JPH021950A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH021950A
JPH021950A JP14433888A JP14433888A JPH021950A JP H021950 A JPH021950 A JP H021950A JP 14433888 A JP14433888 A JP 14433888A JP 14433888 A JP14433888 A JP 14433888A JP H021950 A JPH021950 A JP H021950A
Authority
JP
Japan
Prior art keywords
bonding
region
layer
electrode layer
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14433888A
Other languages
Japanese (ja)
Inventor
Tomohide Terajima
知秀 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14433888A priority Critical patent/JPH021950A/en
Publication of JPH021950A publication Critical patent/JPH021950A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To reduce a damage which is inflicted on a semiconductor element and to make possible the formation of a fine pattern at regions other than a bonding region by a method wherein the thickness of the bonding region to function as a bonding pad out of an electrode layer is made thicker than those of the regions other than said bonding region. CONSTITUTION:In a power MOSFET 1, a damage absorbing layer 30 consisting of a material identical with an electrode material constituting a source electrode layer 80 is provided between a bonding region 20 out of the layer 80 and a power MOSFET element group 1b to correspond to the region 20. Accordingly, a damage at the time of wire bonding is reduced less than that in the case of a conventional power MOSFET 1 by a degree corresponding to the provision of the layer 30. Moreover, the thickness of the layer 80 at regions other than the region 20 causes no disturbance of the formation of a fine pattern as being identical with that of a conventional source electrode layer.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置に関し、特に複数の半導体素子が
設けられた半導体基板上に、複数の半導体素子と共通接
続された電極層が設けられ、上記複数の半導体素子のう
ち少なくとも1つ以上の半導体素子に対応する電極層の
一部をボンディングパッドとして利用する半導体装置の
ボンディングパッド部分の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor device, and in particular, an electrode layer commonly connected to the plurality of semiconductor elements is provided on a semiconductor substrate on which a plurality of semiconductor elements are provided, The present invention relates to a structure of a bonding pad portion of a semiconductor device in which a part of an electrode layer corresponding to at least one semiconductor element among the plurality of semiconductor elements is used as a bonding pad.

〔従来の技術〕[Conventional technology]

第2図はパワーM OS F E T素子1aの構造を
示す断面図である。同図において、N+層2の一方主面
、トにはN−層3がエピタキシャル成長により形成され
て半導体基板が構成されている。このN−層3の表面か
ら選択的に不純物を二段階に分けて拡散させる二重拡散
法により、P領域4が形成され、このP領域4の表面か
ら選択的に不純物を拡散して、P領域4内に2個のN+
領域5が一定間隔をもって形成されている。さらに、 
層3の表面から各N゛領域の表面の一部にか【プて絶縁
層6が形成され、各絶縁層6の中には例えばポリシリコ
ンから成るゲート電極7がそれぞれ形成されている。ま
た、P領Ij!!4およびN+領域5の両方に電気的に
接続されるようにAJ−8iからなるソース電極8が形
成されている。また、N1半導体基板2@面には金属か
らなるドレイン電極9が形成されている。
FIG. 2 is a sectional view showing the structure of the power MOSFET element 1a. In the figure, an N- layer 3 is formed by epitaxial growth on one main surface of an N+ layer 2, forming a semiconductor substrate. A P region 4 is formed by a double diffusion method in which impurities are selectively diffused in two stages from the surface of this N- layer 3. By selectively diffusing impurities from the surface of this P region 4, P 2 N+ in area 4
Regions 5 are formed at regular intervals. moreover,
An insulating layer 6 is formed extending from the surface of the layer 3 to a part of the surface of each N'' region, and a gate electrode 7 made of polysilicon, for example, is formed in each insulating layer 6. Also, P territory Ij! ! A source electrode 8 made of AJ-8i is formed so as to be electrically connected to both the N+ region 4 and the N+ region 5. Further, a drain electrode 9 made of metal is formed on the @ surface of the N1 semiconductor substrate 2.

