JPH0397621A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH0397621A
JPH0397621A JP1233207A JP23320789A JPH0397621A JP H0397621 A JPH0397621 A JP H0397621A JP 1233207 A JP1233207 A JP 1233207A JP 23320789 A JP23320789 A JP 23320789A JP H0397621 A JPH0397621 A JP H0397621A
Authority
JP
Japan
Prior art keywords
oxide superconductor
alkali metal
temperature
oxide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233207A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1233207A priority Critical patent/JPH0397621A/en
Publication of JPH0397621A publication Critical patent/JPH0397621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase superconducting critical temp. and to reduce sintering temp. by substituting a specified alkali metal for part of Tl in a Tl-Ba-Ca-Cu oxide superconductor. CONSTITUTION:This oxide superconductor has a basic compsn. obtd. by partially substituting at least one kind of alkali metal (A) selected among K, Rb and Cs for Tl and represented by a formula (Tl1-yAy)mBa2-Can-1CunOx (where m is 1 or 2 and n is 1, 2 or 3). When this oxide superconductor is produced by sintering, a compd. of at least one kind of alkali metal selected among K, Rb and Cs is added at the time of mixing starting materials. This oxide superconductor has >125K critical temp. (Tc).

Description

【発明の詳細な説明】 産業上の利用分野 本発明はジョセフソン素子、リニャモーターなどに用い
る酸化物超伝導体に関す瓜 従来の技術 基本組或式T l @B a 2c a ++−+C:
 u IIOX (m= 1.2、 n=1.  2.
  3)で表される一群の酸化物高温超伝導体はT l
sI3 atc arc u一〇×の125Kを最高に
既存の酸化物の中では最も高いTcを有すも これらの
酸化物は第4図(a)〜(f)の構造図に示すようにC
uO.!=CaOが交互に重なった多層構造力(Ba.
O層とTl2Os層を介して層状構造を形威していも 
第4図では各構造図に構造を表わす指数を併記した 例
えば図(f)で2223はTl層が2、Ba層が2、C
a層が2、Cu層が3であることを表わす。  一般に
これらの酸化物では超伝導電流はCuO面内を流れると
考えられており、表に示すよう4,:,CuO層の数n
が大きいほど臨界温度Tcが高(t 表   TlJaeCa++−+CunO+tの臨界温
度(K)tOs層の数mが大きい方がTcが高L℃ ま
たT120ネ層に代わってBi,Pb,  希土類など
の層状酸化物がくると異なったTcの酸化物が得られも
いずれにして転 現在最高のTcは125Kどまりであ
り、実際の液体窒素温度(77K)で実用化するために
は少しでも高い臨界温度が必要であって、理想的にはT
cとして150K以上が望まれてい九 現在最高のTcを有するタリウム系酸化物ではその焼戊
温度である900℃付近の相図が非常に複雑で125K
のTcを有する相のみを焼戊するのは困難であも さら
に 戒分元素のタリウム酸化物は高温で蒸気圧が高く、
その組戒制御が困難であることからより簡単な焼戒法が
待ち望まれてい九 発明が解決しようとする課題 本発明{よ 従来のTc 1 2 5Kより高い臨界温
度を有する酸化物高温超伝導体を提供し その実用化を
よりし易くするとともに 従来の焼戊法に比べて単一相
の得やすL\ より簡単な焼戒法を提供するものであム 課題を解決するための手段 本発明では上記課題を解決する手段として、従来のTl
sBapCan−+CunCl+(m=1.  2, 
 n=1.  2.  3)で表される酸化物のT1を
部分的にK,Rb,Csなどのアルカリ金属に置換した
材料と、焼戊に際して原料混合時にアルカリ金属元素を
添加する製造方法とを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to oxide superconductors used in Josephson devices, linear motors, etc. :
u IIOX (m=1.2, n=1.2.
3) A group of oxide high temperature superconductors represented by T l
sI3 atc arc u10x has the highest Tc of 125K among the existing oxides.These oxides have C
uO. ! = Multilayer structure force in which CaO is alternately stacked (Ba.
Even if a layered structure is formed through the O layer and the Tl2Os layer,
In Figure 4, an index representing the structure is also written for each structural diagram.For example, in Figure (f), 2223 has 2 Tl layers, 2 Ba layers, and C
This indicates that the a layer is 2 and the Cu layer is 3. It is generally believed that superconducting current flows in the CuO plane in these oxides, and as shown in the table, the number of CuO layers n
The larger the value, the higher the critical temperature Tc (t Table Critical temperature (K) of TlJaeCa++-+CunO+t) The larger the number of meters of the tOs layer, the higher the Tc. The current highest Tc is only 125K, and in order to put it into practical use at the actual liquid nitrogen temperature (77K), a slightly higher critical temperature is required. and ideally T
A thallium-based oxide with the highest Tc at present has a very complex phase diagram near its calcination temperature of 900°C, which is 125K or more.
Although it is difficult to burn out only the phase with Tc of
Since it is difficult to control the assembly, a simpler burning method has been awaited, and the present invention aims to solve the problems. Means for Solving the Problems The present invention provides a method that makes it easier to put it into practical use, and provides a simpler method for producing a single phase compared to the conventional method. Now, as a means to solve the above problems, the conventional Tl
sBapCan-+CunCl+(m=1.2,
n=1. 2. The present invention provides a material in which T1 of the oxide represented by 3) is partially replaced with an alkali metal such as K, Rb, or Cs, and a manufacturing method in which an alkali metal element is added when mixing raw materials during annealing. .

