investigated the shape of the surrounding area using the 3D model M), we found that the edge where surface sag was observed gradually became thinner in the area up to 0.3 mm from the end surface, and was 10 μm thinner at the end surface. confirmed. FIG. 6 shows a partial sectional view of the side where this surface wobbling has occurred.

この矩形の鏡面ウェハをエツチングしてメサを出したと
ころ、面ブレの生じた辺は逆メサであり、この辺が(0
了丁)面または(011)面であることが明らかになっ
た。
When this rectangular mirror wafer was etched to produce a mesa, the side where the surface wobble occurred was an inverted mesa, and this side was (0
It was revealed that it was either the (011) side or the (011) side.

さらに、KOHエツチングにより結晶欠陥の分布を調べ
たところ、面ダレの生じた面の近傍に多数の結晶欠陥が
認められた。矩形化する前に調べた結晶欠陥密度分布で
は、フリー面の近傍に多数の結晶欠陥が認められており
、矩形前の位置と対応のとれることが確認された。
Furthermore, when the distribution of crystal defects was investigated by KOH etching, a large number of crystal defects were found in the vicinity of the surface where the surface sag occurred. In the crystal defect density distribution examined before rectangularization, a large number of crystal defects were observed near the free surface, and it was confirmed that they corresponded to the positions before rectangularization.

[発明の効果] 以上説明したように、この発明の化合物半導体鏡面ウェ
ハでは、矩形のすべての辺ではない少なくとも一辺を鏡
面加工前に形成しており、この辺に生じる面ダレを確認
することによって、矩形の鏡面ウェハの面内の位置を、
矩形加工する前のウェハの位置と対応させることができ
る。このため、後工程であるエピタキシャル工程での成
長条件に矩形加工前のウェハの各位置での情報を反映さ
せることができる。
[Effects of the Invention] As explained above, in the compound semiconductor mirror-finished wafer of the present invention, at least one side, but not all sides, of the rectangle is formed before mirror-finishing, and by checking the surface sag that occurs on this side, The in-plane position of a rectangular mirror wafer is
This can be made to correspond to the position of the wafer before rectangular processing. Therefore, the information at each position on the wafer before rectangular processing can be reflected in the growth conditions in the subsequent epitaxial process.

また、この発明によれば、メサ方向を容易に識別するこ
とができる。このため、たとえば埋込型の半導体レーザ
用のエピタキシャル成長時のメサエッチすべき方向を非
破壊で容易に識別することができる。
Further, according to the present invention, the mesa direction can be easily identified. Therefore, for example, the direction in which a mesa should be etched during epitaxial growth for a buried semiconductor laser can be easily identified in a non-destructive manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の製造工程を示す工程図
である。第2図は、ボート法による成長結晶を示す側面
図である。第3図は、ボート法による成長結晶を示す正
面図である。第4図は、鏡面加工前にフリー面と平行な
辺をへき関して形成したウェハの状態を示す正面図であ
る。第5図は、鏡面加工後に他の辺をへき関して形成し
たウェハの状態を示す正面図である。第6図は、鏡面加
工前に形成した辺の面ダレの状態を示す部分断面図であ
る。 図において、1は成長結晶、2はフリー面、3は鏡面加
工前に形成した辺、4,5.6は鏡面加工後に形成した
辺を示す。
FIG. 1 is a process diagram showing the manufacturing process of an embodiment of the present invention. FIG. 2 is a side view showing a crystal grown by the boat method. FIG. 3 is a front view showing a crystal grown by the boat method. FIG. 4 is a front view showing the state of the wafer formed by separating the sides parallel to the free surface before mirror polishing. FIG. 5 is a front view showing the state of the wafer formed by separating the other sides after mirror polishing. FIG. 6 is a partial cross-sectional view showing the state of surface sag on the side formed before mirror polishing. In the figure, 1 is a grown crystal, 2 is a free surface, 3 is a side formed before mirror polishing, and 4, 5.6 is a side formed after mirror polishing.

Claims (1)

【特許請求の範囲】[Claims] (1)鏡面加工された矩形の化合物半導体鏡面ウェハで
あって、 前記矩形のすべての辺ではない少なくとも一辺が前記鏡
面加工前に形成され、他の辺が鏡面加工後に形成されて
いることを特徴とする、化合物半導体鏡面ウェハ。
(1) A mirror-finished rectangular compound semiconductor mirror-finished wafer, characterized in that at least one side (not all sides) of the rectangle is formed before the mirror-finishing, and the other sides are formed after the mirror-finishing. Compound semiconductor mirror wafer.
JP1585689A 1989-01-25 1989-01-25 Compound semiconductor mirror surface wafer Pending JPH02196413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1585689A JPH02196413A (en) 1989-01-25 1989-01-25 Compound semiconductor mirror surface wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1585689A JPH02196413A (en) 1989-01-25 1989-01-25 Compound semiconductor mirror surface wafer

Publications (1)

Publication Number Publication Date
JPH02196413A true JPH02196413A (en) 1990-08-03

Family

ID=11900445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1585689A Pending JPH02196413A (en) 1989-01-25 1989-01-25 Compound semiconductor mirror surface wafer

Country Status (1)

Country Link
JP (1) JPH02196413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231673B1 (en) 1999-01-22 2001-05-15 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of semiconductor wafer, semiconductor manufacturing apparatus, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231673B1 (en) 1999-01-22 2001-05-15 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of semiconductor wafer, semiconductor manufacturing apparatus, and semiconductor device

Similar Documents

Publication Publication Date Title
JP4192482B2 (en) Silicon wafer manufacturing method
US5494862A (en) Method of making semiconductor wafers
KR100206094B1 (en) A fabricating method of mirror-face wafer
US6875082B2 (en) Nitride semiconductor wafer and method of processing nitride semiconductor wafer
JP2006222453A (en) Silicon wafer, method for manufacturing the same, and soi wafer
US5279077A (en) Method for producing semiconductor wafer
US20090057847A1 (en) Gallium nitride wafer
JP2001358095A (en) Double-sided polishing method of semiconductor wafer, and carrier for executing it
EP0221454B1 (en) Method of producing wafers
US6599760B2 (en) Epitaxial semiconductor wafer manufacturing method
TW548702B (en) Compound semiconductor wafer with notch
JPH02196413A (en) Compound semiconductor mirror surface wafer
JP2000030994A (en) Semiconductor wafer and manufacture thereof and wafer chuck
WO2022244304A1 (en) Silicon single crystal ingot evaluation method, silicon epitaxial wafer evaluation method, silicon epitaxial wafer manufacturing method, and silicon mirror surface wafer evaluation method
JP4617788B2 (en) Bonded wafer evaluation method and bonded wafer evaluation apparatus
JP2003203890A (en) Method for manufacturing silicon wafer
JP3932756B2 (en) Manufacturing method of silicon epitaxial wafer
JPH09110589A (en) Silicon wafer and its production
JPS61214421A (en) Semiconductor wafer
JP2003282509A (en) Method for manufacturing silicon wafer
JP2005032804A (en) Semiconductor wafer processing method
JP2001198808A (en) Double-sided mirror finished sapphire substrate and its manufacturing method
JPH04113619A (en) Wafer and its manufacture
JPS60167426A (en) Semiconductor crystal wafer
JP2004043257A (en) Compound semiconductor wafer and method for working the same