JPH02311354A - Production of bi-based superconducting oxide calcined compact having high critical current density - Google Patents

Production of bi-based superconducting oxide calcined compact having high critical current density

Info

Publication number
JPH02311354A
JPH02311354A JP1131784A JP13178489A JPH02311354A JP H02311354 A JPH02311354 A JP H02311354A JP 1131784 A JP1131784 A JP 1131784A JP 13178489 A JP13178489 A JP 13178489A JP H02311354 A JPH02311354 A JP H02311354A
Authority
JP
Japan
Prior art keywords
powder
pbo
sintered body
layer containing
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1131784A
Other languages
Japanese (ja)
Other versions
JP2817199B2 (en
Inventor
Takuo Takeshita
武下 拓夫
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1131784A priority Critical patent/JP2817199B2/en
Publication of JPH02311354A publication Critical patent/JPH02311354A/en
Application granted granted Critical
Publication of JP2817199B2 publication Critical patent/JP2817199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the critical current density by placing a layer containing PbO on the top end face of a specific cellular calcined compact, heating and melting the layer and moving a melting zone of a layer containing the PbO from the upper end of the calcined compact to the lower end thereof. CONSTITUTION:Bi2O3 powder is mixed with SrCO3 powder, CaCO3 powder and CuO powder so as to provide 2:2:2:3 molar ratio of 1/2Bi2O3:SrCO3:CaCO3: CuO and the resultant mixture is press formed and subsequently calcined under ordinary conditions to afford a cellular calcined compact 1, which is then stood erect on a pedestal 2. A layer containing PbO 4 (e.g. PbCaO-based oxide green compact) is subsequently placed on the upper end face 3 thereof and the layer 4 is heated and melted with a heater 5, which is then moved from the upper to the lower ends at a low speed while heating the layer containing the PbO therewith to move the PbO liquid phase 4' into the interior of the calcined compact 1 and deposit a superconducting phase. The resultant compact is subsequently sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高臨界温度および高臨界電流密度を有する
Bi系超伝導酸化物焼結体の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a Bi-based superconducting oxide sintered body having a high critical temperature and a high critical current density.

〔従来の技術〕[Conventional technology]

高温超伝導を示す酸化物の1つとしてBi系超超伝導酸
化物報告され、このBi系超伝導酸化物焼結体は、B1
2O3粉末、S r COa粉末、Cu0=2+2:2
:3、 となるように配合し、混合し、仮焼し、焼結することに
より製造されている。
Bi-based superconducting oxide has been reported as one of the oxides exhibiting high-temperature superconductivity, and this Bi-based superconducting oxide sintered body is B1
2O3 powder, S r COa powder, Cu0=2+2:2
:3, It is manufactured by blending, mixing, calcining, and sintering.

上記Bi系超伝導酸化物焼結体は、成分組成がB 12
 S r 2 Ca ICLl 20 xからなり臨界
温度が約80 Kの超伝導相(以下、低Tc相という)
および成分組成がB 12 S r 2 Ca 2 C
t+ a Oxからなり臨界温度か約110にの超伝導
相(以下、高Tc用という)の2相から主としてなり、
これら2相が混在している(その他、成分組成がB l
 2 S r 2 Cu Oxからなり臨界温度が約1
0にの相も存在すると言われているが、極く微量である
ために無視してよい)。
The Bi-based superconducting oxide sintered body has a component composition of B 12
A superconducting phase consisting of S r 2 Ca ICLl 20 x with a critical temperature of approximately 80 K (hereinafter referred to as the low Tc phase)
and the component composition is B 12 S r 2 Ca 2 C
It mainly consists of two phases: a superconducting phase (hereinafter referred to as "high Tc") consisting of t+ a Ox at a critical temperature of about 110,
These two phases are mixed (in addition, the component composition is B l
2 S r 2 Cu Ox and has a critical temperature of approximately 1
It is said that there is also a phase at 0, but the amount is so small that it can be ignored).

上記低Tc相は安定して生ずるために単なる熱処理ては
減少さぜることは難しい。そこで最近では上記Bi系酸
化物のBiの一部をpbで置換することにより高Tc用
が安定して得られるという報告がなされている。
Since the above-mentioned low Tc phase is stably generated, it is difficult to reduce it by mere heat treatment. Recently, it has been reported that a high Tc product can be stably obtained by substituting a part of Bi in the Bi-based oxide with pb.