作用 高温超伝導体の臨界温度を決定するのはCuO層の数と
ともにそれらCuO層をはさむ酸化物層の性質であも 
本発明のようにTlを部分的に1価のアルカリ金属で置
換すると、置換しない時に比べて、 1)CuO層にホールを提供しやすくなる。
The critical temperature of a functional high-temperature superconductor is determined by the number of CuO layers as well as the nature of the oxide layers that sandwich the CuO layers.
When Tl is partially substituted with a monovalent alkali metal as in the present invention, compared to when no substitution is made, 1) Holes are more easily provided to the CuO layer.

2)Tl*O*層が電気的により陽性になる。2) The Tl*O* layer becomes more electrically positive.

従って、臨界温度をわずかではあるが高くすることがで
きも また構或或分にアルカリ金属を含むと酸化物は一
般に融点が下がり、焼或温度を低くすることが可能とな
った その結果T]201の蒸発散逸による焼戊条件の
不安定性を低減することができt4 実施例 タリウム系酸化物の原料として、本実施例ではよく乾燥
したTl*0*、CaaCuOs,BaCu02粉末を
用い九 アルカリ金属の添加はアルカリ金属の硝酸塩を
添加混合i  600度で2時間仮焼或し 化学分析で
硝酸塩が含まれてないことを確認した徽 本焼戒に用い
た これらの原料粉を所定の割合に混合L,  400kg
w/cm2のプレス圧にてペレット或形したこの原料粉
ベレットを金箔で包へ 石英管に真空封止L’K気炉に
て800度から900度まで6種の温度で24時間焼或
しtも  用いたアルカリ金属元素はK,Rb,Csで
あつ1,  冷却後ドライボックス中にて石英管を破壊
し 超伝導特性評価試験を行っtも  種々のアルカリ
金属を50%置換した時の結果について第1図に表しt
も  またKについては添加量と焼戊時間を変えて数多
くの試験を行L\ 最適なアルカリ添加量と焼戒時間つ
いて知見を得た 第2図にはKの置換量を変えた場合Q
 また第3図には焼或時間を変えた場合のTcの変化を
表しtも  第1図〜第3図においてはTcは抵抗が1
0−6Ωcm以下になる温度とした第l図の結果から明
らかなようにK,RbおよびCsを添加すると従来のタ
リウム系酸化物超伝導体に比べて、 3℃から10℃臨
界温度が上昇することがわかっ1,  また最適な焼戒
温度は従来のアルカリ金属を含まないタリウム系酸化物
が900℃から910℃であったのに対1,,  82
0℃から860℃と相当低くなっ九 な耘 Na,Li
ではこれらの効果はみられなかった 一X  アルカリ金属の最適添加量に・ついては第2図
のK添加の実験から50%前後と判明しt.:Oこれは
アルカリ金属をあまり多く添加し過ぎると酸化物が本来
の超伝導を示す構造を保てなくなるためと考えられも 
また 焼或時間を変えて追跡した粉末X線回折の結果に
よれば約20時間で単一層が生威していることを確認し
tも 第3図に示した結果とあわせると、本発明の方法
では焼或時間が短くてず&  Tl203などの散逸に
よる組或の不安定性が低減されることがわかっt4発明
の効果 本発明によれば従来のTl系超伝導体のTel25Kを
超えるTcの酸化物超伝導体を得ることができるので超
伝導材料デバイスの実用化に大きく貢献すん また材料
焼戒が容易になるので製造上のメリットははかり知れな
(1
Therefore, it is possible to raise the critical temperature, albeit slightly, and when an alkali metal is included in the structure, the melting point of the oxide generally decreases, making it possible to lower the sintering temperature.As a result, T] In this example, well-dried Tl*0*, CaaCuOs, BaCu02 powder was used as the raw material for the thallium-based oxide. Added nitrates of alkali metals and mixed them Calculated at 600 degrees for 2 hours or chemically analyzed to confirm that they did not contain nitrates Mixed these raw material powders used for Hon-yakkai in a predetermined ratio L , 400kg
This raw material powder pellet, which was formed into pellets using a press pressure of w/cm2, was wrapped in gold foil and baked in a vacuum-sealed L'K air furnace in a quartz tube at 6 different temperatures from 800 to 900 degrees for 24 hours. The alkali metal elements used were K, Rb, and Cs1. After cooling, the quartz tube was destroyed in a dry box and a superconducting property evaluation test was conducted. The results when 50% of various alkali metals were replaced. As shown in Figure 1,
Also, regarding K, we conducted many tests by changing the amount of K added and the burning time.We obtained knowledge about the optimal amount of alkali added and burning time.Figure 2 shows the results of Q when the amount of K replaced is changed.
Also, Fig. 3 shows the change in Tc when the firing time is changed.
As is clear from the results shown in Figure 1, where the temperature is below 0-6 Ωcm, when K, Rb, and Cs are added, the critical temperature increases by 3 to 10 degrees Celsius compared to conventional thallium-based oxide superconductors. It was found that the optimum incineration temperature was 900 to 910 °C for conventional thallium-based oxides that do not contain alkali metals, whereas the optimum firing temperature was 1,82
The temperature has dropped significantly from 0℃ to 860℃.9 Na, Li
These effects were not observed in the case of t. :O This is thought to be because if too much alkali metal is added, the oxide cannot maintain its original superconducting structure.
Furthermore, according to the results of powder X-ray diffraction conducted by varying the firing time, it was confirmed that a single layer was formed after about 20 hours, and when combined with the results shown in FIG. It was found that the method requires a short sintering time and that the instability of the assembly due to the dissipation of Tl203 etc. is reduced.4 Effects of the Invention According to the present invention, Tc oxidation exceeding Tel25K of the conventional Tl-based superconductor can be achieved. Since it is possible to obtain a physical superconductor, it will greatly contribute to the practical application of superconducting material devices.It will also make it easier to burn the material, so the manufacturing benefits will be immeasurable (1)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種kのアルカリ金属添加物のTcと焼戒温度と
の関係@ 第2図はK添加した際の添加量と臨界温度の
関係& 第3図は焼成時間と臨界温度の関係は 第4図
はタリウム系酸化物超伝導体の結晶構造図であも
Figure 1 shows the relationship between Tc and firing temperature of type K alkali metal additive; Figure 2 shows the relationship between the addition amount and critical temperature when K is added; Figure 3 shows the relationship between firing time and critical temperature. Figure 4 is a diagram of the crystal structure of a thallium-based oxide superconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)K,Rb,Csのうち、少なくとも1種類のアル
カリ金属AがTlを部分的に置換した基本組成式▲数式
、化学式、表等があります▼ で表される酸化物超 伝導体。
(1) An oxide superconductor represented by the basic composition formula ▲ Numerical formula, chemical formula, table, etc. available ▼ in which at least one alkali metal A among K, Rb, and Cs partially substitutes Tl.
(2)請求項1記載の酸化物超伝導体の焼成において、
原料混合時にK,Rb,Csのうち、少なくとも1種類
のアルカリ金属化合物を添加することを特徴とする酸化
物超伝導体の製造法。
(2) In firing the oxide superconductor according to claim 1,
A method for producing an oxide superconductor, which comprises adding at least one kind of alkali metal compound among K, Rb, and Cs during mixing of raw materials.
JP1233207A 1989-09-08 1989-09-08 Oxide superconductor and production thereof Pending JPH0397621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233207A JPH0397621A (en) 1989-09-08 1989-09-08 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233207A JPH0397621A (en) 1989-09-08 1989-09-08 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH0397621A true JPH0397621A (en) 1991-04-23

