JPH02196025A - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JPH02196025A
JPH02196025A JP1015707A JP1570789A JPH02196025A JP H02196025 A JPH02196025 A JP H02196025A JP 1015707 A JP1015707 A JP 1015707A JP 1570789 A JP1570789 A JP 1570789A JP H02196025 A JPH02196025 A JP H02196025A
Authority
JP
Japan
Prior art keywords
superconducting material
superconducting
delta
treated
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015707A
Other languages
Japanese (ja)
Inventor
Hiroshi Mukoda
向田 広巳
Masao Nakao
中尾 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1015707A priority Critical patent/JPH02196025A/en
Publication of JPH02196025A publication Critical patent/JPH02196025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the superconducting material having the critical temp. at which electric resistance is diminished to zero and close to 120K by specifying the molar ratios of Tl, Ca, alkali metals, Ba, Cu, and O. CONSTITUTION:When K is used as the alkali metal, for example, the powders of Tl2O3, CaO2, KO2, BaO2, and CuO are mixed in the molar ratio of 0.5:2.4:0.6:1:3 with the use of a mortar. The obtained mixed powder is then formed at 750kg/cm<2> pressure. The formed product is wrapped up with gold foil, heat-treated in an electric furnace at 875 deg.C for 15min in an O2 atmosphere, and successively heat-treated at 750 deg.C for 10hr. Consequently, the desired superconducting material shown by Tl2(Ca1-xAx)2(Ba1-yAy)2Cu3O10-delta is obtained [0<=x<=0.5, 0<=y<=0.5, (x+y)>0, and 0<=delta<=1.0]. CaO, BaO and K2O2, K2O3 or K2O may be used as the oxides.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は120に近傍で超電導状態に入るTC系の超電
導材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a TC-based superconducting material that enters a superconducting state near 120.

(ロ)従来の技術 昭和63年2月29日から3月4日にかけてスイスのイ
ンターラーケンで開催された超電導国際学会で、IBM
のアルマーデン研究所のP、グランド博士がTI−Ca
−B a −Cu系の酸化物が118にで超電導状態に
なることを発表した。
(b) Conventional technology At the International Conference on Superconductivity held in Interlaken, Switzerland from February 29 to March 4, 1988, IBM
Dr. P. Grand of Almaden Institute of TI-Ca
It was announced that -B a -Cu-based oxides become superconducting at 118 degrees.

また、C,C,トラルディ博士らによる論文(Scie
nce、 Vol、 240p、 p、 631−63
3)に開示されるよくうに、この超電導材料はTlrC
atBa、Cu。
In addition, a paper by Dr. C. C. Toraldi et al.
nce, Vol, 240p, p, 631-63
3), this superconducting material is TlrC
atBa,Cu.

01゜からなる組成を有している。It has a composition of 01°.

(ハ)発明が解決しようとする課題 ところが、このTe−Ca−B a−Cuの酸化物の製
造は、TRの昇華温度が低く、焼成時にTCが昇華する
ため、非常に難しく、Tlの昇華を防止しつつ焼成した
ときにも、その酸化物は焼結上変化するため、120に
近傍で超電導状態に入る超電導材料を得ることは困難で
あった。
(c) Problems to be Solved by the Invention However, the production of this Te-Ca-B a-Cu oxide is extremely difficult because the sublimation temperature of TR is low and TC sublimates during firing. Even when sintering is performed while preventing oxidation, the oxide changes during sintering, so it has been difficult to obtain a superconducting material that enters the superconducting state near 120.

本発明はかかる背景の下に、抵抗が零となる臨界温度(
Tcend)が120Kに近い超電導材料を提供するこ
とを目的とする。
With this background in mind, the present invention was developed at a critical temperature (at which the resistance becomes zero).
The purpose of the present invention is to provide a superconducting material with a Tcend) close to 120K.

