JPH02194083A - Latent heat storage material - Google Patents

Latent heat storage material

Info

Publication number
JPH02194083A
JPH02194083A JP1013223A JP1322389A JPH02194083A JP H02194083 A JPH02194083 A JP H02194083A JP 1013223 A JP1013223 A JP 1013223A JP 1322389 A JP1322389 A JP 1322389A JP H02194083 A JPH02194083 A JP H02194083A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
latent heat
heat
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1013223A
Other languages
Japanese (ja)
Other versions
JP2890197B2 (en
Inventor
Yoshinobu Yamaguchi
義信 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1013223A priority Critical patent/JP2890197B2/en
Publication of JPH02194083A publication Critical patent/JPH02194083A/en
Application granted granted Critical
Publication of JP2890197B2 publication Critical patent/JP2890197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a latent heat storage material improved in heat resistance and durability and repeating stable heat storage and release cycles by mixing a specific latent heat storage material with a latent heat storage material comprising Na ions and a ceramic derived from sepiolite. CONSTITUTION:A latent heat storage material either composed mainly of CH3 COONa.3H2O or comprising a eutectic comprising NH3 ions is mixed with a latent heat storage material comprising Na ions, and a ceramic derived from sepiolite [Mg8Si12(OH)4.8H2O].

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、潜熱を利用した蓄熱材料に闇する従来の技術 Fa熱を利用した$8物質に関するものは数多く提案さ
れているが、提案の全てが必ずしも使用に適応できる状
態ではなかった。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to heat storage materials that utilize latent heat.Conventional technology There have been many proposals regarding $8 materials that utilize Fa heat, but all of the proposals have been made. They were not always fit for use.

最大の課題が然サイクルに対応した品質の安定性と経済
性にあり、解決法として種々の潜熱物質毎に安定剤が提
案されている。
The biggest challenge lies in quality stability and economy in response to thermal cycles, and stabilizers have been proposed for various latent heat substances as solutions.

酢酸ナトリウム3水塩は蓄熱材料として熱容量、応答性
に優れ融解潜熱を結晶化の過程で放熱する。
Sodium acetate trihydrate has excellent heat capacity and responsiveness as a heat storage material, and radiates latent heat of fusion during the crystallization process.

一般的に持水塩を有する蓄熱物質は融解すると低粘性の
液状を呈するが特に、酢酸ナトリウム水溶液は傾向が顕
著である。
Generally, a heat storage material having a hydrated salt exhibits a low viscosity liquid state when melted, and this tendency is particularly noticeable in an aqueous solution of sodium acetate.

その結果相分離、過冷却現象が特に大きく、これ等の現
象の防止を無視して潜熱利用の蓄熱材料として使用出来
なかった。
As a result, phase separation and supercooling phenomena were particularly severe, and prevention of these phenomena was ignored and the material could not be used as a heat storage material for utilizing latent heat.

使用される安定材が多糖類であったり、オレフィン系、
多価アルコール系、無機土類等粘土4!r物等が従来知
られている。
The stabilizers used are polysaccharides, olefins,
Polyhydric alcohol-based, inorganic earth, etc. clay 4! R products and the like are conventionally known.

例えば、特許公開59−53578.1461−119
86、同61−11987.6111988.61−4
°2958.60−4583号明細書のものがしられて
いる。
For example, patent publication 59-53578.1461-119
86, 61-11987.6111988.61-4
No. 2958.60-4583 is known.

発明が解決しようとする問題点 上記発明になるものは無機粘土質物を除き、有機物質で
あるために加熱サイクルの過程で融解温度域のコントロ
ールが不可欠であった。
Problems to be Solved by the Invention Since the materials of the invention described above are organic materials, excluding inorganic clay materials, it is essential to control the melting temperature range during the heating cycle process.

例えば酢酸ナトリウム系蓄熱材の融解点は58℃である
/+9使用する安定剤が規定温度以上特に高温に達する
と熱的影響を受ける結果、物性が変化し、安定材の機能
低下を起こし、その結果、結晶化が起こらない等の欠点
があった。
For example, the melting point of sodium acetate-based heat storage material is 58℃/+9 When the stabilizer used reaches a particularly high temperature above the specified temperature, it is thermally affected, resulting in changes in physical properties and a decline in the function of the stabilizer. As a result, there were drawbacks such as no crystallization.

又、無機粘土質物について、例えば特許公l#l61−
11986号でカオリン、ケイソウ土、ベントナイトが
示されている。
Regarding inorganic clay materials, for example, Patent Publication #161-
No. 11986 shows kaolin, diatomaceous earth, and bentonite.

