JPH02271311A - Both-sided aspherical single lens for optical information recording and reproducing device - Google Patents

Both-sided aspherical single lens for optical information recording and reproducing device

Info

Publication number
JPH02271311A
JPH02271311A JP9403889A JP9403889A JPH02271311A JP H02271311 A JPH02271311 A JP H02271311A JP 9403889 A JP9403889 A JP 9403889A JP 9403889 A JP9403889 A JP 9403889A JP H02271311 A JPH02271311 A JP H02271311A
Authority
JP
Japan
Prior art keywords
aspherical
single lens
lens
thickness
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9403889A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9403889A priority Critical patent/JPH02271311A/en
Priority to US07/507,580 priority patent/US4979807A/en
Publication of JPH02271311A publication Critical patent/JPH02271311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the both-sided aspherical single lens which has about 0.53 NA and has excellent image formation performance on and off the axis by employing aspherical surface constitution which satisfies a specific equation among the focal length, thickness on the optical axis, refractive index, etc., of the both-sided aspherical single lens for forming an image through a substrate with thickness (t). CONSTITUTION:The aspherical surfaces of the single lens 1 whose 1st and 2nd surfaces are aspherical are constituted satisfying the equation I, where X is the distance from an optional point on an aspherical surface to the tangential plane at the vertex of the aspherical surface, H the distance from the optional point to the optical axis, Rnu the conic constant of a nuth surface, and Anui the aspherical coefficient of the nuth surface (i=3, 4...). Further, conditional inequalities II - V hold, where F is the focal length of the aspherical single lens 1, D the thickness on optical axis, N the refractive index to in-use wavelength, (t) the thickness of a recording carrier substrate 2. Conse quently, the both-sided aspherical single lens for the optical recording and reproducing device which has the excellent image formation performance both on and off the optical axis can be offered although the lens has brightness of about 0.53 NA.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、光情報記録再生装置中の光ヘッドに用いられ
る両非球面単レンズに関し、とりわけNAが0.53程
度の極めて明るい両面非球面単レンズに関するものであ
る。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a double aspherical single lens used in an optical head in an optical information recording/reproducing device, and particularly to a double aspherical single lens with an extremely bright NA of about 0.53. It's about lenses.

(従来技術) 近年、ビデオディスクやコンパクトディスクや、光磁気
ディスク等の光ディスクが大記憶容量の記録担体として
多岐に亘り使用されている。
(Prior Art) In recent years, optical disks such as video disks, compact disks, and magneto-optical disks have been widely used as large storage capacity record carriers.

この種の記録担体に情報を高密度に記録したり、あるい
は記録情報を正確に再生する為に、光情報記録再生装置
に用いる対物レンズには軸上性能、並びに0.5°程度
の軸外性能として、1〜2μmの分解能が要求される。
In order to record information with high density on this type of record carrier or to accurately reproduce recorded information, the objective lens used in optical information recording and reproducing devices has on-axis performance as well as off-axis performance of about 0.5°. As for performance, a resolution of 1 to 2 μm is required.

即ち、0.53程度のNAの対物レンズが必要である。That is, an objective lens with an NA of about 0.53 is required.

又、上記用途の対物レンズにおいては、光ディスク等の
担体表面と対物レンズとの間隔を十分にとり、両者の接
触を防止して記録担体や対物レンズの損傷を回避する必
要もある。
Furthermore, in the objective lens for the above-mentioned use, it is necessary to provide a sufficient distance between the surface of a carrier such as an optical disk and the objective lens to prevent contact between the two to avoid damage to the record carrier and the objective lens.

更に、上述の情報記録再生装置では、オートフォーカス
やオートトラッキングを行う為に対物レンズを光軸方向
や光軸方向と直交する方向に移動させる方式が主流であ
る。依って、応答特性を向上させる為に、この種の対物
レンズには小型化・軽量化が要求される。
Furthermore, in the above-mentioned information recording/reproducing apparatus, the mainstream method is to move the objective lens in the optical axis direction or in a direction orthogonal to the optical axis direction in order to perform autofocus or autotracking. Therefore, in order to improve response characteristics, this type of objective lens is required to be smaller and lighter.

従来、この種の対物レンズとして、特開昭58−420
21号公報、特開昭58−208719号公報、特開昭
60−122915号公報等に4群4枚の構成から成る
レンズ系が開示されている。
Conventionally, as this type of objective lens, Japanese Patent Application Laid-Open No. 58-420
No. 21, Japanese Patent Application Laid-open No. 58-208719, Japanese Patent Application Laid-Open No. 60-122915, etc. disclose lens systems having a configuration of four elements in four groups.

しか・しながら、これらの公開公報に示された対物レン
ズはレンズ系の全長が大きく、前述の小型化・軽量化を
図ることができない。
However, the objective lenses disclosed in these publications have a large overall length of the lens system, and cannot be made smaller and lighter as described above.

上記の欠点を解消するため、最近は非球面単レンズの開
発が盛んであり、例えば特開昭59−23313号公報
、特開昭59−26714号公報、特開昭61−211
7号公報、特開昭61−11715号公報等に技術開示
されている。
In order to eliminate the above-mentioned drawbacks, the development of aspherical single lenses has recently been active.
The technology is disclosed in Japanese Patent Publication No. 7, Japanese Patent Application Laid-open No. 11715/1983, and the like.