(ニ)課題を解決するための手段 本発明による超電導材料は、T ’JL(Ca + −
* A x ) *(Bat−yA y ) tc u
 so 5o−aで表わされる組成を有するものである
。但し、Aは1種以上のアルカ)含属元素であり、0≦
x≦0.5.  O≦y≦0.5.x+y>O,O≦δ
≦1.0である。
(d) Means for Solving the Problems The superconducting material according to the present invention has T'JL (Ca + -
*A x ) *(Bat-yA y ) tcu
It has a composition represented by so 5o-a. However, A is one or more alkali-containing elements, and 0≦
x≦0.5. O≦y≦0.5. x+y>O, O≦δ
≦1.0.

(ホ)作用 本発明によれば、超電導材料におけるCaあるいはBa
の原子位置にアルカリ金属Aが混入し、これにより12
0に近傍で超電導状態に入る超電導材料が得られる。
(E) Effect According to the present invention, Ca or Ba in the superconducting material
Alkali metal A is mixed into the atomic position of 12
A superconducting material that enters a superconducting state near zero is obtained.

(へ)実施例 本発明の詳細な説明し、比較例と対比する。(f) Example The present invention will be described in detail and compared with comparative examples.

[第1実施例コ 実施例においては、アルカリ金属としてKの酸化物を用
いた。
[First Example] In the first example, an oxide of K was used as the alkali metal.

第1の混合工程において、T j、OIt Ca O1
+K Owe  B a O*及びCuOの粉末をモル
比0.5: 2.4 : 0.6 : 1 : 3で孔
外を用いて混合した。
In the first mixing step, T j, OIt Ca O1
+K Owe Ba O* and CuO powders were mixed in a molar ratio of 0.5: 2.4: 0.6: 1: 3 using the outside of the hole.

第2の成型工程では、混合工程で得た混合粉末を750
 kgf/cm”の圧力で成型した。
In the second molding process, the mixed powder obtained in the mixing process is
The molding was carried out under a pressure of "kgf/cm".

第3の熱処理工程では、成型工程で得た成型体を金箔で
包み、電気炉内で酸素雰囲気中で875℃、15分間の
熱処理をし、引き続いて750℃で10時間の熱処理を
施こした。成型体を金箔で包んで熱処理工程を行うこと
により、融点が700℃程度と低いT t = Osが
黒煙となって昇華してしまう現象が防止される。
In the third heat treatment step, the molded body obtained in the molding step was wrapped in gold foil and heat treated at 875°C for 15 minutes in an oxygen atmosphere in an electric furnace, followed by heat treatment at 750°C for 10 hours. . By wrapping the molded body in gold foil and performing the heat treatment process, it is possible to prevent T t =Os, which has a low melting point of about 700° C., from sublimating into black smoke.

この熱処理工程においては、T l t o sのみが
溶融し、その溶融液中にCa 021 K O2,B 
a Os及びCuOが溶けだし、最終的に、11g (
Ca +−mk、)*  (Bat−+Ky)!  C
u5O+o−t (但し、0≦x≦0.5.0≦シ゛≦
0.5.  x+v>0. 0≦δ≦1゜O)で表わさ
れる超電導材料が得られた。
In this heat treatment step, only T l t o s is melted, and Ca 021 K O 2 , B
a Os and CuO begin to dissolve, and finally 11g (
Ca +-mk, )* (Bat-+Ky)! C
u5O+o-t (However, 0≦x≦0.5.0≦shi≦
0.5. x+v>0. A superconducting material having the following formula (0≦δ≦1°O) was obtained.

実施例で得られた超電導材料の電気抵抗−温度特性を西
端r法で測定したところ、第1図に示す特性を得た。こ
の特性から明らかなように120にで超電導状態に入る
ことがわかる。また、実施例Cf’%た超電導材料のX
線回折パターンを第2図に示す。このパターンから超電
導材料における超電導相の体積パーセントが多いことが
わかる。この超電導材料の溝造図を第3図に示す。
The electrical resistance-temperature characteristics of the superconducting materials obtained in the examples were measured using the Nishibata r method, and the characteristics shown in FIG. 1 were obtained. As is clear from this characteristic, the superconducting state is reached at 120°C. In addition, X of the superconducting material with Example Cf'%
The line diffraction pattern is shown in FIG. This pattern shows that the superconducting material has a high volume percent of superconducting phase. A groove diagram of this superconducting material is shown in FIG.