Family

ID=16951436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233207A Pending JPH0397621A (en) 1989-09-08 1989-09-08 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH0397621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
US5332721A (en) * 1991-11-13 1994-07-26 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Similar Documents

Publication Publication Date Title
Abbattista et al. Some equilibrium relationships in the barium rich part of the BaO CuO O system
JPH0397621A (en) Oxide superconductor and production thereof
JPH062583B2 (en) High temperature superconductor and manufacturing method thereof
US5242896A (en) Superconductor crystal and process for preparing the same
JPH0813705B2 (en) Oxide superconducting material and manufacturing method
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2507538B2 (en) Method for manufacturing oxide superconductor
JPS63176353A (en) Superconductive raw material
JPH02208225A (en) Oxide superconductor
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPH02296729A (en) Oxide superconductor
JPH04139026A (en) Oxide superconducting material and its production
JPH0274557A (en) Pottery device
JPS63230524A (en) Superconductive material
JPS63225527A (en) Superconductive material
JPS63239148A (en) Superconductive material
JPH01278458A (en) Production of superconductor
JPH02145470A (en) Production of tlbacacuo superconductor
JPH02172823A (en) Production of bi-based oxide superconductor
JPS63310762A (en) Production of superconductor
JPH01278460A (en) Production of superconductor
JPH02129022A (en) Oxide superconducting material
JPH03228820A (en) Oxide superconductor
JPH0333013A (en) Oxide superconducting material and production thereof