上記公開公報に示される非球面単レンズの実施例におい
ては、レンズの焦点距離をFとすると、実施例中に示さ
れるレンズが適用可能な記録担体の透明保護層の厚さt
は、0.26F〜0.28F程度である。しかしながら
、上述したオートフォーカスやオートトラッキング動作
を一層向上させるためには、より短焦点距離のレンズが
小型、軽量化の点で望まれる。更に、同じNAで考える
ならば、レンズの焦点距離を短くすることは有効光束径
を小さくすることと等価であり、光ヘツド内部のプリズ
ム類等、他の光学部品を小さくすることが可能であって
、この結果、光ヘツド全体の軽量化、小型化、薄型化が
可能となる。従つて、光ディスクの半径方向への光ヘッ
ドの移動、即ちシーク動作の高速化にも望ましいもので
ある。
In the example of the aspheric single lens shown in the above-mentioned publication, if the focal length of the lens is F, then the thickness t of the transparent protective layer of the record carrier to which the lens shown in the example can be applied is
is about 0.26F to 0.28F. However, in order to further improve the autofocus and autotracking operations described above, a lens with a shorter focal length is desired in terms of size and weight reduction. Furthermore, considering the same NA, shortening the focal length of the lens is equivalent to reducing the effective beam diameter, and it is possible to reduce the size of other optical components such as prisms inside the optical head. As a result, the entire optical head can be made lighter, smaller, and thinner. Therefore, it is also desirable to speed up the movement of the optical head in the radial direction of the optical disk, that is, the seek operation.

(発明の概略) 本発明の目的は、上記従来例の欠点を解消し、NAが0
.53程度の明るさでありながら、軸上、軸外共に良好
な結像性能を有する光情報記録再生装置用両非球面単レ
ンズを提供することにある。
(Summary of the Invention) An object of the present invention is to eliminate the drawbacks of the conventional example described above, and to reduce the NA to 0.
.. It is an object of the present invention to provide a double aspherical single lens for an optical information recording/reproducing device, which has a brightness of about 53 mm and has good imaging performance both on-axis and off-axis.

本発明の上記目的は、以下に述べる本発明の両非球面単
レンズにより達成される。
The above objects of the present invention are achieved by the double aspherical single lens of the present invention described below.

(実施例) 本発明による、厚さtの基板を介して結像する両非球面
単レンズは、第1面、第2面が共に非球面で構成される
両非球面単レンズであり、該非球面が該非球面上の任意
の点から非球面頂点の接平面までの距離をX1前記任意
の点から光軸までの距離をH1第ν面の基準曲率半径を
R,、第ν面の円錐定数をに、、第ν面の非球面係数を
A 、l (f=3.4゜・・・)とした時に下記の式
にて表わされる非球面であると共に次の条件(1)、 
 (2)、  (3)、  (4)を満足する両非球面
単レンズ。
(Example) A double aspherical single lens according to the present invention that forms an image through a substrate with a thickness t is a double aspherical single lens whose first and second surfaces are both aspherical. The distance from any point on the aspherical surface to the tangent plane of the aspherical apex is X1 The distance from the arbitrary point to the optical axis is H1 The reference radius of curvature of the νth surface is R, The conic constant of the νth surface Then, when the aspherical coefficient of the ν-th surface is A,l (f=3.4°...), it is an aspherical surface expressed by the following formula, and the following condition (1) is satisfied.
A double aspherical single lens that satisfies (2), (3), and (4).

+A94H’+・・・ (ν=1.2) O,36< −< 0.46 ただし、Fは非球面単レンズの焦点距離、tは基板の厚
さ、Dは非球面単レンズの光軸上肉厚、Nは非球面単レ
ンズの使用波長に対する屈折率である。
+A94H'+... (ν=1.2) O, 36<-< 0.46 However, F is the focal length of the aspherical single lens, t is the thickness of the substrate, and D is the optical axis of the aspherical single lens. The upper wall thickness, N, is the refractive index of the aspherical single lens for the wavelength used.

次に条件(1)から(4)について説明する。Next, conditions (1) to (4) will be explained.

本発明の条件(1)は光情報記録再生装置に用いる場合
の物理的条件を勘案し見出したものである。
Condition (1) of the present invention was discovered by taking into consideration the physical conditions when used in an optical information recording/reproducing device.

即ち条件(1)の下限値を下回る場合には本発明の主題
である短焦点化に反するものであって、軽量化、小型化
に不適である。他方条件(1)の上限値を上回る場合に
は、対物レンズと記録担体との間隔(作動距離)が短か
く成りすぎ、光情報記録再生装置が動作中に外部からの
予期せぬ力、振動が加わった時、記録担体と対物レンズ
とが接触、破壊等の恐れが生じる。この為、充分な作動
距離を確保しつつ短焦点化を目指す場合には、下記に示
す条件(2)〜(4)を満足しつつ条件(1)を満足さ
せることが、良好な結像性能を得るためにも必要である
That is, if the lower limit of condition (1) is not reached, it is contrary to short focal length, which is the subject matter of the present invention, and is unsuitable for weight reduction and size reduction. On the other hand, if the upper limit of condition (1) is exceeded, the distance between the objective lens and the record carrier (working distance) becomes too short, and the optical information recording/reproducing device is exposed to unexpected external forces and vibrations during operation. When this occurs, there is a risk that the record carrier and the objective lens may come into contact with each other and may be destroyed. Therefore, when aiming for short focal length while ensuring sufficient working distance, it is important to satisfy condition (1) while satisfying conditions (2) to (4) shown below to achieve good imaging performance. It is also necessary to obtain

本発明の条件(2)、 (3)は3次の領域で球面収差
及びコマ収差を良好に補正するためのものである。
Conditions (2) and (3) of the present invention are for properly correcting spherical aberration and comatic aberration in the third-order region.