この実施例において、仕込み組成からx 十y =0.
2である。
In this example, x + y = 0.
It is 2.

[第2実施例] 第1実施例の混合工程における仕込み組成を次のように
変えた。すなわち、TLO,、CaO!、KO,Ba1
t及びCuOの粉末をモル比0゜5 : 1.8 : 
1.2 : 1.3とした。
[Second Example] The charging composition in the mixing step of the first example was changed as follows. That is, TLO,,CaO! ,KO,Ba1
The molar ratio of t and CuO powders was 0°5:1.8:
1.2: 1.3.

この仕込み組成を変えた点を除いて、第1実施例と同じ
条件で超電導材料を作製した。この第2実施例ではx+
y=0.4である。第2実施例で得た超電導材料は11
3にで超電導状態に入ることを確認した。
A superconducting material was produced under the same conditions as in the first example except that the charging composition was changed. In this second embodiment, x+
y=0.4. The superconducting material obtained in the second example was 11
It was confirmed that the superconducting state entered in step 3.

以上の実施例においては、Cab、、Bad、及びKO
,で表わされるCa、Ba及びKの酸化物を用いたが、
Cab、BaO及びに、0.、に、0゜又はに、0で表
わされる酸化物を用いてもよい。
In the above examples, Cab, Bad, and KO
We used Ca, Ba and K oxides represented by ,
Cab, BaO and 0. An oxide represented by , 0° or , 0 may be used.

また、Ca COm+  B a CO、及びK * 
COsで表わされる炭酸塩を用いることもでき、さらに
に以外の他のアルカリ金属(Li、Na、Rb、Cs)
の酸化物や炭酸塩を用いることもできる。
In addition, Ca COm + B a CO, and K *
Carbonates represented by COs can also be used, and furthermore, other alkali metals (Li, Na, Rb, Cs)
It is also possible to use oxides and carbonates of.

[比較例] 第1実施例の混合工程において、KO,を用いることな
く、また、他のアルカリ金属の酸化物又は炭酸塩を用い
ない点を除いて、第1実施例と同じ条件で超電導材料を
作成した。この超電導材料は112にで超電導状態に入
ることを確認した。
[Comparative Example] Superconducting materials were prepared under the same conditions as in Example 1, except that KO was not used in the mixing step of Example 1, and other alkali metal oxides or carbonates were not used. It was created. It was confirmed that this superconducting material entered a superconducting state at 112 hours.

この比較例と各実施例を比較すると、アルカリ金属を有
する超電導材料は、アルカリ金属を有しない超電導材料
に比し、超電導状態に入る温度を高めることができ、ま
た、x+y−0,2のときに超電導状態に入る温度を一
層高めることができる。
Comparing this comparative example with each example, the superconducting material containing an alkali metal can raise the temperature at which it enters a superconducting state compared to the superconducting material without an alkali metal, and when x + y - 0,2 The temperature at which the superconducting state is reached can be further increased.

実施例において用いた超電導材料の素材には、超電導特
性を示すために必要な酸素量を充分に含んでいるので、
シース材に超電導素材を封入した状態で熱処理すること
によって、外部から酸素を補給することなく、超電導材
料を線材化することができ、本発明が超電導材料の線材
化に寄与するところは大きい。
The superconducting material used in the examples contains a sufficient amount of oxygen necessary to exhibit superconducting properties.
By heat-treating the superconducting material encapsulated in the sheath material, the superconducting material can be made into a wire without externally supplementing oxygen, and the present invention greatly contributes to making the superconducting material into a wire.