このBjの一部をpbで置換したBi系超伝導酸化物焼
結体は、PbO粉末をモル比で、Cu0= 1.B:0
.4 : 2 : 2 : 3、の割合になるように配
合し、混合し、大気中、温度ニア5υ〜870℃、8〜
200時IHJ保持の条件で仮焼し、ついで焼結するこ
とにより製造される。上記PbOは、仮焼および焼結工
程において高Tc用の発生を促進する触媒的な作用をし
、高Tc用が安定して得られ、主として高Tc用のみか
らなるBi系超伝導酸化物焼結体が比較的簡単に得られ
るのである。この方法で得られたBj系酸化物焼結体は
Bi25r2Ca2Cu30Xからなる高Tc相中にP
bCaO系酸化物相、例えばPb2Ca04などの不純
物第2相が分散した組織となっている。
This Bi-based superconducting oxide sintered body in which a part of Bj is replaced with Pb has a molar ratio of PbO powder of Cu0=1. B:0
.. Blend and mix in a ratio of 4:2:2:3, in the atmosphere at a temperature of 5υ~870℃, 8~
It is manufactured by calcining under the conditions of holding IHJ at 200 hours and then sintering. The above-mentioned PbO acts as a catalyst to promote the generation of high Tc in the calcination and sintering process, so that high Tc can be stably obtained, and the Bi-based superconducting oxide sintered mainly consists only of high Tc. Solids can be obtained relatively easily. The Bj-based oxide sintered body obtained by this method contains P in the high Tc phase consisting of Bi25r2Ca2Cu30X.
It has a structure in which a bCaO-based oxide phase, for example, an impurity second phase such as Pb2Ca04 is dispersed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、PbOは仮焼および焼結工程においては
高Tc用生成のための触媒的役割をはたし、有効な成分
であるが、仮焼および焼結して高Tc用を主体としたB
i系超伝導酸化物焼結体が得られてしまうと、その後の
Pboは不必要となり、焼結体中にPbCaO系酸化物
相などの形で析出分散している不純物第2相は、逆に焼
結体の臨界電流密度Jcを低下させる原因となっていた
As mentioned above, PbO plays a catalytic role in the calcination and sintering process for the production of high Tc products, and is an effective component. B did
Once the i-based superconducting oxide sintered body is obtained, Pbo is no longer necessary, and the impurity second phase precipitated and dispersed in the sintered body in the form of a PbCaO-based oxide phase, etc. This caused a decrease in the critical current density Jc of the sintered body.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上記PbCaO系酸化物相など
の不純物第2F[]が残留しない高Tc用を有するBi
系超伝導酸化物焼結体を製造すべく研究を行った結果、 5rC03:CaCO3:Cu0=2:2:2:3とな
るように配合し混合しプレス成形し、ついで通常の条件
で仮焼して得られた多孔質仮焼体の内部を帯域溶融法を
用いて溶融Pboを通過させることによりPbo液相と
上記多孔質仮焼体固相の境界相て高Tc用のみを析出さ
せることができ=  6  = るという知見を得たのである。
Therefore, the present inventors developed a Bi
As a result of research to produce a superconducting oxide sintered body, we found that the composition was mixed and press-formed in a ratio of 5rC03:CaCO3:Cu0=2:2:2:3, and then calcined under normal conditions. By passing molten Pbo through the interior of the porous calcined body obtained by using the zone melting method, only the high Tc component is precipitated in the boundary phase between the Pbo liquid phase and the porous calcined body solid phase. We obtained the knowledge that = 6 = can be done.

この発明は、かかる知見にもとづいてなされたものであ
って、 通常の条件で仮焼して得られた多孔質仮焼体の上面に、
PbOを含む層を載置し、帯域溶融法により上記PbO
を含む層を溶融させながら上記多孔質仮焼体の内部を移
動させる高臨界電流密度を有するBi系超伝導酸化物焼
結体の製造法に特徴を有するものである。
This invention was made based on this knowledge, and on the upper surface of a porous calcined body obtained by calcining under normal conditions,
A layer containing PbO is placed, and the above PbO is melted by a zone melting method.
The present invention is characterized by a method for producing a Bi-based superconducting oxide sintered body having a high critical current density in which the layer containing the oxide is moved inside the porous calcined body while melting the layer.

