JPH02195317A - Objective lens for optical disk - Google Patents

Objective lens for optical disk

Info

Publication number
JPH02195317A
JPH02195317A JP1452789A JP1452789A JPH02195317A JP H02195317 A JPH02195317 A JP H02195317A JP 1452789 A JP1452789 A JP 1452789A JP 1452789 A JP1452789 A JP 1452789A JP H02195317 A JPH02195317 A JP H02195317A
Authority
JP
Japan
Prior art keywords
single lens
aspherical surface
lens
condition
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1452789A
Other languages
Japanese (ja)
Inventor
Sachiko Takamura
高村 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1452789A priority Critical patent/JPH02195317A/en
Publication of JPH02195317A publication Critical patent/JPH02195317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the objective lens lightweight and to reduce error sensitivity to the axis shift of a single lens by composing the objective lens of the single lens which has aspherical surfaces and positive refracting power on the light- source side and optical-disk side, and satisfying specific conditions. CONSTITUTION:The objective lens consists of the single lens which has the positive refracting power and the aspherical surfaces on the light-source side and optical-disk side and satisfies the specific conditions. Namely, 1.5<n<1.52 as a condition I, 0<A21f<1.15 as a 2nd condition II, and 0.8<d/f<0.85 as a condition 3 hold, where (f) is the focal length, (d) the core thickness, (n) the refractive index, and A21 the aspherical surface coefficient of the light-source side aspherical surface when the aspherical surface is expressed by the equation I. The condition I is for the weight reduction of the single lens, and even if an over spherical aberration which exceeds the lower limit of the condition II is generated and the upper limit is exceeded, an under spherical aberration is generated. When the condition III is satisfied, a single lens which has small parallel deviation error sensitivity is obtained. Consequently, the lightweight objective lens which has small error sensitivity to the axis shift of the single lens is formed.

Description

【発明の詳細な説明】 崖1」ぼりU11野 本発明は、光ディスク用対物レンズに関するものであり
、特にコンピューターの文書ファイル用光ディスクのコ
ード情報やイメージ情報の記録。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens for optical discs, and particularly for recording code information and image information on optical discs for computer document files.

消去、再生等をレーザービームを集光させて行う光ディ
スク用対物レンズに関する。
This invention relates to an objective lens for optical discs that performs erasing, reproducing, etc. by focusing a laser beam.