(ト)発明の効果 本発明は、TI系超超電導材料アルカリ金属を添加して
超電導材料を構成するため、120に近傍で超電導状態
に入る超電導材料を得ることができる。
(G) Effects of the Invention In the present invention, since a superconducting material is formed by adding an alkali metal to a TI-based superconducting material, a superconducting material that enters a superconducting state near 120 can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で得た超電導材料の電気抵抗−
温度特性図、第2図はその超電導材料のX線回折パター
ン、第3図はその超電導材料の購造図である。
Figure 1 shows the electrical resistance of the superconducting material obtained in the example of the present invention.
A temperature characteristic diagram, FIG. 2 is an X-ray diffraction pattern of the superconducting material, and FIG. 3 is a purchasing diagram of the superconducting material.

Claims (1)

【特許請求の範囲】[Claims] (1)Tl_2(Ca_1_−_xAx)_2(Ba_
1_−_yAy)_2Cu_3O_1_0_−_δで表
わされる組成を有する超電導材料。 但し、Aは1種以上のアルカリ含属元素であり、0≦x
≦0.5,0≦y≦0.5,x+y>0,0≦δ≦1.
0である。
(1) Tl_2(Ca_1_-_xAx)_2(Ba_
A superconducting material having a composition represented by 1_-_yAy)_2Cu_3O_1_0_-_δ. However, A is one or more alkali-containing elements, and 0≦x
≦0.5, 0≦y≦0.5, x+y>0, 0≦δ≦1.
It is 0.
JP1015707A 1989-01-24 1989-01-24 Superconducting material Pending JPH02196025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015707A JPH02196025A (en) 1989-01-24 1989-01-24 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015707A JPH02196025A (en) 1989-01-24 1989-01-24 Superconducting material

Publications (1)

Publication Number Publication Date
JPH02196025A true JPH02196025A (en) 1990-08-02

Family

ID=11896239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015707A Pending JPH02196025A (en) 1989-01-24 1989-01-24 Superconducting material

Country Status (1)

Country Link
JP (1) JPH02196025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
US5306698A (en) * 1991-10-10 1994-04-26 International Business Machines Corporation Methods for producing Tl2 Ca2 Ba2 Cu3 oxide superconductors
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306698A (en) * 1991-10-10 1994-04-26 International Business Machines Corporation Methods for producing Tl2 Ca2 Ba2 Cu3 oxide superconductors
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
US5332721A (en) * 1991-11-13 1994-07-26 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Similar Documents

Publication Publication Date Title
JPH01215721A (en) Compound superconductor and production thereof
JPH02196025A (en) Superconducting material
US5162300A (en) Process for producing a high-temperature superconductor
JP2565443B2 (en) Method for producing single-phase spinel type metal oxide thermistor material
JPH0421521A (en) Production of bi-based superconductor having ni base material
JPH01212226A (en) Production of oxide superconducting material
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01208359A (en) Production of superconductor
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP2859283B2 (en) Oxide superconductor
JPS58107603A (en) Method of producing positive temperature coefficient semiconductor magnetism
JPH03223117A (en) Production of bi-based oxide superconductor
JPH01208360A (en) Production of superconductor
JPH0345514A (en) Bi-based superconducting oxide powder and production of sintered compact using the same powder
JPS63274653A (en) Production of superconductive material
JPH01212225A (en) Oxide superconducting material
JPH0292826A (en) Oxide superconductor
JPH01294523A (en) High-temperature superconductive material
JPH02221149A (en) Production of oxide superconductor
JPS63291814A (en) Superconducting material composition
JPH02311354A (en) Production of bi-based superconducting oxide calcined compact having high critical current density
JPH0397621A (en) Oxide superconductor and production thereof
JPH0397656A (en) Oxide superconductor composition
JPH07257961A (en) Superconductive material
JPH04124014A (en) Oxide superconductor and its production