次に、このパワーMO8F E T素子1aの動作につ
いて説明する。第2図に示すパワーMO3FET素子1
aのドレイン電極9とソース電極8間に一定のドレイン
電圧V。8を印加した状態で、ゲート電極7とソース電
極8間にそのパワーMO8FET1のしぎい値電圧v1
以上のゲート電圧VGSを印加すると、P領域4のうち
N 層3とN+領域5とに挟まれ、かつゲート電極7に
対応する領域にチi?ネルが形成されてドレイン電極9
とソース電極8間にドレイン電流が流れる。したがって
、ゲート電圧VGSを制御することによりドレイン電流
を制御することができる。
Next, the operation of this power MO8FET element 1a will be explained. Power MO3FET element 1 shown in Fig. 2
A constant drain voltage V between the drain electrode 9 and the source electrode 8 of a. 8 is applied, the threshold voltage v1 of the power MO8FET1 is applied between the gate electrode 7 and the source electrode 8.
When the above gate voltage VGS is applied, a region of the P region 4 that is sandwiched between the N layer 3 and the N+ region 5 and that corresponds to the gate electrode 7 is filled with chi? A channel is formed and the drain electrode 9
A drain current flows between the source electrode 8 and the source electrode 8. Therefore, the drain current can be controlled by controlling the gate voltage VGS.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、実使用においては、第3図に示すように、半
導体基板にパワーMO8FET索子1aを複数設け、ソ
ース電極層80によりこれら複数のパワーMO8FET
素子1aを並列接続して、1つのパワーM OS F 
E T 1を形成している。また、適当な位置にボンデ
ィングパッドを設け、パワーMO8FETIの適当な部
位と電気的に接続している。従来、このボンディングパ
ッド直下にはパワーMO8FET素子1a(第2図)を
形成してい低かったが、近年集積度の向上に対応すべく
ボンディングパッド直下にもパワーMO8FET素子1
aを形成するようになった。すなわち、第3図に示すよ
うに、ソース電極層80のうらボンディングワイヤ(図
示省略)をボンディングするボンディング領域20以外
の領域上にパワーMO8FETX子保護用のガラスコー
ト21を形成し、さらにワイヤボンディング工程におい
てボンディング領域20とリードフレーム(図示省略)
とを金!2笠のボンディングワイヤノ(図示省略)によ
り電気的に接続している。そして、これらソース電極層
80.ボンゲイングワイヤおよびリードフレームを介し
て、外部から適当な電位がPTIII!4 J3よびN
+領域5の両方に供給されるように構成されている。
By the way, in actual use, as shown in FIG.
By connecting the elements 1a in parallel, one power MOSF
It forms E T 1. Further, bonding pads are provided at appropriate positions and electrically connected to appropriate parts of the power MO8FETI. Conventionally, the power MO8FET element 1a (Fig. 2) was formed directly under this bonding pad, and the power MO8FET element 1a (Fig. 2) was formed directly below the bonding pad.
began to form a. That is, as shown in FIG. 3, a glass coat 21 for protecting the power MO8FETX element is formed on a region other than the bonding region 20 to which a bonding wire (not shown) is bonded behind the source electrode layer 80, and then a wire bonding process is performed. The bonding area 20 and the lead frame (not shown)
And gold! They are electrically connected by two bonding wires (not shown). These source electrode layers 80. A suitable potential is applied externally via the bonding wire and the lead frame. 4 J3 and N
+ region 5.

上記のように、ワイヤボンディング工程においてボンデ
ィングワイヤをボンディング領域20上にボンディング
すると、ボンディング時のダメージがソース電極層80
を介してそのボンディング領[20に対応するパワーM
O8FET素子群1bにおよび、パワーMO8FETI
の信頼性が低下する。
As described above, when a bonding wire is bonded onto the bonding region 20 in the wire bonding process, damage during bonding is caused to the source electrode layer 80.
The power M corresponding to the bonding region [20
O8FET element group 1b and power MO8FETI
reliability decreases.

これを防止する方法としてソース電極層80全体を厚く
形成し、上記ダメージをそのソース電極層80により吸
収するという対策が考えられる。
A possible method for preventing this is to make the entire source electrode layer 80 thick so that the damage is absorbed by the source electrode layer 80.