従来q且亜 光ディスクには、CD(コンパクトディスク)用光ディ
スクのように情報が数μm程度の穴で記録されていて再
生のみに使用されるものや光磁気記録方式のように記録
と再生の双方を行うことのできるもの等がある。後者の
光磁気記録方式と呼ばれる方式では、光ディスクにアモ
ルファス合金を用い、光をあてると温度の上昇と外部磁
界の作用とでアモルファス合金が垂直磁化され情報が記
録される。そして記録時のレーザー光よりも少しスポッ
ト径の大きい弱い光を記録部にあてると、偏光面がわず
かに回転する。この現象を用いて再生が行なわれる。こ
の方式においても再生のみの光ディスク装置の再生時と
同様に、半導体レーザーから出射されたビームは光ディ
スクに対物レンズによってほぼ回折限界程度のスポット
径に絞り込まれなければならない、また、光ディスクに
情報を記録する場合には、再生する場合よりもスポット
径を小さくする必要がある。スポット径の大きさは、開
口数をNA、波長をλとすると0.8×λ/NAで表わ
される。従って、再生のみの光ディスクについてNAが
0.45〜0.47必要とされるのに対して、記録・再
生両用の光磁気記録方式ではNAが0.53〜0.55
程度必要とされる。しかしNAを大きくするためには、
対物レンズを大口径にするか又は対物レンズの短焦点化
を図らなければならない、このようなNAの大きい対物
レンズを単レンズで実現するためには製造面において厳
しい制約を受けることになる。なぜならば、設計値に沿
った非球面の有効面積が広がるか、又は少くとも単レン
ズの片側面の屈折力が増加して、面の誤差感度が大きく
なるからである。従って、できるだけつくりやすい単レ
ンズを設計することが重要であり、単レンズの軸ずれ、
言い換えれば単レンズの両側面の相対的な平行偏心に対
して、誤差感度が小さくなるような構成も考慮する必要
がある。
Conventional q and sub-optical discs include optical discs for CDs (compact discs) in which information is recorded with holes of several micrometers and used only for reproduction, and discs for both recording and reproduction, such as magneto-optical recording systems. There are some things that can do this. In the latter method, called the magneto-optical recording method, an amorphous alloy is used for the optical disk, and when light is irradiated, the amorphous alloy is perpendicularly magnetized by a rise in temperature and the action of an external magnetic field, and information is recorded. When weak light with a slightly larger spot diameter than the recording laser beam is applied to the recording section, the plane of polarization rotates slightly. Reproduction is performed using this phenomenon. In this method, the beam emitted from the semiconductor laser must be narrowed down to a spot diameter approximately at the diffraction limit by an objective lens on the optical disk, as in the case of playback with a playback-only optical disk device.In addition, information must be recorded on the optical disk. In this case, it is necessary to make the spot diameter smaller than in the case of reproduction. The size of the spot diameter is expressed as 0.8×λ/NA, where NA is the numerical aperture and λ is the wavelength. Therefore, while an optical disk for playback only requires an NA of 0.45 to 0.47, a magneto-optical recording system for both recording and playback requires a NA of 0.53 to 0.55.
degree required. However, in order to increase NA,
In order to realize such an objective lens with a large NA with a single lens, the objective lens must have a large aperture or a short focal length, which is subject to severe manufacturing constraints. This is because the effective area of the aspheric surface in accordance with the design value increases, or at least the refractive power of one side of the single lens increases, and the error sensitivity of the surface increases. Therefore, it is important to design a single lens that is as easy to manufacture as possible.
In other words, it is necessary to consider a configuration in which the error sensitivity is reduced with respect to the relative parallel eccentricity of both side surfaces of the single lens.

一方、光ディスク装置における高速アクセスを考慮する
場合、対物レンズの軽量化も望まれる。
On the other hand, when considering high-speed access in optical disk devices, it is also desirable to reduce the weight of the objective lens.

o<  ゛ し −=   る晋 そこで本発明は、上記の問題点を克服するために、従来
の単レンズに比べて軽く、かつ単レンズの軸ずれに対し
て誤差感度の小さい光ディスク用対物レンズを提供する
ことを目的とする。
o < ゛ し -= Therefore, in order to overcome the above problems, the present invention provides an objective lens for optical discs that is lighter than conventional single lenses and has less error sensitivity to axis deviation of the single lens. The purpose is to provide.

を °するための 上記目的を達成するために、本発明に係る第1の光ディ
スク用対物レンズは、光源側及び光ディスク側が正の屈
折力を有する単レンズであり、しかもその光源側と光デ
ィスク側が共に非球面を有し、以下の条件を満足する構
成となっている。
In order to achieve the above object, the first objective lens for an optical disc according to the present invention is a single lens having positive refractive power on the light source side and the optical disc side, and furthermore, the light source side and the optical disc side both have positive refractive power. It has an aspherical surface and is configured to satisfy the following conditions.

1.5 < n <1.52           ・
・・・・・■0 <Al f <0.15      
     ・・・・・・■0.8 < d / f <
0.85       ・・・・・・■但し、f:単レ
ンズの焦点距離 d:単レンズの芯厚 n:単レンズの屈折率 A2:非球面を下記の弐で表わすと き、光源側非球面の2次の非 非球面係数 である。
1.5 < n < 1.52 ・
...■0 <Al f <0.15
・・・・・・■0.8 < d / f <
0.85 ・・・・・・■ However, f: Focal length of a single lens d: Core thickness of a single lens n: Refractive index of a single lens A2: When an aspherical surface is represented by 2 below, the aspherical surface on the light source side This is a second-order aspheric coefficient.