つぎに、この発明の高臨界電流密度を有するBi系超伝
導酸化物焼結体の製造法を図面を用いて説明する。
Next, a method for producing a Bi-based superconducting oxide sintered body having a high critical current density according to the present invention will be explained with reference to the drawings.

第1図は、多孔質仮焼体の上面にPbOを含む層を載置
した状態を示す断面立面概略図、第2図は、帯域溶融法
によりPbOを含む層を溶融しながら下方に移動しつつ
ある状態を示す断面立面概略図である。
Fig. 1 is a schematic cross-sectional elevational view showing a state in which a layer containing PbO is placed on the upper surface of a porous calcined body, and Fig. 2 shows a layer containing PbO moving downward while being melted by the zone melting method. FIG.

まず、Bi2O3,SrCO3,CaCO3およびCu
Oの混合粉末を通常の条件で仮焼して得られた多孔質仮
焼体1を台2の上に立置し、その上端面3の上にPbO
を含む層4を載置し、ヒーター5により上記PbOを含
む層4を加熱すると溶融し、上記PbOを含む層は多孔
質仮焼体1の内部に浸透し、上記ヒーター5を加熱しな
がら極めて低速度で移動せしめると、PbO液相4′は
多孔質仮焼体1内部を移動して高Te相のみを析出させ
る。このようにして多孔質仮焼体1の内部を上記PbO
液相4′が通過した後には、上記多孔質仮焼体1は焼結
されて第2図に示される高Tc相のみからなるBi系超
伝導酸化物焼結体の1′生成される。
First, Bi2O3, SrCO3, CaCO3 and Cu
A porous calcined body 1 obtained by calcining a mixed powder of O under normal conditions is placed on a stand 2, and a PbO
When the layer 4 containing PbO is heated by the heater 5, the layer 4 containing PbO is melted, and the layer containing PbO penetrates into the inside of the porous calcined body 1. When moved at a low speed, the PbO liquid phase 4' moves inside the porous calcined body 1 and precipitates only the high Te phase. In this way, the inside of the porous calcined body 1 is covered with the PbO
After the liquid phase 4' has passed, the porous calcined body 1 is sintered to produce a Bi-based superconducting oxide sintered body 1' consisting only of the high Tc phase as shown in FIG.

上記多孔質仮焼体1の形状は、円柱または角柱などの柱
状体であることが好ましく、さらに上記PbOを含む層
4は、PbO粉末、PbO圧粉体、PbO焼結体、Pb
CaO系酸化物粉末、PbCaO系酸化物圧粉体、P 
b C’a O系酸化物焼結体、PbBO系酸化物粉末
、PbBO系酸化物圧粉体、PbBO系酸化物焼結体、
PbS r。
The shape of the porous calcined body 1 is preferably a columnar body such as a cylinder or a rectangular column, and the layer 4 containing PbO is composed of PbO powder, PbO green compact, PbO sintered body, PbO
CaO-based oxide powder, PbCaO-based oxide compact, P
b C'a O-based oxide sintered body, PbBO-based oxide powder, PbBO-based oxide green compact, PbBO-based oxide sintered body,
PbSr.

系酸化物粉末、PbS ro系酸化物圧粉体、PbS 
rO系酸化物焼結体、PbB i O系酸化物=  7
 − 粉末、PbBiO系酸化物圧粉体、PbBiO系酸化物
焼結体、P b Cu’o系酸化物粉末、PbCuO系
酸化物圧粉体、PbCuO系酸化物焼結体などから構成
することができる。
oxide powder, PbS ro-based oxide compact, PbS
rO-based oxide sintered body, PbB i O-based oxide = 7
- It can be composed of powder, PbBiO-based oxide green compact, PbBiO-based oxide sintered body, PbCu'o-based oxide powder, PbCuO-based oxide green compact, PbCuO-based oxide sintered body, etc. can.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例 1 原料粉末として、いずれも平均粒径:10μsのBi 
 O粉末、S r COa粉末、Ca COa粉末およ
びCuO粉末を用意し、こ゛れら粉末をモル比で、 CuO−2: 2 : 2 : 3の割合になるように
配合し、混合したのち、直径: 2h+m、高さ:10
0關の寸法を有する円柱形状にプレス成形し、この成形
体を大気中、温度=800℃、10時間保持の条件で仮
焼し、円柱状多孔質仮焼体を作製した。
Example 1 As the raw material powder, Bi with an average particle size of 10 μs was used as the raw material powder.
Prepare O powder, S r COa powder, Ca COa powder, and CuO powder, and mix these powders in a molar ratio of CuO-2: 2: 2: 3. After mixing, : 2h+m, height: 10
The molded body was press-molded into a cylindrical shape having a dimension of 0.5 mm, and this molded body was calcined in the atmosphere at a temperature of 800° C. for 10 hours to produce a cylindrical porous calcined body.