松居吉哉著「レンズ設計法」(共立出版)によれば、第
1面、第2面の3次の球面収差係数r、、 T2及び第
1面、第2面のコマ収差係数■■I、II2は、入射瞳
を第1面に一致させ物体距離が無限遠の場合、次の様に
表わされる。
According to "Lens Design Method" by Yoshiya Matsui (Kyoritsu Shuppan), the third-order spherical aberration coefficient r of the first and second surfaces, T2 and the coma aberration coefficient of the first and second surfaces I, II2 is expressed as follows when the entrance pupil is made to coincide with the first surface and the object distance is infinite.

ここで、ψ1.ψ2はそれぞれ第1面、第2面の3次の
非球面項であり、R1は第1面の近軸曲率半径、R2は
第2面の近軸曲率半径である。
Here, ψ1. ψ2 are third-order aspheric terms of the first surface and the second surface, R1 is the paraxial radius of curvature of the first surface, and R2 is the paraxial radius of curvature of the second surface.

そして、レンズ全体の3次の球面収差係数■及びコマ収
差係数IIは各面のそれぞれの収差係数の和、I=1.
+l2 TI = II 、 + II 2 で求まり、I、IIが適切な値となるようにレンズ形状
及び各非球面量を定める。
The third-order spherical aberration coefficient ■ and the coma aberration coefficient II of the entire lens are the sum of the aberration coefficients of each surface, I=1.
+l2 TI = II, + II 2 is determined, and the lens shape and each aspherical amount are determined so that I and II have appropriate values.

上述した式より明らかな様に、レンズの形状(焦点距離
1作動距離など)が決まるとR,、R2,D。
As is clear from the above equation, when the shape of the lens (focal length 1 working distance, etc.) is determined, R, , R2, and D.

Nの値はほぼ定まってしまい、収差係数I、■を適切な
値にするために残される自由度はψ1.ψ2しかない。
The value of N is almost fixed, and the degree of freedom left to set the aberration coefficients I and ■ to appropriate values is ψ1. There is only ψ2.

従って、レンズ形状もある程度収差補正を考慮した上で
決められることが必要で、そのための数値範囲が条件(
2)、  (3)である。
Therefore, the lens shape must be determined with some consideration for aberration correction, and the numerical range for this is the condition (
2), (3).

条件(2)の数値範囲を外れると、特に第1面の球面収
差が大きくなり、第1面の非球面項ψ、では収差が補正
しきれなくなる。
When the numerical value range of condition (2) is exceeded, the spherical aberration of the first surface in particular becomes large, and the aberration cannot be corrected completely by the aspherical term ψ of the first surface.

条件(3)は第2面でコマ収差をバランス良く補正する
ための条件であり、この数値範囲を外れると、第2面の
非球面項ψ2では収差が補正しきれなくなり、軸外の結
像性能が著しく劣化する。
Condition (3) is a condition for correcting comatic aberration in a well-balanced manner on the second surface. If this value falls outside this numerical range, the aspherical term ψ2 of the second surface will not be able to fully correct the aberration, resulting in off-axis imaging. Performance deteriorates significantly.

条件(4)は主に正弦条件を満足させるための条件であ
る。本発明においては軸上収差と共に一定範囲内の軸外
収差、特に、コマ収差を良好に補正しているが、条件(
4)の範囲を外れるとアイソプラナティックな条件が著
しく失なわれ好ましくないものである。条件の上限を越
える場合には、第1面の曲率半径が小さくなりすぎ、負
の球面収差が大きく発生して収差補正が難しくなる事、
又、作動距離W、Dが短くなって実用上の難点を生じて
しまうという欠点がある。
Condition (4) is mainly a condition for satisfying the sine condition. In the present invention, not only on-axis aberration but also off-axis aberration within a certain range, especially coma aberration, is corrected well.
If it is outside the range of 4), the isoplanatic condition will be significantly lost, which is undesirable. If the upper limit of the condition is exceeded, the radius of curvature of the first surface becomes too small, and a large amount of negative spherical aberration occurs, making it difficult to correct the aberration.
Another disadvantage is that the working distances W and D become short, which poses a practical problem.

以下に本発明の両非球面単レンズの実施例を示す。Examples of the double aspherical single lens of the present invention are shown below.

ただし第1図に示す様に、Fはレンズの焦点距離、NA
は開口数、βは近軸横倍率、R8は第1面の非球面の近
軸曲率半径、R2は第2面の非球面の近軸曲率半径、D
はレンズの中心肉厚、W、Dは作動距離、tは記録担体
基板の厚さ、Nは使用波長λ=780nmでのレンズの
屈折率、Ntは使用波長λ=780nmでの記録担体基
板の屈折率、Δv U) (ν=1.2)は第ν面にお
いてNA(開口数)で決まるレンズ有効径内の1割にお
ける非球面と近軸曲率半径R,を有する球面との光軸方
向の差(但し、Δ、(j)は非球面の曲率か弱くなる方
向を正とする。)である。
However, as shown in Figure 1, F is the focal length of the lens, and NA
is the numerical aperture, β is the paraxial lateral magnification, R8 is the paraxial radius of curvature of the aspherical surface of the first surface, R2 is the paraxial radius of curvature of the aspherical surface of the second surface, D
is the center thickness of the lens, W and D are the working distance, t is the thickness of the record carrier substrate, N is the refractive index of the lens at the working wavelength λ = 780 nm, and Nt is the refractive index of the record carrier substrate at the working wavelength λ = 780 nm. Refractive index, Δv U) (ν=1.2) is the optical axis direction of the aspheric surface in 10% of the lens effective diameter determined by NA (numerical aperture) on the νth surface and the spherical surface with paraxial radius of curvature R. (However, Δ, (j) is positive in the direction in which the curvature of the aspherical surface becomes weaker.)

尚、非球面の形状は、該非球面上の任意の点から非球面
頂点の接平面までの距離をx1前記任意の点から光軸ま
での距離をH1第ν面の基準曲率半径をR,、第ν面の
円錐定数をKν面の非球面係数をA 、+ (+ =3
. 4.・・・)とした時に下記の式にて表わされる非
球面である。
The shape of the aspherical surface is defined as: x1 is the distance from any point on the aspherical surface to the tangent plane of the apex of the aspherical surface; H1 is the distance from the arbitrary point to the optical axis; R is the standard radius of curvature of the νth surface; The conic constant of the νth surface is K, the aspheric coefficient of the ν surface is A, + (+ = 3
.. 4. ), it is an aspherical surface expressed by the following formula.

したときのものである。又、第2図から第5図に示す収
差図において、横軸は入射瞳半径に対応し、縦軸が収差
量である。更に、(A)は軸上の結像特性であり、(B
)、(C)は順に画角0.4°、0.8°に対応する軸
外の結像特性である。実線はメリジオナル面の横収差、
破線はサジタル面の横収差を表わす。
This is what happened when I did it. In the aberration diagrams shown in FIGS. 2 to 5, the horizontal axis corresponds to the entrance pupil radius, and the vertical axis represents the amount of aberration. Furthermore, (A) is the on-axis imaging characteristic, and (B
) and (C) are off-axis imaging characteristics corresponding to angles of view of 0.4° and 0.8°, respectively. The solid line is the lateral aberration of the meridional surface,
The dashed line represents the transverse aberration in the sagittal plane.

+A、4H’十・・・ (ν=1.2) また、本発明に係る実施例1から実施例4のレンズの横
収差を第2図から第5図にそれぞれ示す。各実施例並び
に収差図は焦点距離をF=1.0に規格化実施例1 F=1.0 R,=  0.7195O R,=−1,7166O NA=O。
+A, 4H'+... (ν=1.2) Further, the lateral aberrations of the lenses of Examples 1 to 4 according to the present invention are shown in FIGS. 2 to 5, respectively. In each example and aberration diagram, the focal length is normalized to F=1.0. Example 1 F=1.0 R,=0.7195O R,=-1,7166O NA=O.

D=0゜ WD=O。D=0° WD=O.

t=0゜ K   =−1゜ A、、  =  6゜ A、、  =−1゜ A、、  =  l。t=0° K = -1゜ A,, = 6゜ A,, =-1゜ A,, = l.

A、、  =−7゜ A、、  =  4゜ A、、  =  3゜ A、、  =−1゜ A110=  4゜ A、、、=  1゜ A、、、 =−1゜ A、、、 =−8゜ A、、、=2゜ A、、、=  2゜ A、、、 =−5゜ 83127X10−” 13521X10−’ 75084xlO″1 10047xlO” 75959 X 10−’ 82531xlO−’ 91327X10−’ 23485X10゜ 27468X10’ 19932xlO’ 78222’xlO’ 13893xlO−’ 02031xlO’ 65724xlO’ 21685X10’ β =O N  =1.57645 N、=1゜ に2  =  1、 A2.  =  4゜ 44 =  9゜ A、、  =  2゜ A、、  =−1゜ A、、  =−1゜ A、、  =  3゜ A2.  =−4゜ A2Io =  1゜ Az+、=  6゜ A、、、=3゜ A2.、=5゜ A、、4=8゜ A2.、 =−1゜ A、、、 =−8゜ 59047xlO 75410X10−’ 54095xlO−’ 99007×10+ 66104xlO’ 43306xlO6 61485xlO’ 45362xlO6 52907xlO’ 43103X10 78247xlO 65608xlO 57628X10’ 41495xlO’ 63734xlO2 (10) =0.2329 (9)=0.1808 (7) =0. 1030 (5)=0.0506 (10) =−0,0408 (9) =−0,0330 (7) =−0,0199 (5)=−0,0101 実施口2 F=1.0 R,=  0.69795 R,=−2,04045 NA=0゜ D=0゜ WD=O。A,, =-7゜ A,, = 4゜ A,, = 3゜ A,, =-1゜ A110 = 4゜ A,,,=1゜ A,,, =-1゜ A,,, =-8゜ A,,,=2゜ A,,,=2゜ A,,, =-5゜ 83127X10-” 13521X10-' 75084xlO″1 10047xlO” 75959 X 10-' 82531xlO-' 91327X10-' 23485X10゜ 27468X10' 19932xlO' 78222'xlO' 13893xlO-' 02031xlO' 65724xlO' 21685X10' β=O N = 1.57645 N, = 1° 2 = 1, A2. = 4゜ 44 = 9゜ A,, = 2゜ A,, =-1゜ A,, =-1゜ A,, = 3゜ A2. =-4゜ A2Io = 1゜ Az+, = 6゜ A,,,=3゜ A2. ,=5゜ A, 4=8° A2. , =-1゜ A,,, =-8゜ 59047xlO 75410X10-' 54095xlO-' 99007×10+ 66104xlO' 43306xlO6 61485xlO' 45362xlO6 52907xlO' 43103X10 78247xlO 65608xlO 57628X10' 41495xlO' 63734xlO2 (10) =0.2329 (9)=0.1808 (7) = 0. 1030 (5)=0.0506 (10) =-0,0408 (9) =-0,0330 (7) =-0,0199 (5)=-0,0101 Implementation port 2 F=1.0 R, = 0.69795 R,=-2,04045 NA=0° D=0° WD=O.

t=0゜ K、  =−1゜ A、、  =  6゜ A、、  =−1゜ A、、  =  5゜ A、、  =−8゜ A、、  =  8゜ A、、  =  4゜ A、、  =−1゜ Ao、。=−6゜ A、、、=1゜ A、、、 =−3゜ A、、、=  7゜ A、、、=4゜ A、、、=6゜ A、、、 −−1゜ 66870xlO−2 00268xlO−’ 75527xlO” 74300xlO−” 91824x10 38701xlO” 44347xLO−’ 12904xlO6 50903xlO’ 72591xlO’ 51144x10 77967xlO8 97410xlO’ 30945xlO 55214xlO’ β =O N  =1.57645 N、 =1. 58 に、  =−2゜ A、、  =  4゜ A2.  =  1゜ A=s  =  2゜ A、、  =  2゜ A、、  =−4゜ A−g  =  2゜ A2*  =  6゜ A11o=  3゜ A、、、=1゜ A2.、=  2゜ A2.3=−2゜ A、、、=  1゜ A、、、=l。t=0° K, =-1゜ A,, = 6゜ A,, =-1゜ A,, = 5゜ A,, =-8゜ A,, = 8゜ A,, = 4゜ A,, =-1゜ Ao. =-6° A,,,=1゜ A,,, =-3゜ A,,,=7゜ A,,,=4゜ A,,,=6゜ A,,, -1゜ 66870xlO-2 00268xlO-' 75527xlO” 74300xlO-” 91824x10 38701xlO” 44347xLO-' 12904xlO6 50903xlO' 72591xlO' 51144x10 77967xlO8 97410xlO' 30945xlO 55214xlO' β=O N = 1.57645 N, = 1. 58 , =-2゜ A,, = 4゜ A2. = 1゜ A=s=2゜ A,, = 2゜ A,, =-4゜ A-g = 2゜ A2* = 6゜ A11o= 3゜ A,,,=1゜ A2. ,=  2゜ A2.3=-2゜ A,,,=1゜ A,,,=l.

A、、6=−1゜ 04779xlO’ 48359xlO−” 17807xlO−’ 73550xlO−’ 33495X10〜3 14235X10− 14899X10゜ 16208xlO9 41262xlO’ 04277X10’ 84796X10’ 84760xlO’ 90557xlO” 39967xlO’ 14889xlO” (N−1) F” N・R・−〇。A, 6=-1° 04779xlO' 48359xlO-” 17807xlO-' 73550xlO-' 33495X10~3 14235X10- 14899X10゜ 16208xlO9 41262xlO' 04277X10' 84796X10' 84760xlO' 90557xlO” 39967xlO' 14889xlO” (N-1) F” N.R.-〇.

一=−0゜ (10) =0゜ (9) =0゜ (7) =0゜ (5) =O。One = -0° (10) = 0゜ (9) = 0゜ (7) = 0゜ (5) =O.

(N−1) D。(N-1) D.

NR。N.R.

D+WD”” 37 (10) =−0゜ (9) =−0゜ (7) =−0゜ (5) =−0゜ 実施例3 F=1.0 R,=  0.7021O R2=−1,92752 NA=O。D+WD””37 (10) =-0゜ (9) =-0゜ (7) =-0゜ (5) =-0゜ Example 3 F=1.0 R, = 0.7021O R2=-1,92752 NA=O.

D=0゜ WD=0゜ 1=0゜ K、  −−1゜ 、A、、  =  4゜ ん、 =−i。D=0° WD=0° 1=0° K, −−1゜ ,A,, = 4゜ Hmm, =-i.

A、、  =  7゜ A、、  =−9゜ A、、  =  8゜ ん、−6、 A1*  =−1゜ A、1゜ニー7゜ A、、、=  1゜ A、、、 =−3゜ A、、、=7゜ A、、、=  5゜ A、、、=6゜ A、、、 =−1゜ 33380X10−2 99151X10’−’ 36020 X 10−’ 66103xlO−’ 98758xfO− 47942xlO 53046X10−’ 26724xlO’ 04004X10゜ 81251X10 67438X10’ 21812X10゜ 41030X10 80399X10’ 58810X10’ β =O N  =1.57645 N、=1゜ に2 =−5゜ A□、=2゜ A24=  2゜ A25=−4゜ A2.  =−2゜ A、、  =  3゜ A2.  =  2゜ A、、  =−2゜ A21゜=4゜ A、、、=7、 A2.、=2゜ A□、 =−6゜ A、、、=2゜ A、、、 =−6゜ A2.、 =−2゜ oooooxio’ 98063X10−2 81447xlO−’ 24791xlO−’ 09939X10−’ 13074X10−’ 21370X10゜ 02453X10゜ 48568X10’ 40823X10゜ 97764X10 96801X10゜ 21248X10” 51546xlO’ 16974X10” (10) =0゜ (9) =0゜ (7) =O。A,, = 7゜ A,, =-9゜ A,, = 8゜ Hmm, -6, A1* =-1゜ A, 1° knee 7° A,,,=1゜ A,,, =-3゜ A,,,=7゜ A,,,=5゜ A,,,=6゜ A,,, =-1゜ 33380X10-2 99151X10'-' 36020 x 10-' 66103xlO-' 98758xfO- 47942xlO 53046X10-' 26724xlO' 04004X10゜ 81251X10 67438X10' 21812X10゜ 41030X10 80399X10' 58810X10' β=O N = 1.57645 N, = 1° 2 = -5° A□, = 2゜ A24 = 2゜ A25=-4゜ A2. =-2゜ A,, = 3゜ A2. = 2゜ A,, =-2゜ A21゜=4゜ A,,,=7, A2. ,=2゜ A□, =-6゜ A,,,=2゜ A,,, =-6゜ A2. , =-2゜ ooooooxio’ 98063X10-2 81447xlO-' 24791xlO-' 09939X10-' 13074X10-' 21370X10゜ 02453X10゜ 48568X10' 40823X10゜ 97764X10 96801X10゜ 21248X10” 51546xlO' 16974X10” (10) = 0゜ (9) = 0゜ (7) =O.

(5) =0゜ (10) =−0゜ (9) =−0゜ (7) =−0゜ (5) =−0゜ 実施例4 F=1.0 R,=  0.67962 R,=−2,54902 NA=0.53 D=0.61097 WD=0.43340 t=0.37584 β =O N  =1.57645 N、 =1. 58 に、  =−1,37686xlO−’ん、 = 2.
49235xlO−” A、、=−2,46348xlO−’ A、、=  1.65190xlO” ん、 =−1,11976xlO’ A、t  =  1.47487xlO’ん、 =−3
,50309xlO−’ A、、=−3.79524xlO’ A1、。 =−5,90336xlOロAm=  3.
17133xlO’ A1□=−7,08127xlO’ A++s=  1.27092xlO’AI□、=  
t、15587X10″A++s=  1.50075
xlO”A++a =−3,74926xlO’に、 
 =−4,56598xlO’ A2.=  6.18193xlO−”A、イ =  
9.45675X10−2A、、=−1,03845X
10゜ A、、=  2.51153X10−’A、、=  1
.01118xlO’ A、、  =−2,00478xlO’A2.=−1,
74017xlO’ A2.、=  3.71507xlO Aオ、I =  6.98481X10’A21x =
  1.12915X10”Ail =  4.843
07xlO”A214 =  3.47351X10’
A21B=−4,12185X10” A、、、=  5.32755X10’(10) =O
(5) =0°(10) =-0°(9) =-0°(7) =-0°(5) =-0° Example 4 F=1.0 R, = 0.67962 R, =-2,54902 NA=0.53 D=0.61097 WD=0.43340 t=0.37584 β =O N =1.57645 N, =1. 58, =-1,37686xlO-'n, = 2.
49235xlO-" A,, = -2,46348xlO-' A,, = 1.65190xlO"=-1,11976xlO' A, t = 1.47487xlO', =-3
,50309xlO-'A,,=-3.79524xlO'A1,. =-5,90336xlOroAm=3.
17133xlO'A1□=-7,08127xlO' A++s= 1.27092xlO'AI□,=
t, 15587X10″A++s=1.50075
xlO"A++a = -3,74926xlO',
=-4,56598xlO' A2. = 6.18193xlO-” A, I =
9.45675X10-2A,,=-1,03845X
10°A,, = 2.51153X10-'A,, = 1
.. 01118xlO'A,, =-2,00478xlO'A2. =-1,
74017xlO' A2. , = 3.71507xlO Ao, I = 6.98481X10'A21x =
1.12915X10"Ail = 4.843
07xlO"A214 = 3.47351X10'
A21B=-4,12185X10"A,,,=5.32755X10'(10) =O
.

(9) =0゜ (7) =0゜ (5) =O。(9) = 0゜ (7) = 0゜ (5) =O.

(10) =−0゜ (9) =−0゜ (7) =−0゜ (5) =−0゜ 以上本発明に係る実施例1から4を示し、その結像性能
を第2図から第5図に示した。上記実施例1から4にお
いては、記録担体基板の厚さtを1.2mmとする時、
焦点距離は2.8mmから3.2mm程度に対応するも
のであって、前記条件(1)の範囲にあるものである。
(10) =-0°(9) =-0°(7) =-0°(5) =-0° or more Examples 1 to 4 according to the present invention are shown, and their imaging performance is shown in FIG. It is shown in Figure 5. In Examples 1 to 4 above, when the thickness t of the record carrier substrate is 1.2 mm,
The focal length corresponds to approximately 2.8 mm to 3.2 mm, and falls within the range of condition (1).

これにより本発明の目的である対物レンズの小型化、軽
量化、更には光ヘッドの小型化、軽量化も達成可能であ
る。
This makes it possible to achieve the objective of the present invention, which is to make the objective lens smaller and lighter, as well as the optical head smaller and lighter.

上述した実施例1から4に見られるように、本発明の両
非球面対物レンズにおいては、上述した(1)から(4
)の条件に加えて、下記の条件(5)を満足することが
好ましい。
As seen in the above-mentioned Examples 1 to 4, in the double aspherical objective lens of the present invention, the above-mentioned (1) to (4)
), it is preferable that the following condition (5) is satisfied.

(5)  0.35 <    < 0.45D+WD 条件(5)は光ヘッドの構造、大きさに係るものであっ
て下限値を下回ることは、光ヘッドの大型化につながり
好ましくない。他方上限値を上回ることは、対物レンズ
と記録担体とが近付きすぎて、不慮の振動等の発生時の
安全性の面で好ましくない。
(5) 0.35 << 0.45D+WD Condition (5) relates to the structure and size of the optical head, and being less than the lower limit is undesirable because it leads to an increase in the size of the optical head. On the other hand, if it exceeds the upper limit, the objective lens and the record carrier will come too close to each other, which is unfavorable in terms of safety in the event of unexpected vibrations or the like.

収差補正の観点からは下記の条件(6)、  (7)を
上記条件(1)から(4)に加えて満足することが好ま
しい。
From the viewpoint of aberration correction, it is preferable to satisfy the following conditions (6) and (7) in addition to the above conditions (1) to (4).

条件(6)、  (7)は、夫々有効径の10割、7割
における第1面の非球面量と第2面の非球語量との比で
ある。上記2つの条件式は第1面と第2面とにおける収
差補正量の分担を非球面量の比に換算して見出したもの
である。上記条件(1)から(4)に加えて両式に示さ
れる範囲を満足することによって、軸上、軸外共に結像
性能を一層良好なものとすることが可能である。
Conditions (6) and (7) are the ratio of the aspheric amount of the first surface to the aspheric amount of the second surface at 100% and 70% of the effective diameter, respectively. The above two conditional expressions were found by converting the share of the aberration correction amount between the first surface and the second surface into the ratio of the aspheric surface amount. By satisfying the ranges shown in both equations in addition to the above conditions (1) to (4), it is possible to improve the imaging performance both on-axis and off-axis.

或いは、又、収差補正の観点からは、上記条件(1)か
ら(4)に加えて一下記の条件(8)から(]l)を満
足することが好ましく、より好適には、更に加えて下記
の条件(12)から(15)を併わせで満足することが
望ましい。
Alternatively, from the viewpoint of aberration correction, it is preferable that in addition to the above conditions (1) to (4), the following conditions (8) to (]l) are satisfied, and more preferably, in addition It is desirable that conditions (12) to (15) below be satisfied in combination.

(8)   0.20F  <Δ、 (10)<  0
.28F(9)   0.09F <Δt (7) <
  0.12F(10) −0,045F< A 2 
 (10)<−0,03F(11)−0,022F<Δ
2 (7)<−0,ot5F’(12)    0.1
6F   <  Δ h   (9)   <   0
.22F(13)    0.045F<  Δ 、 
  (5)   <    0.06F(14)−0,
035F< A、(9)<−0,025F(15)  
0.012  <Δz (5)  <  0,005F
上記条件(8)から(11)はレンズ第1面及び第2面
の有効径の10割、7割での非球面量を決定する条件で
ある。又、条件(12)がら(15)は同様に9割、5
割での非球面量を決定する条件であうで、条件(8)か
ら(11)と併わせで一層の収差補正に好適な条件を開
示するものである。
(8) 0.20F <Δ, (10) < 0
.. 28F (9) 0.09F <Δt (7) <
0.12F(10) -0,045F< A 2
(10)<-0,03F (11)-0,022F<Δ
2 (7)<-0,ot5F'(12) 0.1
6F < Δ h (9) < 0
.. 22F(13) 0.045F<Δ,
(5) < 0.06F(14)-0,
035F<A, (9)<-0,025F(15)
0.012 <Δz (5) < 0,005F
The above conditions (8) to (11) are conditions for determining the amount of asphericity at 100% and 70% of the effective diameter of the first and second surfaces of the lens. Also, conditions (12) and (15) are similarly 90%, 5
These are the conditions for determining the aspherical amount in terms of ratio, and together with conditions (8) to (11), conditions suitable for further aberration correction are disclosed.

条件(8)、  (9)、  (I2)、  (13)
の上限値を越えると球面収差がオーバーとなり、逆に下
限値を下回るとアンダーとなって軸上性能が劣化する。
Conditions (8), (9), (I2), (13)
If the upper limit of is exceeded, the spherical aberration will be excessive, and if it is less than the lower limit, the spherical aberration will be under, and the axial performance will deteriorate.

条件(10)、  (11)、  (14)、  (1
5)は主に軸外収差の補正に関するものである。条件に
示される範囲を外れると特にコマ収差の発生量が大と成
り好ましくない。
Conditions (10), (11), (14), (1
5) mainly relates to correction of off-axis aberrations. Outside the range shown in the conditions, the amount of comatic aberration generated is particularly large, which is not preferable.

(発明の効果) 以上、本発明によれば光情報記録再生装置として用いる
に好適な短焦点距離の両非球面対物レンズを提供するこ
とができる。即ち、本発明に係る両非球面対物レンズを
採用することによって、軸上、軸外共に良好な結像性能
を保証し、且つ、小型化、軽量化に大いに寄与できるも
のである。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a bi-aspherical objective lens with a short focal length suitable for use as an optical information recording/reproducing device. That is, by employing the dual aspherical objective lens according to the present invention, it is possible to ensure good imaging performance both on-axis and off-axis, and to greatly contribute to miniaturization and weight reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る両非球面単レンズのレンズ断面を
示す図、第2図から第5図は夫々本発明に係る実施例の
横収差を示す図である。
FIG. 1 is a diagram showing a lens cross section of a double aspherical single lens according to the present invention, and FIGS. 2 to 5 are diagrams showing transverse aberrations of the embodiments according to the present invention.

Claims (1)

【特許請求の範囲】 厚さtの基板を介して結像する両非球面単レンズであっ
て、第1面、第2面が共に非球面で構成される両非球面
単レンズにおいて、該非球面が該非球面上の任意の点か
ら非球面頂点の接平面までの距離をX、前記任意の点か
ら光軸までの距離をH、第ν面の基準曲率半径をR_ν
、第ν面の円錐定数をK_ν、第ν面の非球面係数をA
_ν_i(i=3、4、・・・)とした時に下記の式に
て表わされる非球面であると共に次の条件(1)、(2
)、(3)、(4)を満足する光情報記録再生装置用両
非球面単レンズ。 ▲数式、化学式、表等があります▼…(ν=1、2) (1)0.36<(t/F)<0.46 (2)0.60<[(N−1)F^2]/[N^3R_
1^2<0.77] (3)0.30<[(N−1)D]/[NR^1]<0
.45 (4)−0.46<(R_1)/(R_2)<−0.2
6 ただし、Fは非球面単レンズの焦点距離、Dは非球面単
レンズの光軸上肉厚、Nは非球面単レンズの使用波長に
対する屈折率である。
[Claims] In a double aspherical single lens that forms an image through a substrate having a thickness t, the first surface and the second surface of which are both aspherical, the aspherical surface is is the distance from an arbitrary point on the aspherical surface to the tangent plane of the aspherical apex, H is the distance from the arbitrary point to the optical axis, and R_ν is the reference radius of curvature of the νth surface.
, the conic constant of the νth surface is K_ν, and the aspheric coefficient of the νth surface is A
When _ν_i (i=3, 4,...), it is an aspherical surface expressed by the following formula, and also satisfies the following conditions (1) and (2).
), (3), and (4), a double aspherical single lens for an optical information recording/reproducing device. ▲There are mathematical formulas, chemical formulas, tables, etc.▼…(ν=1, 2) (1) 0.36<(t/F)<0.46 (2) 0.60<[(N-1)F^2 ]/[N^3R_
1^2<0.77] (3) 0.30<[(N-1)D]/[NR^1]<0
.. 45 (4)-0.46<(R_1)/(R_2)<-0.2
6 Here, F is the focal length of the aspherical single lens, D is the thickness of the aspherical single lens on the optical axis, and N is the refractive index of the aspherical single lens with respect to the wavelength used.
JP9403889A 1989-04-12 1989-04-12 Both-sided aspherical single lens for optical information recording and reproducing device Pending JPH02271311A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9403889A JPH02271311A (en) 1989-04-12 1989-04-12 Both-sided aspherical single lens for optical information recording and reproducing device
US07/507,580 US4979807A (en) 1989-04-12 1990-04-11 Biaspherical single lens for an optical information recording-reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9403889A JPH02271311A (en) 1989-04-12 1989-04-12 Both-sided aspherical single lens for optical information recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH02271311A true JPH02271311A (en) 1990-11-06

Family

ID=14099398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9403889A Pending JPH02271311A (en) 1989-04-12 1989-04-12 Both-sided aspherical single lens for optical information recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH02271311A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS60250320A (en) * 1984-05-28 1985-12-11 Matsushita Electric Ind Co Ltd Large aperture single lens
JPS6156314A (en) * 1984-08-28 1986-03-22 Konishiroku Photo Ind Co Ltd Recording and reproducing objective lens of optical information recording medium
JPH02195317A (en) * 1989-01-23 1990-08-01 Minolta Camera Co Ltd Objective lens for optical disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS60250320A (en) * 1984-05-28 1985-12-11 Matsushita Electric Ind Co Ltd Large aperture single lens
JPS6156314A (en) * 1984-08-28 1986-03-22 Konishiroku Photo Ind Co Ltd Recording and reproducing objective lens of optical information recording medium
JPH02195317A (en) * 1989-01-23 1990-08-01 Minolta Camera Co Ltd Objective lens for optical disk

Similar Documents

Publication Publication Date Title
JP2008123573A (en) Optical pickup lens
US4657352A (en) Image optical system including a non-spherical single lens
JPS62269922A (en) Optical system for recording and reproducing optical information medium
JP2641514B2 (en) Single group objective lens
JPH0314324B2 (en)
US4701032A (en) Graded refractive index lens system
US4979807A (en) Biaspherical single lens for an optical information recording-reproducing apparatus
JPH02271311A (en) Both-sided aspherical single lens for optical information recording and reproducing device
JP2567047B2 (en) Aspheric single lens
JPH0453285B2 (en)
JPS5962815A (en) Distributed refractive index lens
JPH02271312A (en) Both-sided aspherical single lens for optical information recording and reproducing device
JPH02150816A (en) Aspherical single lens
JP2622155B2 (en) Aspheric single lens
JP2622160B2 (en) Aspheric single lens
JPS61179409A (en) Objective of optical information reader
JP2008293641A (en) Optical pickup lens
JPH04163510A (en) Object lens for optical disk
JPH01214811A (en) Aspherical single lens
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH0462564B2 (en)
JPS62116915A (en) Condenser lens for optical memory
JPS6091317A (en) Objective lens for optical disk
JPS63165811A (en) Condenser lens for optical memory
JPS63165812A (en) Condenser lens for optical memory