上記記載の粘土類の成分機能は該品と構造上。The component functions of the clays described above are based on the structure of the product.

異なる物性であり、可塑性を有する粘性資質の利用を計
るものであり、呈示されているベントナイトはその性質
上イオン交換能が大きいため、安定剤とし使用すると共
融状層下で高温に置かれると凝集して安定したウエット
ボリームや粘性を無くし安定剤の機能を消失する事が知
られており、ケイソウ土、カオリンは可塑性に優れるが
、信置性、吸着性に欠けるので添加量を必要とした。
Bentonite has different physical properties, and aims to utilize its viscous qualities with plasticity.The proposed bentonite has a large ion exchange capacity due to its properties, so when used as a stabilizer, it becomes unstable when placed at high temperatures under a eutectic layer. It is known that it aggregates and loses stable wet volume and viscosity, and loses its function as a stabilizer.Diatomaceous earth and kaolin have excellent plasticity, but lack reliability and adsorption properties, so it was necessary to add a large amount. .

相分離防止に使用される他の有機質物増粘材は限られた
条件下で特定の化合物の吸着性や増粘性に優れるものが
多く知られている。
Many other organic thickeners used to prevent phase separation are known to have excellent adsorption and thickening properties for specific compounds under limited conditions.

−殻内に、イオン交換能が大きい物質が多く、塩基性や
アルカリ性質物と共融すると、吸@能力や活性度が極度
に低−[し、凝固する傾向が強く、これらの機能を補う
ために各材料資質の特徴に応じた強化安定材を添加し複
合的に目的を達成する方法が取られている。
-There are many substances with high ion-exchange ability in the shell, and when eutectic with basic or alkaline substances, the absorption capacity and activity are extremely low. For this purpose, a method is used to achieve the objective in a composite manner by adding reinforcing and stabilizing materials according to the characteristics of each material quality.

しかし、混合比率に上り共融構造が変化しやすく、加工
行程に於ける品質の安定管理面やコスト上、問題を残し
ていた。
However, as the mixing ratio increases, the eutectic structure tends to change, leaving problems in terms of stable quality control and cost during the processing process.

問題を解決する為の手段 本発明はこれまで提案されている有機質物や無機質物安
定材の熱的物性変化を防止するには加熱コントロールが
品質変化を防止しうる最良の解決策であった欠点に鑑み
、品質管理のaII素化と長期間の編返し使用における
耐久性を付与することで信頼性のある、経済性の高いM
熱材を提供することを目的とするものであり、そこで、
本発明者はこれらの欠点のない潜熱蓄熱材料用の相分離
防止安定材料について種々検討の結果、蓄熱と放熱を繰
返しても劣化せず、担持体として資質と機能の不変性を
満たし、特に耐熱性を発揮し、且つ潜pAM熱材料の保
有熱延に影響を与えない資質を有する事にあった。
Means for Solving the Problem The present invention has the disadvantage that heating control was the best solution to prevent changes in the thermal properties of organic and inorganic stabilizers that have been proposed so far. In view of this, we have created a reliable and highly economical M with a II quality control and durability for long-term use.
The purpose is to provide a thermal material, and therefore,
As a result of various studies on stable materials for preventing phase separation for latent heat storage materials that do not have these drawbacks, the present inventors found that they do not deteriorate even after repeated heat storage and heat dissipation, satisfy the constancy of qualities and functions as a carrier, and are particularly heat resistant. It has the property of exhibiting high properties and not affecting the hot rolling properties of the latent pAM thermal material.

その要旨は繊維形状のセピオライトを成因とした繊維状
結晶構造セラミックスの資質に注目し前記記載の蓄熱材
料に一定量混ぜて劣化の防止を施した蓄熱材とした事に
ある。
The gist of this is to focus on the qualities of fibrous crystalline ceramics made from fibrous sepiolite, and to create a heat storage material that is prevented from deteriorating by mixing a certain amount with the heat storage material described above.

即ち、以上のように構成することで、作製された酢酸ナ
トリウム系蓄熱材は長期間、JP1%〜放熱の行程で高
温の経返し使用を行っても蓄熱能力の低下や、相分離は
殆ど発生せず、所期の目的を達成出来たのである。
In other words, with the above configuration, the fabricated sodium acetate heat storage material will hardly experience any decrease in heat storage capacity or phase separation even if it is repeatedly used at high temperatures in the heat dissipation process from JP1% to JP1% for a long period of time. Instead, they were able to achieve their intended purpose.