一方、原料粉末として平均粒径:2t1mのPbO粉末
を用意し、上記PbO粉末をプレス成形して−9= =  8 − 直径: 20+nm、厚さ:lO+nmの寸法を有する
PbO圧粉体を作製した。
On the other hand, PbO powder with an average particle size of 2t1m was prepared as a raw material powder, and the PbO powder was press-molded to produce a PbO compact having dimensions of -9 = = 8 - diameter: 20+nm and thickness: lO+nm. .

上記円柱状多孔質仮焼体を立置し、さらに円柱状多孔質
仮焼体の上端面に上記PbO圧粉体を載置してその周囲
をヒーターにて温度:900℃に加熱し、上記PbO圧
粉体が溶融して円柱状多孔質仮焼体内部に浸透、したの
ち、上記ヒーターを円柱状多孔質仮焼体の長手方向下方
に速度:5mm/時でゆっくりと移動せしめ、Bi系超
伝導酸化物焼結体を作製した。
The above-mentioned cylindrical porous calcined body was placed upright, and the above-mentioned PbO compact was placed on the upper end surface of the cylindrical porous calcined body, and the surrounding area was heated to a temperature of 900°C with a heater, and the above-mentioned After the PbO green compact melts and penetrates into the inside of the cylindrical porous calcined body, the heater is slowly moved downward in the longitudinal direction of the cylindrical porous calcined body at a speed of 5 mm/hour. A superconducting oxide sintered body was fabricated.

このようにして得られたBi系超伝導酸化物焼結体のp
b含有量を測定するとともに、臨界温度TcおよびTe
値より15に低い温度での臨界電流密度Jcを測定して
、それらの結果を第1表に示した。
p of the Bi-based superconducting oxide sintered body thus obtained
While measuring the b content, the critical temperature Tc and Te
The critical current density Jc at a temperature 15 times lower than that value was measured and the results are shown in Table 1.

実施例 2 実施例1で作製した円柱状多孔質仮焼体の上端面に、P
bO粉末=87モル%およびCaO粉末:13モル%の
配合組成を有する混合粉末をプレス成形して得られた直
径: 20mm、厚さ:10mmの寸法を有するPbC
aO系酸化物圧粉体を載置し、実施例1と同様にヒータ
ーにより温度: 850 ’Cに加熱して上記PbCa
O系酸化物圧粉体を溶融せしめ、上記円柱状多孔質仮焼
体内部に浸透させたのち、上記ヒーターを速度:2mm
/時で下方に移動せしめ、Bi系超伝導酸化物焼結体を
作製し、そのpb含有量を測定するとともに、臨界温度
Tcおよび臨界電流密度Jcを測定して、それらの結果
を第1表に示した。
Example 2 P was applied to the upper end surface of the cylindrical porous calcined body produced in Example 1.
PbC having dimensions of diameter: 20 mm and thickness: 10 mm obtained by press-molding a mixed powder having a composition of bO powder = 87 mol% and CaO powder: 13 mol%
The aO-based oxide green compact was placed and heated to 850'C using a heater in the same manner as in Example 1, and the PbCa powder was heated to 850'C.
After melting the O-based oxide green compact and permeating it into the cylindrical porous calcined body, the heater was heated at a speed of 2 mm.
/ hour to produce a Bi-based superconducting oxide sintered body, its pb content was measured, and its critical temperature Tc and critical current density Jc were also measured, and the results are shown in Table 1. It was shown to.