しかしながら、ソース電極層80全体を厚(することは
、パワーMO8FET1の微細化に不具合が生じる。そ
の理由を説明り°るとつぎのとおりである。すなわち、
ソース電極層80を所定パターンにパターンニングする
ための方法としC従来より写真製版法が一般的に用いら
れている。この方法は、第3図に示すように、まず基体
22上にソース電極11180の電極材料23、例えば
A!−3i等を均一に形成し、所定領域に開口部24a
を有するレジスト24をその電極材料23上に形成した
後、このレジスト24をマスクとしてエツチングを行う
。この場合、電極材料23が厚くなるにしたがってサイ
ドエラ125の度合いが増寸ため、上述したようにソー
ス電極層80全体を厚くすることは微細パターンの形成
を困難とする。
However, making the entire source electrode layer 80 thick causes problems in miniaturization of the power MO8FET 1. The reason for this is as follows. That is,
Photolithography has been commonly used as a method for patterning the source electrode layer 80 into a predetermined pattern. In this method, as shown in FIG. 3, the electrode material 23 of the source electrode 11180, for example A! -3i etc. are formed uniformly, and the opening 24a is formed in a predetermined area.
After forming a resist 24 having the following properties on the electrode material 23, etching is performed using the resist 24 as a mask. In this case, as the electrode material 23 becomes thicker, the degree of the side erra 125 increases, so increasing the thickness of the entire source electrode layer 80 as described above makes it difficult to form a fine pattern.

また、ソース電1[80の厚みの増大に伴ってカバレッ
ジに対する考慮が必要となり、この点からも一定厚み以
上のソース電極層80を形成することができない。
Furthermore, as the thickness of the source electrode 1 [80 increases, consideration must be given to coverage, and from this point of view as well, the source electrode layer 80 cannot be formed to have a thickness greater than a certain value.

この発明は上記のような課題を解消するためになされた
もので、ワイヤボンディング時にボンディング領域直下
の半導体素子に与えられるダメージを軽減することがぐ
ぎるとともに、ボンディング領域以外の領域での微細パ
ターンの形成を可能とする半導体装買を1!?ることを
目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to reduce the damage caused to semiconductor elements directly under the bonding area during wire bonding, and to reduce the damage caused to fine patterns in areas other than the bonding area. 1. Semiconductor equipment that enables formation! ? The porpose is to do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、半導体基板と、前記半導体基板に・形成さ
れた複数の半導体素子と、前記半導体基板上に形成され
、前記複数の半導体素子と共通接続された電極層とを備
え、前記複数の半導体素子のうち少なくと61つ以上の
半導体素子に対応する前記電極層の一部をボンディング
パッドとして利用する半導体装置において、前記電極層
のうち前記ボンディングパッドとしても機能するボンデ
ィング領域の厚みを前記ボンディング領域、以外の領域
の厚みよりも厚くしている。
The present invention includes a semiconductor substrate, a plurality of semiconductor elements formed on the semiconductor substrate, and an electrode layer formed on the semiconductor substrate and commonly connected to the plurality of semiconductor elements, In a semiconductor device in which a part of the electrode layer corresponding to at least 61 or more semiconductor elements among the elements is used as a bonding pad, the thickness of the bonding region of the electrode layer that also functions as the bonding pad is defined as the bonding region. , is thicker than the other areas.

〔作用〕[Effect]

この発明における半導体装置によれば、電極層のうらボ
ンデ、Cングパツドとして6機能するボンディング領域
の厚みが前記ボンディング領域以外の領域の厚みよりも
厚くなるように前記電極層が構成されているため、前記
ボンディング領域にJ:リワイA7ボンデイング時のダ
メージが軽減される一方、ボンディング領域以外の領域
での微細パターンの形成が可能となる。
According to the semiconductor device of the present invention, the electrode layer is configured such that the thickness of the bonding region that functions as a back bonder and C ring pad of the electrode layer is thicker than the thickness of the region other than the bonding region. J: Rewie A7 damage to the bonding area during bonding is reduced, while fine patterns can be formed in areas other than the bonding area.

〔実施例〕〔Example〕

第1図はこの発明にかかる半導体装置であるパワーMO
3FET1’の構造を示す断面図である。
FIG. 1 shows a power MO which is a semiconductor device according to the present invention.
It is a sectional view showing the structure of 3FET1'.