ここで、X:非球面の光軸における接平面から非球面ま
での距離 y:光軸からの高さ C:非球面の近軸曲率半径(ro)の 逆数(=1/r”) K:光源側非球面の円錐定数 である。
Here, X: Distance from the tangential plane on the optical axis of the aspherical surface to the aspherical surface y: Height from the optical axis C: Reciprocal of the paraxial radius of curvature (ro) of the aspherical surface (=1/r'') K: This is the conic constant of the aspheric surface on the light source side.

光ディスク用対物レンズに用いられる単レンズにおいて
、軸外±1°程度の画角まで良好な性能を得るのに必要
とされる収差は球面収差と正弦条件である。また製造段
階における単レンズの軸ずれを考慮するとできるだけ両
側面の相対的な平行偏心による波面収差の劣化が小さい
単玉形状が望ましい、一方、高速アクセスを可能にする
には、前述の如く単レンズの軽量化を図ることが重要で
ある。単レンズの軽量化の1つの方法として単レンズに
比重の小さいガラス材料を用いることが考えられる。
In a single lens used as an objective lens for an optical disk, the aberrations required to obtain good performance up to an angle of view of about ±1° off-axis are spherical aberration and a sine condition. In addition, considering the axis misalignment of a single lens during the manufacturing stage, it is desirable to have a single lens shape that minimizes the deterioration of wavefront aberration due to the relative parallel eccentricity of both sides. It is important to reduce the weight of the One possible method for reducing the weight of a single lens is to use a glass material with low specific gravity for the single lens.

条件■の範囲の屈折率を有するガラスは、特に比重の小
さいものが多いので単レンズの軽量化を図るのに有効で
ある。従って、条件■の範囲を外れると単レンズの軽量
化を図るのが困難となる。
Glasses having a refractive index within the range of condition (2) often have particularly low specific gravity, and are therefore effective in reducing the weight of a single lens. Therefore, outside the range of condition (2), it becomes difficult to reduce the weight of a single lens.

条件■は光源側非球面の2次の非球面係数と焦点距離と
の関係を示しており、条件■の範囲の屈折率を有する単
レンズが条件■の範囲を満足する光源側非球面の2次の
非球面係数値を存するものであれば、NAが大きいにも
かかわらず、高次の球面収差を良好に補正することがで
きる0条件■の下限を超えるとオーバーな球面収差が発
生し、他、の非球面係数を用いて補正しても非球面の影
響による球面収差のうねりが許容できない程、残ってし
まう、逆に上限を超えてもアンダーな球面収差が発生し
、やはり、球面収差のうねりが許容できない程残存する
Condition ■ indicates the relationship between the second-order aspheric coefficient of the light source side aspheric surface and the focal length, and a single lens having a refractive index within the range of condition ■ satisfies the range of condition ■. If the following aspherical coefficient values exist, high-order spherical aberrations can be well corrected despite the large NA.If the lower limit of the 0 condition (2) is exceeded, excessive spherical aberration will occur. Even if correction is made using the aspherical coefficients of Unacceptable waviness remains.

また条件■はレンズの焦点距離に対するレンズの芯厚の
関係を示しており、この条件を満足させると平行偏心誤
差感度の小さい単レンズにすることができる1条件■の
下限を超えると、微少の軸ずれに対しても軸上コマが著
しく発生し、波面収差が崩れる。また上限を超えると単
レンズの芯厚が大きくなってレンズの軽量化を図るのが
困難となる。
Furthermore, condition (■) indicates the relationship between the lens core thickness and the focal length of the lens. If this condition is satisfied, a single lens with low parallel decentration error sensitivity can be obtained.If the lower limit of condition (1) is exceeded, minute Even when the axis is misaligned, on-axis coma occurs significantly, and the wavefront aberration collapses. Moreover, if the upper limit is exceeded, the core thickness of the single lens becomes large, making it difficult to reduce the weight of the lens.