実施例 3 Pb0・2 B 203粉末をプレス成形して得られた
直径:20+n+n、厚さ:10mmの寸法を有するP
bBO系酸化物圧粉体を、実施例1で作製した円柱状多
孔質仮焼体の上端面に載置し、実施例1と同様にヒータ
ーにより温度、800℃に加熱して上記PbBO系酸化
物圧粉体を溶融せしめ、円柱状多孔質仮焼体内部に浸透
させたのち、上記ヒーターを速度:5mm/時で下方に
移動せしめ、B1系超伝導酸化物焼結体を作製した。得
られたBj系超超伝導酸化物焼結含まれるpb含有足を
測定するとともに臨界温度Tcおよび臨界電流密度Jc
を測定し、それらの結果を第1表に示した。
Example 3 P having dimensions of diameter: 20+n+n and thickness: 10 mm obtained by press-molding Pb0.2B 203 powder
The bBO-based oxide green compact was placed on the upper end surface of the cylindrical porous calcined body produced in Example 1, and heated to 800°C with a heater in the same manner as in Example 1 to form the PbBO-based oxide powder. After the compacted powder was melted and permeated into the cylindrical porous calcined body, the heater was moved downward at a speed of 5 mm/hour to produce a B1 superconducting oxide sintered body. The resulting Bj-based superconducting oxide was sintered and the PB content was measured, as well as the critical temperature Tc and critical current density Jc.
were measured and the results are shown in Table 1.

実施例 4 PbO粉末:20モル%およびBi2O3粉末:80モ
ル%の配合組成を有する混合粉末を、プレス成形して圧
粉体とし、この圧粉体を温度二680℃で焼結して、直
径: 20mm、厚さ:10mmのPbBiO系酸化物
焼結体を作製し、このPbBiO系酸化物焼結体を実施
例]て作製した円柱状多孔質仮焼体の上端面に載置した
のちヒーターにより温度二800℃に加熱してPbBi
O系酸化物焼結体を溶融せしめ、この溶融体が上記円筒
状多孔質仮焼体内部に浸透してから上記ヒーターを速度
:2++++n/時で降下させ、Bi系超伝導酸化物焼
結体を作製した。上記Bi系超伝導酸化物焼結体に含ま
れるPbを測定するとともに、臨界温度Tcおよび臨界
電流密度Jcを測定し、それらの結果を第1表に示した
Example 4 A mixed powder having a composition of PbO powder: 20 mol% and Bi2O3 powder: 80 mol% was press-molded into a green compact, and this green compact was sintered at a temperature of 2,680°C to obtain a diameter : A PbBiO-based oxide sintered body having a thickness of 20 mm and a thickness of 10 mm was produced, and this PbBiO-based oxide sintered body was placed on the upper end surface of the cylindrical porous calcined body produced in Example], and then heated. PbBi was heated to a temperature of 2,800°C.
The O-based oxide sintered body is melted, and after this melt penetrates into the inside of the cylindrical porous calcined body, the heater is lowered at a rate of 2+++n/hour to form the Bi-based superconducting oxide sintered body. was created. The Pb contained in the Bi-based superconducting oxide sintered body was measured, as well as the critical temperature Tc and critical current density Jc, and the results are shown in Table 1.

実施例 5 PbO粉末:90モル%およびSrO粉末:10モー 
 11  = ル%の配合組成を有する混合粉末をプレス成形して圧粉
体とし、この圧粉体を温度ニア00℃で焼結して、直径
=20祁、厚さ+IO++++nのPbS’rO系酸化
物焼結体を作製し、このPb5r’O系酸化物焼結体を
実施例1で作製した円柱状多孔質仮焼体の上端面に載置
したのち、実施例4と全く同一条件でB1系超伝導酸化
物焼結体を作製し、上記Bi系超伝導酸化物焼結体に含
まれるP b M臨界温度Tcおよび臨界電流密度Je
を測定し、それらの結果を第1表に示した。
Example 5 PbO powder: 90 mol% and SrO powder: 10 mol%
11 = A mixed powder having a composition of 1% is press-molded to form a compact, and this compact is sintered at a temperature of near 00°C to form a PbS'rO-based oxidized powder having a diameter of 20mm and a thickness of +IO++++n. After preparing a sintered body and placing this Pb5r'O-based oxide sintered body on the upper end surface of the cylindrical porous calcined body prepared in Example 1, B1 was prepared under exactly the same conditions as in Example 4. The P b M critical temperature Tc and critical current density Je contained in the Bi-based superconducting oxide sintered body are prepared.
were measured and the results are shown in Table 1.