従来知られている高分子、例えばポリビニールアルコー
ルでは相分離N熱材に増粘安定材として単独で使用出来
ず、予めアセトン等で処理するか、混合しなければ単独
では11集して使用出来なかったのみならず、耐熱性に
欠ける為、融解点より高温で蓄熱〜放熱を経返し加農す
ると分子の劣化を生じ、最後は分解して、Iftan再
生不能となっていた。
Conventionally known polymers, such as polyvinyl alcohol, cannot be used alone as a thickening stabilizer in phase-separated N-thermal materials, and cannot be used alone in 11 groups unless they are treated with acetone etc. in advance or mixed. Not only was it not found, but it also lacked heat resistance, so if it was repeatedly processed through heat storage and heat release at temperatures higher than its melting point, the molecules deteriorated and eventually decomposed, making it impossible to regenerate Iftan.

本発明ではセピオライト繊維結晶物の構造体がゼオライ
トに見られる吸着性、ペンナイト特性に見られる信置性
、カオリン特性に代表される可塑性を兼備えている事に
着目した。
The present invention focused on the fact that the sepiolite fiber crystal structure has adsorption properties found in zeolite, reliability seen in pennite properties, and plasticity typified by kaolin properties.

本該晶に採用したセピオライトの構造はsagy&ar
aclleyらによりE M g 8(S i 12O
30) (OH)4−8142OJの構造式として公表
され、¥tmはタルク(滑石)を互い違いに積重ねた#
I構造体しており、繊維中に5.6 xll、oオング
ストロームの口径のトンネル状細孔が繊維の間にm数存
在している事が高分解能電子311I微鋪により、解明
されている。
The structure of sepiolite adopted for this crystal is sagy&ar
E M g 8 (S i 12O
30) Published as the structural formula of (OH)4-8142OJ, ¥tm is # made by stacking talc (talcum) alternately.
It has been clarified by high-resolution electronic 311I microscopic analysis that the fiber has an I structure, and that there are m number of tunnel-like pores with a diameter of 5.6 x 1,0 angstroms between the fibers.

このトンネルの、特異な吸着効果が保持力を発揮し、担
持体として安定材の働きをする。
The unique adsorption effect of this tunnel exerts a holding power and acts as a support and stabilizer.

酢酸ナトリウム系蓄熱材は液状に融解するとアルカリ性
となるが、従来の増粘安定材と比軸において、セピオラ
イトは溶液中でのウェットボリューム、粘性効果が経時
変化においても一定値で安定して使用する事とができな
Sodium acetate-based heat storage materials become alkaline when melted into liquid form, but when compared to conventional thickening and stabilizing materials, sepiolite's wet volume in solution and viscosity effects remain constant even over time and can be used stably. I can't do anything.

該#熱材に採用したセピオライトは従来使用されている
多M類やオレフィン系、多価アルコール系、に見られる
分子抱摂によるモル効果や、粘土類のI造と異なる細孔
マトリックスを有する事からマトリックス内部で安定し
て酢酸ナトリウム塩溶液を選択的に吸着し強力に保持し
得るセラミラス構造体のため、加熱による変質破壊がな
く、分離する事もない。
The sepiolite used in this #thermal material has a molar effect due to molecular inclusion found in conventionally used poly-M, olefin-based, and polyhydric alcohol-based materials, and has a pore matrix that is different from the I structure of clays. Because it is a ceramilas structure that can selectively adsorb and strongly retain sodium acetate salt solution stably inside the matrix, it does not undergo deterioration or destruction due to heating and does not separate.

これ等の構造体が相分離を防止し、熱サイクルによる該
晶の物性を安定させている。
These structures prevent phase separation and stabilize the physical properties of the crystal due to thermal cycles.

よって該晶添加の酢酸ナトリウムは、熱的に安定な蓄熱
材として長期間繰返しの使用にたえる蓄熱材とすること
ができる。
Therefore, the crystal-added sodium acetate can be used as a thermally stable heat storage material that can be used repeatedly over a long period of time.

尚、該品添加の蓄熱材は他の添加剤である過冷却防止材
の資質にも影響を与えることはなく、耐熱に対する蓄熱
材の品質の不変性の向上は、従来にない特徴を示すと共
に、用途拡大に結付くものであり、かつ安価に提供でき
る。
Furthermore, the heat storage material added to this product does not affect the quality of the supercooling prevention material, which is another additive, and the improvement in the quality of the heat storage material with respect to heat resistance is unprecedented. , which leads to expanded applications and can be provided at low cost.