また、本発明に係る第2の光ディスク用対物レンズは、
光源側及び光ディスク側が正の屈折率を有する単レンズ
であり、しかもその光源側と光ディスク側が共に非球面
を有し、以下の条件を満足する構成となっている。
Moreover, the second objective lens for optical disc according to the present invention is
The lens is a single lens having a positive refractive index on the light source side and the optical disk side, and has an aspherical surface on both the light source side and the optical disk side, and is configured to satisfy the following conditions.

1.6 < n <1.69           ・
・・・・・■rt 但し、f:単レンズの焦点距離 d:単レンズの芯厚 n:単レンズの屈折率 r、:単レンズの光源側の近軸曲率 半径 rz=単レンズの光ディスク側の近 軸曲率半径 に、;非球面を下記の式で表わすと き光源側非球面の円錐定数 ここで、X:非球面の光軸における接平面から非球面ま
での距離 y:光軸からの高さ C:非球面の近軸曲率半径(r“)の 逆数(=1/r”) ^、:非球面係数 である。
1.6 < n < 1.69 ・
...■rt However, f: focal length of a single lens d: core thickness of a single lens n: refractive index of a single lens r,: paraxial radius of curvature on the light source side of a single lens rz = optical disk side of a single lens When the aspherical surface is expressed by the following formula, the conic constant of the aspherical surface on the light source side is where: C: Reciprocal of the paraxial radius of curvature (r") of the aspherical surface (=1/r") ^,: Aspherical coefficient.

条件■は本発明の第2の光ディスク用対物レンズの屈折
率の適正な範囲を示しており、条件■の範囲の屈折率を
もつガラスで単レンズを構成することにより屈折率が1
.7〜1.8の単レンズに比べて比重の小さいガラス材
料を用いることができ、レンズの軽量化を図ることがで
きる。また本発明による単レンズはNAが0.55程度
と大きいので、条件■の下限を超えると球面収差の補正
を良好に行うことが難しくなる。また条件■は単レンズ
の芯厚、焦点距離及び屈折率の関係を示しており、条件
■の上限を超えると芯厚が厚くなりすぎ、軽量化に反し
、下限を超えると軸外でフレアーが発生して正弦条件が
崩れる0条件■と条件■とを満足する芯厚と屈折率のも
とて単レンズの軸ずれによる性能劣化を小さくするため
の形状を表わしたのが、条件■である0条件■は単レン
ズの屈折力に対するディスク側面の屈折力の比を示して
おり上限を超えると軸ずれが生じた際、アンダーな軸上
コマ収差が発生し、軸上波面収差が論、激に劣化する。
Condition (2) indicates the appropriate range of the refractive index of the second objective lens for optical disks of the present invention, and by constructing a single lens with glass having a refractive index within the range of condition (2), the refractive index can be reduced to 1.
.. A glass material having a smaller specific gravity than that of a single lens having a diameter of 7 to 1.8 can be used, and the weight of the lens can be reduced. Further, since the single lens according to the present invention has a large NA of about 0.55, if the lower limit of condition (2) is exceeded, it becomes difficult to correct spherical aberration well. Condition (■) shows the relationship between the core thickness, focal length, and refractive index of a single lens; if the upper limit of condition (■) is exceeded, the core thickness becomes too thick, which goes against weight reduction, and if the lower limit is exceeded, off-axis flare occurs. Condition (2) represents a shape that minimizes performance deterioration due to axis misalignment of a single lens, based on the core thickness and refractive index that satisfy the zero condition (2) and condition (2) in which the sine condition is broken. The 0 condition ■ indicates the ratio of the refractive power of the side surface of the disk to the refractive power of a single lens, and if the upper limit is exceeded, when axial misalignment occurs, under-axial coma aberration will occur, and the axial wavefront aberration will become severe. deteriorates to.