実施例 6 PbO粉末、66モル%およびCuO粉末:34モル%
の配合組成を有する混合粉末をプレス成形して圧粉体と
し、この圧粉体を温度=600℃で焼結して、直径: 
20mm5厚さ:10mmのPbCuO系酸化物焼結体
を作製した。得られたPbCuO系酸化物焼結体を上記
円柱状多孔質仮焼体の上端面に載置し、温度ニア50℃
で加熱溶融して上記円筒体多孔質仮焼体に浸透させたの
ち、」二記ヒーターを3+om/時の速度で降下させ、
Bi系超伝導酸化物焼粘体を作製した。得られたBi系
超伝導酸化物焼結体に含まれるPb量を測定し、さらに
臨界温度Tcおよび臨界電流密度Jcを測定してそれら
の結果を第1表に示した。
Example 6 PbO powder, 66 mol% and CuO powder: 34 mol%
A mixed powder having a blending composition of is press-molded to form a green compact, and this green compact is sintered at a temperature of 600°C to obtain a diameter of:
A PbCuO-based oxide sintered body of 20 mm and thickness: 10 mm was produced. The obtained PbCuO-based oxide sintered body was placed on the upper end surface of the cylindrical porous calcined body, and the temperature near 50°C.
After melting by heating and infiltrating the cylindrical porous calcined body, the heater is lowered at a speed of 3+ om/hour,
A Bi-based superconducting oxide sintered body was produced. The amount of Pb contained in the obtained Bi-based superconducting oxide sintered body was measured, and the critical temperature Tc and critical current density Jc were also measured, and the results are shown in Table 1.

従来例 Bi2O3粉末、PbO粉末、S r COa粉末、C
u0= L、S:0.4 : 2 : 2 + 3、の
割合になるように配合し、混合し、大気中、温度=87
0℃、3時間保持の条件で仮焼し、ついで、通常の条件
で焼結してBi系超伝導酸化物焼結体を作製した。この
ようにして得られたBi系超伝導酸化物焼結体のpb含
有量を測定するとともに臨界温度Tcおよび臨界電流密
度Jcを測定し、その結果を第1表に示した。
Conventional examples Bi2O3 powder, PbO powder, S r COa powder, C
u0 = L, S: Blend and mix in the ratio of 0.4: 2: 2 + 3, in the atmosphere, temperature = 87
It was calcined at 0° C. for 3 hours, and then sintered under normal conditions to produce a Bi-based superconducting oxide sintered body. The pb content of the Bi-based superconducting oxide sintered body thus obtained was measured, as well as the critical temperature Tc and critical current density Jc, and the results are shown in Table 1.

第1表の結果から、この発明の製造法で作製したBi系
超伝導酸化物焼結体は、従来例と比べて臨界温度Tcが
ほぼ同程度に高く、pb含有量は少なく、臨界電流密度
Jcは格段にすぐれていることがわかる。
From the results in Table 1, it can be seen that the Bi-based superconducting oxide sintered body produced by the production method of the present invention has a critical temperature Tc that is almost as high as that of the conventional example, a lower PB content, and a critical current density. It turns out that JC is much better.

なお、上記円柱状多孔質仮焼体の上端面に載置するPb
Oを含む層として実施例ではPbO圧粉体、PbCaO
系酸化物圧粉体、PbBO系酸化物圧粉体、PbBiO
系酸化物焼結体、PbS ro系酸化物焼結体およびP
bCuO系酸化物焼結体を用いたが、上記圧粉体および
焼結体に限定されることなく、PbOを含む混合粉末と
して円柱状多孔質仮焼体上端面に載置しても全く同じ効
果か得られることがわかった。
Note that the Pb placed on the upper end surface of the cylindrical porous calcined body
In the examples, the layer containing O is PbO compact, PbCaO
PbBO-based oxide compact, PbBO-based oxide compact, PbBiO
oxide sintered body, PbS ro-based oxide sintered body, and PbS ro-based oxide sintered body,
bCuO-based oxide sintered body was used, but it is not limited to the above-mentioned compacted powder and sintered body, and even if it is placed as a mixed powder containing PbO on the upper end surface of a cylindrical porous calcined body, the same result will be obtained. I found that it was effective.

〔発明の効果〕〔Effect of the invention〕

高臨界温度Tcを有し、さらに従来よりも優れた臨界電
流密度Jcを有するBi系超伝導酸化物焼結体を提供す
ることができ、高温超伝導技術の発展に大いに貢献しう
るちのである。
It is possible to provide a Bi-based superconducting oxide sintered body that has a high critical temperature Tc and a critical current density Jc superior to conventional ones, and will greatly contribute to the development of high-temperature superconducting technology. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多孔質仮焼体の上面に°PbOを含む層を載
置した状態を示す断面立面概略図、第2図は、帯域溶融
法によりPbOを含む層を溶融しながら下方に移動させ
つつある状態を示す断面立面概略図である。 1:多孔質仮焼体、 1’:Bi系超伝導酸化物焼結体、 =  15 − 2:台、         3:上端面、4 : Pb
Oを含む層、  4’ : p b o液相、5:ヒー
ター。 出願入量 三菱金属株式会社
Fig. 1 is a schematic cross-sectional elevational view showing a state in which a layer containing °PbO is placed on the upper surface of a porous calcined body, and Fig. 2 is a schematic cross-sectional elevation view showing a state in which a layer containing °PbO is placed on the upper surface of a porous calcined body. FIG. 2 is a schematic cross-sectional elevational view showing a state in which it is being moved; 1: porous calcined body, 1': Bi-based superconducting oxide sintered body, = 15-2: stand, 3: upper end surface, 4: Pb
layer containing O, 4': pbo liquid phase, 5: heater. Application intake Mitsubishi Metals Corporation

Claims (8)

【特許請求の範囲】[Claims] (1)Bi_2O_3粉末、SrCO_3粉末、CaC
O_3粉末およびCuO粉末をモル比で、 1/2Bi_2O_3:SrCO_3:CaCO_3:
CuO=2:2:2:3、 となるように配合し、混合し、プレス成形し、ついで通
常の条件で仮焼して得られた多孔質仮焼体の上端面に、
PbOを含む層を載置し、上記PbOを含む層を溶融さ
せながら上記多孔質仮焼体の上端から下端に向って上記
PbOを含む層の溶融域を移動させることを特徴とする
高臨界電流密度を有するBi系超伝導酸化物焼結体の製
造法。
(1) Bi_2O_3 powder, SrCO_3 powder, CaC
The molar ratio of O_3 powder and CuO powder is 1/2Bi_2O_3:SrCO_3:CaCO_3:
CuO=2:2:2:3, mixed, press-molded, and then calcined under normal conditions.
A high critical current characterized in that a layer containing PbO is placed, and the melting region of the layer containing PbO is moved from the upper end to the lower end of the porous calcined body while melting the layer containing PbO. A method for producing a Bi-based superconducting oxide sintered body having density.
(2)上記多孔質仮焼体の形状は、円柱または角柱であ
ることを特徴とする請求項1記載の高臨界電流密度を有
するBi系超伝導酸化物焼結体の製造法。
(2) The method for producing a Bi-based superconducting oxide sintered body having a high critical current density according to claim 1, wherein the shape of the porous calcined body is a cylinder or a prism.
(3)上記PbOを含む層は、PbO粉末、PbO圧粉
体またはPbO焼結体からなることを特徴とする請求項
1または2記載の高臨界電流密度を有するBi系超伝導
酸化物焼結体の製造法。
(3) The Bi-based superconducting oxide sintered material having a high critical current density according to claim 1 or 2, wherein the layer containing PbO is made of PbO powder, PbO green compact, or PbO sintered body. How the body is manufactured.
(4)上記PbOを含む層は、PbCaO系酸化物粉末
、PbCaO系酸化物圧粉体、またはPbCaO系酸化
物焼結体であることを特徴とする請求項1または2記載
の高臨界電流密度を有するBi系超伝導酸化物焼結体の
製造法。
(4) The high critical current density according to claim 1 or 2, wherein the layer containing PbO is a PbCaO-based oxide powder, a PbCaO-based oxide green compact, or a PbCaO-based oxide sintered body. A method for producing a Bi-based superconducting oxide sintered body having:
(5)上記PbOを含む層は、PbBO系酸化物粉末、
PbBO系酸化物圧粉体またはPbBO系酸化物焼結体
であることを特徴とする請求項1または2記載の高臨界
電流密度を有するBi系超伝導酸化物焼結体の製造法。
(5) The layer containing PbO includes PbBO-based oxide powder,
3. The method for producing a Bi-based superconducting oxide sintered body having a high critical current density according to claim 1 or 2, which is a PbBO-based oxide compact or a PbBO-based oxide sintered body.
(6)上記PbOを含む層は、PbBiO系酸化物粉末
、PbBiO系酸化物圧粉体、PbBiO系酸化物焼結
体であることを特徴とする請求項1または2記載の高臨
界電流密度を有するBi系超伝導酸化物焼結体の製造法
(6) The high critical current density according to claim 1 or 2, wherein the layer containing PbO is a PbBiO-based oxide powder, a PbBiO-based oxide green compact, or a PbBiO-based oxide sintered body. A method for producing a Bi-based superconducting oxide sintered body comprising:
(7)上記PbOを含む層は、PbSrO系酸化物粉末
、PbSrO系酸化物圧粉体、PbSrO系酸化物焼結
体であることを特徴とする請求項1または2記載の高臨
界電流密度を有するBi系超伝導酸化物焼結体の製造法
(7) The high critical current density according to claim 1 or 2, wherein the layer containing PbO is a PbSrO-based oxide powder, a PbSrO-based oxide green compact, or a PbSrO-based oxide sintered body. A method for producing a Bi-based superconducting oxide sintered body comprising:
(8)上記PbOを含む層は、PbCuO系酸化物粉末
、PbCuO系酸化物圧粉体、PbCuO系酸化物焼結
体であることを特徴とする請求項1または2記載の高臨
界電流密度を有するBi系超伝導酸化物焼結体の製造法
(8) The high critical current density according to claim 1 or 2, wherein the layer containing PbO is a PbCuO-based oxide powder, a PbCuO-based oxide green compact, or a PbCuO-based oxide sintered body. A method for producing a Bi-based superconducting oxide sintered body comprising:
JP1131784A 1989-05-25 1989-05-25 Method for producing sintered body of B ▲ i superconducting oxide with high critical current density Expired - Lifetime JP2817199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131784A JP2817199B2 (en) 1989-05-25 1989-05-25 Method for producing sintered body of B ▲ i superconducting oxide with high critical current density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131784A JP2817199B2 (en) 1989-05-25 1989-05-25 Method for producing sintered body of B ▲ i superconducting oxide with high critical current density

Publications (2)

Publication Number Publication Date
JPH02311354A true JPH02311354A (en) 1990-12-26
JP2817199B2 JP2817199B2 (en) 1998-10-27

Family

ID=15066067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131784A Expired - Lifetime JP2817199B2 (en) 1989-05-25 1989-05-25 Method for producing sintered body of B ▲ i superconducting oxide with high critical current density

Country Status (1)

Country Link
JP (1) JP2817199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750769B (en) * 2019-09-03 2021-12-21 大陸商廣州力及熱管理科技有限公司 A chain-like copper metal wick structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750769B (en) * 2019-09-03 2021-12-21 大陸商廣州力及熱管理科技有限公司 A chain-like copper metal wick structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2817199B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US4502983A (en) Composite silicon carbide sintered shapes and its manufacture
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JPH02311354A (en) Production of bi-based superconducting oxide calcined compact having high critical current density
RU93028886A (en) METHOD FOR PRODUCING A HIGH-TEMPERATURE SUPERCONDUCTOR AND FORMED BODIES FORMED FROM IT
KR880011829A (en) Manufacturing method of superconducting ceramics
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JP3157183B2 (en) Manufacturing method of oxide superconductor
KR940007596B1 (en) Manufacturing method of superconducting ceramic
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH02133365A (en) Production of bi-based oxide superconductor
JPH02145470A (en) Production of tlbacacuo superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP2621344B2 (en) Superconductor manufacturing method
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JPH04164859A (en) Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material
JPH02124715A (en) Production of thallium base oxide superconductor
JPS63277575A (en) Production of formed article of oxide superconductor
JPH013010A (en) superconducting material
JPH03115159A (en) Production of bi-based superconductor
JPH02221149A (en) Production of oxide superconductor
JPH0345514A (en) Bi-based superconducting oxide powder and production of sintered compact using the same powder
JPS63303851A (en) Sintered body of superconducting ceramic
JPS643054A (en) Production of superconducting material