作用 酢酸ナトリウム3水塩、又、無水酢酸ナトリウムと水に
セピオライトを適時必要量に応じて混入添加し、過冷却
防止核質材又はトリガーを加えて、密封包装した蓄熱材
を該品物性の限界温度を越えた温度90℃で長時間加熱
を謹返しても、相分離に起因する物性上の変化認められ
ず安定して使用することがでる。
Action Sodium acetate trihydrate or anhydrous sodium acetate and water are mixed with sepiolite according to the required amount at the appropriate time, and a nuclear material or trigger to prevent supercooling is added, and the heat storage material is sealed and packaged to meet the limits of the product properties. Even after repeated heating for a long time at a temperature exceeding 90° C., no change in physical properties due to phase separation is observed and it can be used stably.

このようにして口られた?5熱材は、耐熱耐久性の向上
で蓄熱〜放熱サイクルが安定しているので、簡易な方法
で加熱蓄熱ができ1手軽にエネルギー利用の用途拡大に
好適である。
Did you talk to me like this? 5. The thermal material has a stable heat storage to heat radiation cycle due to improved heat resistance and durability, so it can heat and store heat in a simple manner and is suitable for expanding the use of energy.

実施例1 以下、本発明の詳細な説明する。Example 1 The present invention will be explained in detail below.

蓄熱物質として#酸ナトリウム3水塩100g結晶にセ
ピオライト1gを添加し、充分撹拌混合した後、破過冷
却用トリガーを一緒に試験用プラスチック容器に真空密
対人状態にして充填し容器内部に熱電対部を設置し1次
にこの容器を湯煎にて徐々に昇温加熱しな。
As a heat storage substance, 1 g of sepiolite was added to 100 g of crystals of #acid sodium trihydrate, and after thorough stirring and mixing, the plastic container for the test was filled with a breakthrough cooling trigger in a vacuum-tight state, and a thermocouple was placed inside the container. First, heat the container gradually in a hot water bath.

65℃に内部温度が到達した時点で、酢酸ナトリウム3
水塩結晶は完全に融解したが、連続して加熱をつづけ酢
酸ナトリウム溶解液温度が90℃に達したところで断熱
、冷却水を用いて酢酸ナトリウムの温度を15℃まで冷
却し、過冷却状層で15℃に保った恒温槽に入れ、混合
した各成分の密度の違いから起こる2層構造化環境を作
るために、1時間に渡り、一定温度で放置した後、トリ
ガーを作動させて 過冷却を破り、液状〜結晶化の過程
を1日2回加熱、冷却、放熱のサイクルを3カ月間経返
し実施しが、試験期間完了まで、物性の反応応答性に何
等の変化も認められず、IN然〜放熱のサイクル機能を
完全に果たした。
When the internal temperature reaches 65°C, add 3 parts of sodium acetate.
Although the hydrate crystals were completely melted, heating was continued and when the temperature of the sodium acetate solution reached 90°C, the temperature of the sodium acetate was cooled to 15°C using cooling water and a supercooled layer. The mixture was placed in a constant temperature bath kept at 15℃, and left at a constant temperature for 1 hour to create a two-layer structured environment caused by the difference in density of each mixed component.Then, the trigger was activated to supercool the mixture. We repeated the cycle of heating, cooling, and heat dissipation twice a day during the liquidation to crystallization process for three months, but until the end of the test period, no changes were observed in the reaction response of the physical properties. INZEN~ Perfectly fulfilled the heat dissipation cycle function.

このように実施に使用した試料を集計して、示差熱分析
により保有潜、!!量を測定した結果、試料数5体のう
ち全ての試料についてPUNの低下は認められなかった
In this way, the samples used in the implementation were aggregated, and the latent potential was determined by differential thermal analysis. ! As a result of measuring the amount, no decrease in PUN was observed in any of the five samples.