また、下限を超えると軸ずれによるオーバーな軸上コマ
収差が発生して波面収差の劣化を招く、ここで前記条件
■■■によって基礎づけられた単レンズの両側非球面が
球面収差と正弦条件の補正を担っている。
In addition, if the lower limit is exceeded, excessive axial comatic aberration occurs due to axial misalignment, leading to deterioration of wavefront aberration. is responsible for the correction of

更に、条件■で示すように光源側の非球面の円錐定数と
単レンズの両側面の曲率半径比を保つことにより、軸ず
れによる軸上コマの著しい発生を少くすることが可能で
ある。
Furthermore, by maintaining the conic constant of the aspherical surface on the light source side and the curvature radius ratio of both side surfaces of the single lens as shown in condition (2), it is possible to reduce the occurrence of significant on-axis coma due to axis misalignment.

■〜■の条件で与えられる単玉形状において、更に正弦
条件を良好に補正するには、次の条件■を満足すること
が望ましい。
In order to further correct the sine condition in a single ball shape given by the conditions (1) to (2), it is desirable to satisfy the following condition (2).

0<A、f雪<0.13           ・・・
・・・■上式は、光ディスク側の3次の非球面係数の範
囲を規定したもので上限を超えると、正弦条件がオーバ
ー側に倒れ、軸外でコマ収差が発生して軸外の波面収差
が劣化する。また軸ずれによる軸上コマ収差も増加して
誤差感度が非常にきつくなる。
0<A, f snow<0.13...
...■ The above equation defines the range of the third-order aspherical coefficient on the optical disk side. When the upper limit is exceeded, the sine condition falls to the over side, coma aberration occurs off-axis, and the off-axis wavefront Aberrations deteriorate. Furthermore, axial coma aberration due to axial misalignment also increases, making error sensitivity extremely severe.

下限を超えると正弦条件がアンダー側に倒れて軸外で上
述のコマ収差と逆方向のコマ収差が発生し、軸外の波面
収差が劣化する。
When the lower limit is exceeded, the sine condition falls to the under side, and coma aberration in the opposite direction to the above-mentioned coma aberration occurs off-axis, and off-axis wavefront aberration deteriorates.

IL員 以下、本発明の実施例を示す、ここで第1の光ディスク
用対物レンズは実施例1に、第2の光ディスク用対物レ
ンズは実施例2〜7に対応する。
IL members Below, examples of the present invention will be shown. Here, the first objective lens for optical disc corresponds to Example 1, and the second objective lens for optical disc corresponds to Examples 2 to 7.

また、実施例の単レンズが軸ずれを起した場合の性能を
、軸ずれの大きさを変えてS、1.値及び波面収差のR
,M、S、値を測定することによって調べた。その結果
を第1表に示す、ここで、S。
In addition, the performance when the single lens of the example has an axis misalignment is evaluated by changing the magnitude of the axis misalignment, S, 1. R value and wavefront aberration
, M, and S, were investigated by measuring the values. The results are shown in Table 1, where S.

!、値は光ディスク上のスポットの中心強度の劣化具合
を表わし回折限界状態の値を100%としている。
! , the value represents the degree of deterioration of the center intensity of the spot on the optical disk, and the value in the diffraction limit state is taken as 100%.

またR、M、S、波面とは波面収差の最小2乗平均値で
ある。
Further, R, M, S, and wavefront are the least root mean square values of wavefront aberration.

尚、実施例中の屈折率は波長(λ)825nmに対する
値であり、倍率は0である。
Note that the refractive index in the examples is a value for a wavelength (λ) of 825 nm, and the magnification is 0.

〈実施例1〉 NA−0,55f嵩3.6 all−0,0 麗諺−−8,0264956 n −1,51029 Ad■0.06363 d/f廊0.822 〈実施例2〉 N A −0,55f −3,6 非球面係数 r、*  L−0,0 非球面係数 にg=−8,0132863 にz−7,9890113 rz rl =1.60901 子1.60901 〈実施例3〉 〈実施例4〉 NA−0,55 f =3.6 NA−0,55 f=3.6 非球面係数 非球面係数 Kl=0.0 に、=0.0 A3−0.119880X10−” As−0,139523X10−3 八4−−0.437176X10−” A、=−0,424272X10−’ A3−0.908213X10−’ A%−−0,137818X10−’ A、=−0.385785xlO−” A、=−0,469302X10−3 x、−−7,9872831 Kg−7,9896146 −r! −r冨 =1.643 −1.660 〈実施例5〉 〈実施例6〉 NA=0.55 f =3.6 NA=0.55 f =3.6 非球面係数 非球面係数 に、=0.0 L=0.0 A、=0.591386X10弓 As=−0,836470x10 八、=−0,379934X10−” 八、=−0,439613X10−’ に*=  6.9999685 (1−n)f 1重 =0.079 f了工函=0.0 −rχ r*”   K!−2,0 ^z=0.185180X10−” −「冨 =1.68694 (!) ^sf”  =0.01996 〈実施例7〉 N A =0.55  f =3.6 −1.68694 (諺) ^sf”  =0.02398 非球面係数 r、*  L=0.0 第1表に示す結果から20μm程度の軸ずれが生じても
S、  I、値が80%以上で且ッR,M、S。
<Example 1> NA-0,55f bulk 3.6 all-0,0 Rei proverb--8,0264956 n -1,51029 Ad 0.06363 d/f corridor 0.822 <Example 2> NA -0,55f -3,6 Aspherical coefficient r, *L-0,0 Aspherical coefficient g=-8,0132863 Z-7,9890113 rz rl =1.60901 Child 1.60901 <Example 3><Example4> NA-0,55 f = 3.6 NA-0,55 f = 3.6 Aspherical coefficient Aspherical coefficient Kl = 0.0, = 0.0 A3-0.119880X10-” As -0.139523 ,=-0,469302X10-3 x,--7,9872831 Kg-7,9896146 -r! -r value=1.643 -1.660 <Example 5><Example6> NA=0.55 f =3.6 NA=0.55 f =3.6 Aspherical coefficient Aspherical coefficient, =0.0 L=0.0 A, =0.591386X10 bow As=-0,836470x10 8, =-0, 379934X10-" 8, = -0, 439613X10-' *= 6.9999685 (1-n) f 1 layer = 0.079 f completed box = 0.0 -rχ r*" K!-2,0 ^ z=0.185180X10-" - "Tenth=1.68694 (!) ^sf" =0.01996 <Example 7> N A = 0.55 f = 3.6 -1.68694 (proverb) ^sf" =0.02398 Aspheric coefficient r, *L=0.0 From the results shown in Table 1, even if an axis deviation of about 20 μm occurs, S, I, and R, M, and S values are 80% or more.

波面値がλ/14以下であり、波面収差がマーシャルの
基準を満していることがわかる。
It can be seen that the wavefront value is λ/14 or less, and the wavefront aberration satisfies Marshall's standard.

次に、第1図は実施例1.第2図は実施例2及び3.第
3図は実施例4及び5.第4図は実施例6及び7にそれ
ぞれ対応する゛概略構成並びに対物レンズ(L)に入射
する光線の光路を表わしている。
Next, FIG. 1 shows Example 1. FIG. 2 shows examples 2 and 3. FIG. 3 shows examples 4 and 5. FIG. 4 shows the schematic structure and the optical path of the light beam incident on the objective lens (L) corresponding to Examples 6 and 7, respectively.

また(P)は光ディスクを示す平板である。Further, (P) is a flat plate representing an optical disc.

第5〜第11図は、実施例1〜7にそれぞれ対応する収
差図を表わしている。
5 to 11 represent aberration diagrams corresponding to Examples 1 to 7, respectively.

又皿東塾果 本発明によれば、従来の単レンズに比べて軽く、かつ単
レンズの軸ずれに対して誤差感度の小さい光ディスク用
対物レンズを実現することができる。
Further, according to the present invention, it is possible to realize an objective lens for an optical disc that is lighter than a conventional single lens and has less error sensitivity to axis deviation of the single lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、及び第4図は、それぞれ本発
明の実施例1.実施例2と3.実施例4と5.及び実施
例6と7に対応する構成及び対物レンズに入射する光線
の光路を示す模式図であり、第5図、第6図、第7図、
第8図、第9図、第1θ図及び第11図はそれぞれ実施
例1〜7に対応する収差図である。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 each illustrate Example 1 of the present invention. Examples 2 and 3. Examples 4 and 5. FIG. 5, FIG. 6, FIG. 7, and FIG.
FIG. 8, FIG. 9, FIG. 1θ, and FIG. 11 are aberration diagrams corresponding to Examples 1 to 7, respectively.

Claims (1)

【特許請求の範囲】 (1)光源側及び光ディスク側が共に非球面で正の屈折
力を有する単レンズから成り、以下の条件を満足するこ
とを特徴とする光ディスク用対物レンズ; 1.5<n<1.52 0<▲数式、化学式、表等があります▼<0.15 0.8<d/f<0.85 但し、f:単レンズの焦点距離 d:単レンズの芯厚 n:単レンズの屈折率 ▲数式、化学式、表等があります▼:非球面を下記の式
で表わすと き、光源側非球面の2次の非 球面係数 ▲数式、化学式、表等があります▼ ここで、X:非球面の光軸における接平面 から非球面までの距離 y:光軸からの高さ C:非球面の近軸曲率半径の逆数 K:光源側非球面の円錐定数 である。 (2)光源側及び光ディスク側が共に非球面で正の屈折
力を有する単レンズから成り、以下の条件を満足するこ
とを特徴とする光ディスク用対物レンズ; 1.6<n<1.69 0.07<[(1−n)f]/r_2<0.290.0
≦r_1/−r_2・√(|K_1|)<0.020.
7<d/[f(n−1)]<1.35 但し、f:単レンズの焦点距離 d:単レンズの芯厚 n:単レンズの屈折率 r_1:単レンズの光源側の近軸曲率 半径 r_2:単レンズの光ディスク側の近 軸曲率半径 K_1:非球面を下記の式で表わすと き光源側非球面の円錐定数 ▲数式、化学式、表等があります▼ ここで、X:非球面の光軸における接平面 から非球面までの距離 y:光軸からの高さ C:非球面の近軸曲率半径の逆数 A_i:非球面係数 である。 (3)前記非球面を表わす式において 0<▲数式、化学式、表等があります▼<0.13 で示される条件を満たす第2請求項に記載の光ディスク
用対物レンズ; 但し、▲数式、化学式、表等があります▼:光ディスク
側非球面の3次の非球面係数 である。
[Scope of Claims] (1) An objective lens for an optical disc, characterized in that both the light source side and the optical disc side are composed of a single lens having an aspherical surface and positive refractive power, and the objective lens satisfies the following conditions: 1.5<n <1.52 0<▲There are mathematical formulas, chemical formulas, tables, etc.▼<0.15 0.8<d/f<0.85 However, f: Focal length of a single lens d: Core thickness of a single lens n: Single lens Refractive index of the lens ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼: When the aspherical surface is expressed by the following formula, the second-order aspherical coefficient of the aspherical surface on the light source side ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Here, : Distance y from the tangential plane on the optical axis of the aspherical surface to the aspherical surface: Height from the optical axis C: Reciprocal of the paraxial radius of curvature of the aspherical surface K: Conic constant of the aspherical surface on the light source side. (2) An objective lens for an optical disc, characterized in that both the light source side and the optical disc side are composed of a single lens having an aspherical surface and a positive refractive power, and the objective lens satisfies the following conditions: 1.6<n<1.69 0. 07<[(1-n)f]/r_2<0.290.0
≦r_1/-r_2・√(|K_1|)<0.020.
7<d/[f(n-1)]<1.35, where f: focal length of a single lens d: core thickness of a single lens n: refractive index of a single lens r_1: paraxial curvature on the light source side of a single lens Radius r_2: Paraxial radius of curvature on the optical disk side of a single lens K_1: When an aspheric surface is expressed by the following formula, the conic constant of the aspheric surface on the light source side ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Where, X: Light of the aspheric surface Distance y from the tangential plane on the axis to the aspherical surface: Height from the optical axis C: Reciprocal of the paraxial radius of curvature of the aspherical surface A_i: Aspherical coefficient. (3) The objective lens for an optical disc according to claim 2, which satisfies the condition represented by 0<▲ mathematical formula, chemical formula, table, etc. in the formula representing the aspherical surface ▼<0.13; however, ▲ mathematical formula, chemical formula, etc. , tables, etc. ▼: This is the third-order aspherical coefficient of the aspherical surface on the optical disc side.
JP1452789A 1989-01-23 1989-01-23 Objective lens for optical disk Pending JPH02195317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1452789A JPH02195317A (en) 1989-01-23 1989-01-23 Objective lens for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1452789A JPH02195317A (en) 1989-01-23 1989-01-23 Objective lens for optical disk

Publications (1)

Publication Number Publication Date
JPH02195317A true JPH02195317A (en) 1990-08-01

Family

ID=11863604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1452789A Pending JPH02195317A (en) 1989-01-23 1989-01-23 Objective lens for optical disk

Country Status (1)

Country Link
JP (1) JPH02195317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271311A (en) * 1989-04-12 1990-11-06 Canon Inc Both-sided aspherical single lens for optical information recording and reproducing device
US5796520A (en) * 1992-07-16 1998-08-18 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
JP2001249272A (en) * 2000-03-03 2001-09-14 Konica Corp Objective lens, optical pickup device, and adjusting method for optical pickup device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271311A (en) * 1989-04-12 1990-11-06 Canon Inc Both-sided aspherical single lens for optical information recording and reproducing device
US5796520A (en) * 1992-07-16 1998-08-18 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
US5838497A (en) * 1992-07-16 1998-11-17 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correction element and its application
US5883744A (en) * 1992-07-16 1999-03-16 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
US5914822A (en) * 1992-07-16 1999-06-22 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
US5969862A (en) * 1992-07-16 1999-10-19 Asahi Kogaku Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
US6118597A (en) * 1992-07-16 2000-09-12 Asahi Kogak Kogyo Kabushiki Kaisha Chromatic aberration correcting element and its application
JP2001249272A (en) * 2000-03-03 2001-09-14 Konica Corp Objective lens, optical pickup device, and adjusting method for optical pickup device

Similar Documents

Publication Publication Date Title
JP4610118B2 (en) Objective lens for optical head
US6865025B2 (en) Aberration compensating optical element, optical system, optical pickup device, recorder and reproducer
JPS5926714A (en) Lens for optical disc
JPS62269922A (en) Optical system for recording and reproducing optical information medium
US7167317B2 (en) Objective optical system employing grin lens
JP2003337281A (en) Objective lens for optical pickup
JP5300308B2 (en) Objective lens for optical pickup
US6937396B2 (en) Hybrid lens with high numerical aperture
JPS61215512A (en) Objective for optical information reader
KR100506565B1 (en) Objective lens for an optical disk
JPS61163308A (en) Refractive index distributed single lens
JPH02195317A (en) Objective lens for optical disk
JP2003006908A (en) Recording/reproducing optical system, objective lens and optical head device
US8345356B2 (en) Objective lens, optical pickup device, and optical recording/reproducing apparatus
JPH0823626B2 (en) Objective lens for optical disc
JPH04163510A (en) Object lens for optical disk
JPS61179409A (en) Objective of optical information reader
JPS5962815A (en) Distributed refractive index lens
JPS61109011A (en) Condenser lens
JPS61163311A (en) Refractive index distributed single lens
JPH02106709A (en) Aspherical objective lens
JPH02195316A (en) Objective lens for optical disk
JPS6254212A (en) Aspheric surface single lens
JP4240769B2 (en) Optical pickup lens
JPS638701A (en) Lens for optical disk