このパワーMO8FETI’ が従来のパワーMO8F
ETIと異なる点は、本発明においてソース電極F18
0のうちボンディング領域20とそのボンディング領l
lA20に対応するパワーMO8FET素子群1bとの
間にソース電極層80を構成する電極材料と同一の材料
からなるダメージ吸収層30を設けていることであり、
その他の構成は従来のパワーMO3FET1と同一であ
る。
This power MO8FETI' is the conventional power MO8F
The difference from ETI is that in the present invention, the source electrode F18
0, the bonding area 20 and its bonding area l
A damage absorption layer 30 made of the same material as the electrode material constituting the source electrode layer 80 is provided between the power MO8FET element group 1b corresponding to the lA20,
The other configurations are the same as the conventional power MO3FET1.

以上のように、ダメージ吸収層30を設けることにより
、ボンディング領域20の表面からパワーMO8FET
素子群1bまでの厚みが従来のらのに比べてダメージ吸
収層30の分だけ厚くなるので、本実施例にお【ノるワ
イヤボンディング時のダメージはダメージ吸収層30を
設けた分だけ従来のパワーMO8F E T 1より軽
減される。また、ボンディング領域20以外の領域での
ソース電極E’480の厚みが従来と同一であるため、
微細パターンの形成に支障をきたすこともない。
As described above, by providing the damage absorption layer 30, the power MO8FET can be removed from the surface of the bonding region 20.
The thickness up to the element group 1b is thicker than the conventional one by the amount of the damage absorption layer 30. The power is reduced from MO8FET1. Furthermore, since the thickness of the source electrode E'480 in the region other than the bonding region 20 is the same as that of the conventional one,
It does not interfere with the formation of fine patterns.

なお、上記実施例ではボンディング領域20の表面から
パワーMO8F E T素子群1bまでの厚みを従来の
ものより厚くするためにボンディング領域20とそのボ
ンディング領域20に対応するパワーMO8FET素子
群1bとの間にダメージ吸収層30を設けたが、これ以
外に第3図に示ず従来のパワーMO3FET1のソース
電極層80におけるボンディング領域20上にダメージ
吸収層30を設けてもよい。
In the above embodiment, in order to make the thickness from the surface of the bonding region 20 to the power MO8FET element group 1b thicker than that of the conventional one, there is a gap between the bonding region 20 and the power MO8FET element group 1b corresponding to the bonding region 20. Although the damage absorption layer 30 is provided in FIG. 3, the damage absorption layer 30 may be provided on the bonding region 20 in the source electrode layer 80 of the conventional power MO3FET 1, which is not shown in FIG.

また、上記実施例ではダメージ吸収層30をソース電極
層80の電極材料と同一のものくAl5i)により構成
したが、これ以外に伯の電極材料、例えばモリブデンシ
リサイドやタングステンシリサイド等を用いてもよいこ
とは言うまでらない。
Further, in the above embodiment, the damage absorption layer 30 is made of the same electrode material as the source electrode layer 80 (Al5i), but other electrode materials such as molybdenum silicide, tungsten silicide, etc. may also be used. Needless to say.

また、上記実施例ではNチ1pネルパワーMO3FET
の場合について説明したが、この発明はPヂpネルパワ
ーMO8FETにも適用することができる。
In addition, in the above embodiment, an N channel 1p channel power MO3FET is used.
Although the case has been described, the present invention can also be applied to a PDP channel power MO8FET.

また、上記実施例ではパワーMO8FETについて説明
したが、その他の半導体装置、例えば絶縁ゲー]・型バ
イポーラ1−ランジスタに本発明を適用することも可能
であり、上記と同様に、絶縁ゲート型バイポーラトラン
ジスタ等の半導体装置へのワイヤボンディング時のダメ
ージを軽減でき、その信頼性を向上させることができる
Furthermore, although the above embodiment describes a power MO8FET, the present invention can also be applied to other semiconductor devices, such as an insulated gate type bipolar transistor. It is possible to reduce damage during wire bonding to a semiconductor device such as the like, and improve its reliability.

〔発明の効果〕〔Effect of the invention〕

以[のように、この発明によれば、電極層のうちボンデ
ィングパッドとしても機能するボンディング領域の厚み
を前記ボンディング領域以外の領域の厚みJ:りも厚く
しているので、前記ボンディング領域によりワイヤボン
ディング時のダメージを軽減ぐきるとともに、ボンディ
ング領域以外の領域での微細パターンの形成が可能とな
るという効果がある。
As described above, according to the present invention, the thickness of the bonding region of the electrode layer that also functions as a bonding pad is made thicker than the thickness J of the region other than the bonding region. This has the effect of reducing damage during bonding and making it possible to form fine patterns in areas other than the bonding area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる半導体装置であるパワーMO
8FETの断面図、第2図はパワーMO8FET素子の
断面図、第3図は従来のパワーMO3FETの断面図、
第4図はソース電極の製造IJ法を示す断面図である。 図において、1aはパワーM OS F E T素子。 1bはパワーMO8F E T素子群、20はボンディ
ング領域、80はソース電極層である。 なお、各図中同一符号は同一または相当部分を示す。 第 図
FIG. 1 shows a power MO which is a semiconductor device according to the present invention.
8FET cross-sectional view, Figure 2 is a cross-sectional view of a power MO8FET element, Figure 3 is a cross-sectional view of a conventional power MO3FET,
FIG. 4 is a cross-sectional view showing the IJ method for manufacturing the source electrode. In the figure, 1a is a power MOSFET element. 1b is a power MO8FET element group, 20 is a bonding region, and 80 is a source electrode layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板と、前記半導体基板に形成された複数
の半導体素子と、前記半導体基板上に形成され、前記複
数の半導体素子と共通接続された電極層とを備え、前記
複数の半導体素子のうち少なくとも1つ以上の半導体素
子に対応する前記電極層の一部をボンディングパッドと
して利用する半導体装置において、 前記電極層のうち前記ボンディングパッドとしても機能
するボンディング領域の厚みが前記ボンディング領域以
外の領域の厚みよりも厚いことを特徴とする半導体装置
(1) A semiconductor substrate, a plurality of semiconductor elements formed on the semiconductor substrate, and an electrode layer formed on the semiconductor substrate and commonly connected to the plurality of semiconductor elements, In a semiconductor device in which a part of the electrode layer corresponding to at least one semiconductor element is used as a bonding pad, the thickness of the bonding region of the electrode layer that also functions as the bonding pad is a region other than the bonding region. A semiconductor device characterized by being thicker than .
JP14433888A 1988-06-10 1988-06-10 Semiconductor device Pending JPH021950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14433888A JPH021950A (en) 1988-06-10 1988-06-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14433888A JPH021950A (en) 1988-06-10 1988-06-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH021950A true JPH021950A (en) 1990-01-08

Family

ID=15359786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14433888A Pending JPH021950A (en) 1988-06-10 1988-06-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH021950A (en)

Similar Documents

Publication Publication Date Title
JPH07183302A (en) Formation of metal layer and bonding method therefor
US4656055A (en) Double level metal edge seal for a semiconductor device
JPH021950A (en) Semiconductor device
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
JPH0563202A (en) Semiconductor device
JP2504498B2 (en) Semiconductor device
JPH06296012A (en) Semiconductor device and its manufacture
JPH01262654A (en) Semiconductor device
JPS6143475A (en) Mos semiconductor device
JPS63166273A (en) Vertical semiconductor device
KR100611743B1 (en) TFT with Multiple Gate
JPS6115365A (en) Transistor
KR940009351B1 (en) Edge seal and manufacturing method of a semiconductor chip
JPH08195434A (en) Accumulation device with surface electric field delimiting structure and its preparation
JPH0364931A (en) Mos type semiconductor device
JP2892673B2 (en) Semiconductor device
JPH04111324A (en) Semiconductor device
JP2802940B2 (en) Semiconductor device
JPS61259571A (en) Monolithic semiconductor device and manufacture thereof
JPH11307552A (en) Semiconductor device
JPH03236281A (en) Power semiconductor device
JPH01204473A (en) Thin film transistor
JPH05308139A (en) Semiconductor device
JPS5979575A (en) Composite static induction transistor
JPS62152170A (en) Manufacture of semiconductor device