実施fs2 #故ナトリウムと水から成る成分が75重量%とW1#
アンモニュウム25重量%がら成る系100g共融物に
セピオライトIgを添加して、よく撹拌混合した後、破
過冷却用金属トリガを一緒に試験用容器に充填し、真空
状態で封印、試験容器内部の温度を測定出来る熱電対部
を設置した試料5体製作し、実施1と同様な条件で3力
月間サイクル試験をおこなった結果、全てにおいて、応
答1111.蓄熱量の低下は認めなかった。
Implementation fs2 # component consisting of late sodium and water is 75% by weight and W1 #
Sepiolite Ig was added to 100 g of a eutectic system consisting of 25% by weight of ammonium, and after stirring and mixing thoroughly, a metal trigger for breakthrough cooling was filled into a test container, sealed in a vacuum state, and the interior of the test container was sealed. Five samples equipped with thermocouples that can measure temperature were fabricated, and a 3-force monthly cycle test was conducted under the same conditions as in Example 1. As a result, the response was 1111. No decrease in heat storage amount was observed.

実 施 例3 比較例 従来から提案されいる技術のうち、増粘性安定材として
多MM系、多1−アルコール系を選んで耐熱性能、応答
機能について比較した。
Example 3 Comparative Example Among the conventionally proposed techniques, a multi-MM system and a multi-1-alcohol system were selected as thickening stabilizers, and their heat resistance performance and response function were compared.

酢酸ナトリウム3水塩】00g結晶に多糖類を2g添加
し、充分撹拌した陵、破過冷却用トリガーと共に試験容
器に真空密封入し、実施例1と同様の条件下でM8〜放
熱のサイクル実験をしなところ試料5体ともヒートサイ
クル回数40回のうちにその全てが、物性変化により過
冷却状態のまま作動しないもの、規則性を消失するなど
使用に耐えられなかった。
Add 2g of polysaccharide to 00g of sodium acetate trihydrate crystals, vacuum-seal the mixture in a test container together with a well-stirred tube and a trigger for breakthrough cooling, and conduct a heat dissipation cycle experiment from M8 under the same conditions as in Example 1. However, after 40 heat cycles, all of the five samples were unusable due to changes in physical properties, such as some remaining in a supercooled state and not operating, and others losing their regularity.

同様に多価アルコール系5gでのサイクル実験では、2
1回で終了した。
Similarly, in a cycle experiment using 5g of polyhydric alcohol, 2
It was completed in one go.

効果 本発明は、以」二の構成作用により、夛成分の相分離の
抑制が、容易になるとともに熱的性能と、耐久性を向上
した蓄熱材となることから。
Effects The present invention provides a heat storage material that facilitates suppression of phase separation of multiple components and has improved thermal performance and durability due to the following two structural actions.

従来技術では温度管理面で、小都合であった加熱作業が
簡易に実施でき、手軽に使用できる。
The heating operation, which was difficult in the conventional technology in terms of temperature control, can be easily performed, and it is easy to use.

該蓄熱材に添加したセピオライトは1it−品として、
相分離抑制安定材としての資質が持水塩材料への適合性
に潰れ、49位当りの保水維持力が大きいので添加に際
し、質Yを必要としないなど経済性にも優れた蓄熱材料
を提供できる。
The sepiolite added to the heat storage material is a 1-ite product,
Its qualities as a phase separation suppressing stabilizing material are overcome by its suitability for hydrate-retaining salt materials, and its ability to retain water around the 49th position is high, so it does not require quality Y when added, providing a heat storage material with excellent economic efficiency. can.

応用用途も太陽熱や廃熱エネルギーなど、熱コントロー
ルが困・雅なエネルギーの効率的(30〜90℃までの
tt熱含む熱量)な蓄シさに利用できる。
It can also be used for efficient storage of energy such as solar heat and waste heat energy that is difficult to control (heat including TT heat up to 30 to 90 degrees Celsius).

Claims (4)

【特許請求の範囲】[Claims] (1)酢酸ナトリウム3水塩(CH_3CO_2Na_
3H_2O)を主成分とした潜熱蓄熱質物、あるいは共
融物がアンモニュウムイオンから成る潜熱蓄熱材並びに
、ナトリウムイオンから成る潜熱蓄熱材とにセピオライ
トを成因としたセラミックス[Mg_8Si_1_2(
OH)4.8H_2O]を添加したことを特徴とした蓄
熱材料。
(1) Sodium acetate trihydrate (CH_3CO_2Na_
A latent heat storage material whose main component is 3H_2O), or a latent heat storage material whose eutectic is ammonium ions, and a latent heat storage material whose eutectic is ammonium ions, and a ceramic [Mg_8Si_1_2(
A heat storage material characterized by adding OH)4.8H_2O].
(2)硫酸ナトリウム10水塩を主成分とする潜熱蓄熱
材並びにチオ硫酸ナトリウム5水塩を主成分とする蓄熱
物質にセピオライトを成因としたセラミックス[Mg_
8Si_1_2(OH)4.8H_2O]を添加したこ
とを特徴とした潜熱蓄熱材。
(2) Ceramics [Mg_
A latent heat storage material characterized by adding 8Si_1_2(OH)4.8H_2O].
(3)酢酸ナトリウム3水塩との共融物として、他のナ
トリウムイオンが硫酸ナトリウム10水塩、又はチオ硫
酸ナトリウム5水塩のいずれかかの一種が100重量部
にセピオライトを成因としたセラミックスを0.01〜
40重量%を添加した事を特徴とする特許請求範囲第1
項第2項記載の蓄熱材料。
(3) Ceramics containing sepiolite as a eutectic with sodium acetate trihydrate, in which other sodium ions include 100 parts by weight of either sodium sulfate decahydrate or sodium thiosulfate pentahydrate. from 0.01
Claim 1 characterized in that 40% by weight is added.
The heat storage material according to item 2.
(4)酔酸ナトリウム3水塩と共融物のアンモニウムイ
オン塩化物が、硝酸アンモニウム(NH_4NO_3)
及び塩化アンモニウム(NH_4Cl)のいずれかの一
種である請求範囲第1項記載の蓄熱材。
(4) Ammonium ion chloride, which is a eutectic with sodium hydrate trihydrate, becomes ammonium nitrate (NH_4NO_3)
and ammonium chloride (NH_4Cl).
JP1013223A 1989-01-24 1989-01-24 Latent heat storage material Expired - Fee Related JP2890197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013223A JP2890197B2 (en) 1989-01-24 1989-01-24 Latent heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013223A JP2890197B2 (en) 1989-01-24 1989-01-24 Latent heat storage material

Publications (2)

Publication Number Publication Date
JPH02194083A true JPH02194083A (en) 1990-07-31
JP2890197B2 JP2890197B2 (en) 1999-05-10

Family

ID=11827177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013223A Expired - Fee Related JP2890197B2 (en) 1989-01-24 1989-01-24 Latent heat storage material

Country Status (1)

Country Link
JP (1) JP2890197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201810A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Heat storage material composition
WO2015122255A1 (en) * 2014-02-13 2015-08-20 北川工業株式会社 Heat storage material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314741A (en) * 2006-05-29 2007-12-06 Michiko Yamaguchi Latent heat storage material composition
JP5854490B1 (en) * 2015-06-12 2016-02-09 義信 山口 Latent heat storage material composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201810A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Heat storage material composition
WO2015122255A1 (en) * 2014-02-13 2015-08-20 北川工業株式会社 Heat storage material

Also Published As

Publication number Publication date
JP2890197B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US3986969A (en) Thixotropic mixture and method of making same
US4237023A (en) Aqueous heat-storage compositions containing fumed silicon dioxide and having prolonged heat-storage efficiencies
CN110382658B (en) Latent heat storage material composition and latent heat storage tank
CN104531077A (en) Preparation method of expanded-graphite-base hydrated salt composite solid-solid phase-change energy storage material
JPS63101473A (en) Heat energy storage composition
HU213958B (en) Mixtures of salts for storing thermal energy, as phase transition heat method for producing same, method for storing waste heat produced by motor vehicles and apparatus for storing thermal energy
TW573004B (en) Ternary salt mixtures
Tang et al. Supercooling and phase separation of inorganic salt hydrates as PCMs
JP7448158B2 (en) Metal nitrate-based compositions for use as phase change materials
JPH02194083A (en) Latent heat storage material
CN106221675A (en) A kind of phase-change and energy-storage medium
JPS5947287A (en) Magnesium nitrate-magnesium chloride hydration reversible phase changing composition
US4595516A (en) Heat storage material
JP2005524755A (en) Heat storage medium II
JP2007314741A (en) Latent heat storage material composition
Wada et al. Studies on salt hydrates for latent heat storge. VI. Preheating effect on crystallization of sodium acetate trihydrate from aqueous solution with a small amount of disodium hydrogenphosphate
WO2021182388A1 (en) Heat-storage material composition
CA1288236C (en) Latent heat store
JPS6221038B2 (en)
JPS63137982A (en) Heat storage material composition
Thakkar et al. Stabilizing a low temperature phase change material based on Glaubers salt
JPS608380A (en) Heat accumulative material of latent heat
JPS6121579B2 (en)
JPS617378A (en) Thermal energy storage material
JPS61197668A (en) Thermal energy storage material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees