JP2012201810A - Heat storage material composition - Google Patents

Heat storage material composition Download PDF

Info

Publication number
JP2012201810A
JP2012201810A JP2011068178A JP2011068178A JP2012201810A JP 2012201810 A JP2012201810 A JP 2012201810A JP 2011068178 A JP2011068178 A JP 2011068178A JP 2011068178 A JP2011068178 A JP 2011068178A JP 2012201810 A JP2012201810 A JP 2012201810A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material composition
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011068178A
Other languages
Japanese (ja)
Other versions
JP5660949B2 (en
Inventor
Hiroyuki Arai
博之 新井
Kazuhiro Miyajima
和浩 宮島
Shigehiko Sato
繁彦 佐藤
Shinichi Ogura
新一 小倉
Kazuto Yaeda
一人 八重田
Yoichiro Yoshii
揚一郎 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Toyota Motor Corp
Japan Chemical Industries Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Toyota Motor Corp
Japan Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Toyota Motor Corp, Japan Chemical Industries Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2011068178A priority Critical patent/JP5660949B2/en
Publication of JP2012201810A publication Critical patent/JP2012201810A/en
Application granted granted Critical
Publication of JP5660949B2 publication Critical patent/JP5660949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage material which has a melting point in a temperature range for automobile, and is excellent in thermal durability and metal anticorrosion property with high heat storage energy.SOLUTION: This heat storage material composition includes: D-threitol, sepiolite having an average particle size of less than 100 μm, a melting point adjusting agent, and a rust-preventive agent.

Description

本発明は、自動車用として使用可能な温度域に融点を有し、かつ、蓄熱エネルギーが高く、熱耐久性及び金属防食性に優れる蓄熱材組成物に関する。   The present invention relates to a heat storage material composition having a melting point in a temperature range that can be used for automobiles, high heat storage energy, and excellent heat durability and metal corrosion resistance.

潜熱蓄熱材は、顕熱蓄熱材に比べて蓄熱密度が高く、相変化温度が一定であるという利点を生かして実用化されている。潜熱蓄熱材は、融解と凝固の繰り返しに伴う潜熱の出し入れを利用するため、その温度域によって様々な用途に使用される。自動車エンジン用蓄熱システムに適用する場合、潜熱蓄熱材が80〜88℃の温度域(以下、自動車用温度域という)で相変化することが好ましい。   The latent heat storage material is put into practical use by taking advantage of the fact that the heat storage density is higher than that of the sensible heat storage material and the phase change temperature is constant. The latent heat storage material is used for various applications depending on its temperature range because it uses the extraction and transfer of latent heat that accompanies repeated melting and solidification. When applied to an automobile engine heat storage system, it is preferable that the latent heat storage material undergoes a phase change in a temperature range of 80 to 88 ° C. (hereinafter referred to as an automobile temperature range).

特許文献1には、充分な蓄熱量を保ちながら、過冷却が防止された蓄熱材組成物として、エリスリトール及びマンニトールから選ばれる少なくとも一種の糖アルコールと、層状珪酸塩(例えば、膨潤性合成雲母、タルク等)とを含有することを特徴とする蓄熱材組成物が開示されている。ここで、層状珪酸塩は糖アルコールの過冷却抑制成分として添加されている。しかしながら、エリスリトール及びマンニトールは融点が高いため(それぞれ119℃、166℃)、上記蓄熱材組成物は、自動車用温度域で相変化しない。また、上記蓄熱材組成物は、熱劣化により凝固完了時間が大幅に遅くなり、熱交換に時間がかかるようになるため、長時間使用できないという問題があった。   Patent Document 1 discloses at least one sugar alcohol selected from erythritol and mannitol as a heat storage material composition in which supercooling is prevented while maintaining a sufficient amount of heat storage, and a layered silicate (for example, swellable synthetic mica, A heat storage material composition characterized by containing talc and the like. Here, the layered silicate is added as a component for suppressing supercooling of sugar alcohol. However, since erythritol and mannitol have high melting points (119 ° C. and 166 ° C., respectively), the above heat storage material composition does not change phase in the automotive temperature range. In addition, the heat storage material composition has a problem in that it cannot be used for a long time because the solidification completion time is significantly delayed due to thermal deterioration and heat exchange takes time.

また、酢酸ナトリウム水和物を潜熱蓄熱物質として用いる蓄熱材組成物は、例えば以下の特許文献2−4に開示されている。   Moreover, the heat storage material composition which uses sodium acetate hydrate as a latent heat storage material is disclosed by the following patent documents 2-4, for example.

特許文献2には、酢酸ナトリウム水和物に相分離防止材としてセピオライトを添加した潜熱蓄熱材組成物が開示されている。セピオライトを添加することにより、酢酸ナトリウム水和物の相分離が回避され、蓄熱材組成物の劣化が軽減される。   Patent Document 2 discloses a latent heat storage material composition in which sepiolite is added to sodium acetate hydrate as a phase separation preventing material. By adding sepiolite, phase separation of sodium acetate hydrate is avoided, and deterioration of the heat storage material composition is reduced.

特許文献3には、酢酸ナトリウム水和物等の潜熱蓄熱物質に、相分離防止、過冷却防止のために長繊維状パリゴルスカイトを配合し、必要に応じて融点調整剤及び/又は過冷却防止剤を配合した潜熱蓄熱材組成物が開示されている。また、長繊維状パリゴルスカイトに対して、経済効果等を目的として繊維状セピオライトを添加してもよいことが開示されている。   In Patent Document 3, long-fiber palygorskite is blended with a latent heat storage material such as sodium acetate hydrate to prevent phase separation and overcooling, and a melting point adjusting agent and / or a supercooling preventing agent as necessary. Discloses a latent heat storage material composition. Further, it is disclosed that fibrous sepiolite may be added to the long fibrous palygorskite for the purpose of economic effect and the like.

特許文献4には、酢酸ナトリウム3水塩(CH3CO2Na3H2O)を主成分とした潜熱蓄熱物質に、相分離抑制、熱耐久性の向上のためにセピオライトを添加することについて開示されている。 Patent Document 4 discloses adding sepiolite to a latent heat storage material mainly composed of sodium acetate trihydrate (CH 3 CO 2 Na 3 H 2 O) in order to suppress phase separation and improve thermal durability. ing.

しかしながら、酢酸ナトリウム3水和物は融点が低いため(58℃)、特許文献2−4に開示されている蓄熱材組成物は、自動車用温度域で相変化しない。   However, since sodium acetate trihydrate has a low melting point (58 ° C.), the heat storage material composition disclosed in Patent Document 2-4 does not change phase in the automotive temperature range.

また、非特許文献1には、潜熱蓄熱物質としてD−スレイトールを使用した給湯用潜熱蓄熱材が開示されている。D−スレイトールの融点(89℃)は、他の糖アルコールより低く、自動車用温度域に近い。しかしながら、D−スレイトールは、熱耐久性に劣るため、D−スレイトール単独では長時間使用できないという問題があった。また、D−スレイトールの劣化物の生成や、発核剤、融点調節剤等の添加により、金属腐食性が増大するため、蓄熱体容器をアルミニウム等の金属とした場合に腐食が発生するという問題があった。   Non-patent document 1 discloses a latent heat storage material for hot water supply using D-threitol as a latent heat storage material. The melting point (89 ° C.) of D-threitol is lower than other sugar alcohols and is close to the automotive temperature range. However, since D-threitol is inferior in heat durability, there is a problem that D-threitol alone cannot be used for a long time. In addition, since the corrosiveness of the metal increases due to the generation of a degraded product of D-threitol and the addition of a nucleating agent, a melting point modifier, etc., corrosion occurs when the heat storage container is made of a metal such as aluminum. was there.

このように、従来の潜熱蓄熱材組成物は、自動車用温度域である80〜88℃で相変化しないという点で、自動車への用途には不適切であった。また、自動車用温度域に融点を有し、かつ、蓄熱エネルギーが高く、熱耐久性及び金属防食性に優れる蓄熱材組成物は未だ見出されていない。   Thus, the conventional latent heat storage material composition is unsuitable for use in automobiles in that it does not change phase at 80 to 88 ° C., which is a temperature range for automobiles. Moreover, a heat storage material composition having a melting point in the automotive temperature range, high heat storage energy, and excellent heat durability and metal corrosion resistance has not yet been found.

特開平10−130637号公報Japanese Patent Laid-Open No. 10-130637 特開2007−314741号公報JP 2007-314741 A 特開2008−184589号公報JP 2008-184589 A 特許第2890197号公報Japanese Patent No. 2890197

化学工学論文集、2004年、第30巻、第4号、552−555頁Chemical Engineering, 2004, Vol. 30, No. 4, pp. 552-555

本発明は、自動車用温度域に融点を有し、かつ、蓄熱エネルギーが高く、熱耐久性及び金属防食性に優れる蓄熱材組成物を提供することを課題とする。   This invention makes it a subject to provide the thermal storage material composition which has melting | fusing point in the temperature range for motor vehicles, high thermal storage energy, and is excellent in thermal durability and metal corrosion resistance.

本発明は以下の発明を包含する。
(1)D−スレイトール、平均粒子径が100μm未満のセピオライト、融点調節剤及び防錆剤を含む蓄熱材組成物。
(2)セピオライトの含量が、D−スレイトール100質量部に対して、0.1〜10質量部であることを特徴とする、上記(1)に記載の蓄熱材組成物。
(3)融点調節剤が水又は水とアルコール類との混合物であり、融点調節剤の含量が、D−スレイトール100質量部に対して、0.1〜5質量部であることを特徴とする、上記(1)又は(2)に記載の蓄熱材組成物。
(4)防錆剤がベンゾトリアゾールであり、防錆剤の含量が、D−スレイトール100質量部に対して、0.01〜5質量部であることを特徴とする、上記(1)〜(3)のいずれかに記載の蓄熱材組成物。
The present invention includes the following inventions.
(1) A heat storage material composition comprising D-threitol, sepiolite having an average particle size of less than 100 μm, a melting point regulator and a rust inhibitor.
(2) The heat storage material composition as described in (1) above, wherein the sepiolite content is 0.1 to 10 parts by mass with respect to 100 parts by mass of D-threitol.
(3) The melting point regulator is water or a mixture of water and alcohol, and the content of the melting point regulator is 0.1 to 5 parts by mass with respect to 100 parts by mass of D-threitol. The heat storage material composition according to (1) or (2) above.
(4) The rust preventive agent is benzotriazole, and the content of the rust preventive agent is 0.01 to 5 parts by mass with respect to 100 parts by mass of D-threitol. The heat storage material composition according to any one of 3).

本発明の蓄熱材組成物は、自動車用温度域に融点を有し、かつ、蓄熱エネルギーが高く、熱耐久性及び金属防食性に優れる。   The heat storage material composition of the present invention has a melting point in the automotive temperature range, has high heat storage energy, and is excellent in thermal durability and metal corrosion resistance.

本発明の蓄熱材組成物は、D−スレイトール、平均粒子径が100μm未満のセピオライト、融点調節剤及び防錆剤を含むことを特徴とする。本発明の蓄熱材組成物はD−スレイトール(融点89℃)を主成分とするため、少量の融点調節剤を配合することにより、自動車用温度域(80〜88℃)での相変化を達成することができる。また、本発明の蓄熱材組成物は、発核剤(過冷却防止剤)として平均粒子径が100μm未満のセピオライトを含有することにより、優れた熱耐久性を有する。また、本発明の蓄熱材組成物は、防錆剤を含有することにより、長期間、蓄熱体容器の腐食を抑制できる。   The heat storage material composition of the present invention includes D-threitol, sepiolite having an average particle diameter of less than 100 μm, a melting point regulator, and a rust inhibitor. Since the heat storage material composition of the present invention is mainly composed of D-threitol (melting point 89 ° C.), a phase change in the automotive temperature range (80 to 88 ° C.) is achieved by blending a small amount of a melting point regulator. can do. Moreover, the heat storage material composition of this invention has the outstanding thermal durability by containing the sepiolite whose average particle diameter is less than 100 micrometers as a nucleating agent (supercooling prevention agent). Moreover, the heat storage material composition of this invention can suppress corrosion of a heat storage body container for a long period of time by containing a rust preventive agent.

本発明の蓄熱材組成物に使用されるD−スレイトールの配合量は、重量当たりの潜熱量を確保するために、蓄熱材組成物100質量部に対して80〜99.8質量部であることが好ましく、85〜95質量部であることが特に好ましい。   The blending amount of D-threitol used in the heat storage material composition of the present invention is 80 to 99.8 parts by mass with respect to 100 parts by mass of the heat storage material composition in order to secure the amount of latent heat per weight. Is preferable, and it is especially preferable that it is 85-95 mass parts.

本発明の蓄熱材組成物に発核剤(過冷却防止剤)として使用されるセピオライトとは、海泡石とも呼ばれ、2MgO・3SiO・nHOの構造式を有する水和マグネシウムシリケ−ト系セラミックスである。その結晶構造は極めて細かい繊維結晶物であり、微小孔径のトンネル状細孔が繊維の間に無数に存在する。 Sepiolite used as a nucleating agent (supercooling preventive agent) in the heat storage material composition of the present invention is also called a foam stone and has a structural formula of 2MgO · 3SiO 2 · nH 2 O. -G-based ceramics. The crystal structure is a very fine fiber crystal, and innumerable tunnel-like pores having a micropore diameter exist between the fibers.

上記セピオライトの配合量は、熱耐久性を向上させ、かつ潜熱を低下させないために、また、蓄熱材組成物のpHの上昇を少なくするために、D−スレイトール100質量部に対して0.1〜10質量部であることが好ましく、2〜5質量部であることが特に好ましい。   The amount of the sepiolite is 0.1% with respect to 100 parts by mass of D-threitol in order to improve heat durability and not to reduce latent heat and to reduce the increase in pH of the heat storage material composition. It is preferable that it is -10 mass parts, and it is especially preferable that it is 2-5 mass parts.

上記セピオライト平均粒子径は、発核効果及び分散性の観点から、100μm未満であることが必要であり、0.01〜100μmが好ましく、1〜50μmが特に好ましい。   The sepiolite average particle size needs to be less than 100 μm, preferably from 0.01 to 100 μm, and particularly preferably from 1 to 50 μm, from the viewpoint of the nucleation effect and dispersibility.

上記セピオライトとしては、PANSIL400(楠本化成株式会社製)が挙げられる。   Examples of the sepiolite include PANSIL400 (manufactured by Enomoto Kasei Co., Ltd.).

本発明の蓄熱材組成物に使用される融点調節剤としては、例えば、水、硝酸アンモニウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、尿素、アルコール類、チオ硫酸ナトリウム5水塩及び硫酸ナトリウム10水塩等を挙げることができる。これらの2種以上が使用されていてもよい。これらの中では、水、水とアルコール類との混合物が好ましい。   Examples of the melting point regulator used in the heat storage material composition of the present invention include water, ammonium nitrate, ammonium chloride, ammonium bromide, ammonium sulfate, urea, alcohols, sodium thiosulfate pentahydrate and sodium sulfate decahydrate. Can be mentioned. Two or more of these may be used. Among these, water and a mixture of water and alcohols are preferable.

上記アルコール類としては、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール及びオクタノール等の一価アルコール、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,5−ペンタンジオール及びヘキシレングリコール等の二価アルコール、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、5−メチル−1,2,4−ヘプタントリオール及び1,2,6−ヘキサントリオール等の三価アルコールを挙げることができる。これらの中では、メタノール及びエタノールが好ましい。融点調節剤としては、水と上記のアルコール類の中から選ばれる1種又は2種以上の混合物からなるものを挙げることができる。この場合、水とアルコール類の割合は、8:2〜10:0.1であることが好ましく、9:1〜10:0.1であることが特に好ましい。   Examples of the alcohols include monohydric alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol and octanol, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1 , 3-butanediol, 1,5-pentanediol and hexylene glycol and other dihydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, 5-methyl-1,2,4-heptanetriol and 1,2, Mention may be made of trihydric alcohols such as 6-hexanetriol. Of these, methanol and ethanol are preferred. Examples of the melting point regulator include those composed of one or a mixture of two or more selected from water and the above alcohols. In this case, the ratio of water to alcohol is preferably 8: 2 to 10: 0.1, and particularly preferably 9: 1 to 10: 0.1.

上記融点調節剤の配合量は、蓄熱材組成物の融点を自動車用温度域の範囲とし、かつ熱耐久性を低下させないために、D−スレイトール100質量部に対して0.1〜5質量部であることが好ましく、1〜3質量部であることが特に好ましい。   The blending amount of the melting point regulator is 0.1 to 5 parts by mass with respect to 100 parts by mass of D-threitol so that the melting point of the heat storage material composition is in the range of the automotive temperature range and the thermal durability is not lowered. It is preferable that it is 1 to 3 parts by mass.

本発明の蓄熱材組成物に使用される防錆剤としては、例えばベンゾトリアゾール等のトリアゾール、トリアゾール誘導体、キノリン、ベンゾイミダゾール、インドール、イソインドール、オキシン、キナルジン酸及びその塩等の、窒素を含有する不飽和複素環式化合物のほか、ベンゾインオキシム、アントラニル酸、サリチルアルドキシム、ニトロソナフトール、クペロン、ハロ酢酸、システイン等を挙げることができる。これらの2種以上が使用されていてもよい。これらの中では、ベンゾトリアゾールが好ましい。   Examples of the rust preventive used in the heat storage material composition of the present invention include nitrogen such as triazole such as benzotriazole, triazole derivatives, quinoline, benzimidazole, indole, isoindole, oxine, quinaldic acid and salts thereof. In addition to unsaturated heterocyclic compounds, benzoin oxime, anthranilic acid, salicylaldoxime, nitrosonaphthol, cuperone, haloacetic acid, cysteine and the like can be mentioned. Two or more of these may be used. Of these, benzotriazole is preferred.

上記防錆剤の配合量は、金属防食性を向上させ、かつ潜熱を低下させないために、D−スレイトール100質量部に対して0.01〜5質量部であることが好ましく、0.05〜1質量部であることが特に好ましい。   The compounding amount of the rust inhibitor is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of D-threitol in order to improve metal corrosion resistance and not to reduce latent heat. 1 part by mass is particularly preferred.

本発明の蓄熱材組成物には、必要に応じて、上記成分以外に、本発明の効果を損なわない範囲で、その他の添加剤を配合することができる。その他の添加剤としては、例えばパラフィン、グリセリン等の低分子化合物、ポリエチレングリコール、ポリビニルアルコール、ポリエチレン、架橋ポリエチレン、フッ素樹脂等のポリマー、水溶性吸水性樹脂、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸カリウム、微粉シリカ等の増粘剤、フェノール系、アミン系、ヒドロキシルアミン系、硫黄系、リン系等の酸化防止剤等の添加剤が挙げられる。上記その他の添加剤の合計配合量は、D−スレイトール100質量部に対して、通常1質量部以下、好ましくは0.05質量部以下である。   If necessary, the heat storage material composition of the present invention may contain other additives in addition to the above components as long as the effects of the present invention are not impaired. Other additives include, for example, low molecular compounds such as paraffin and glycerin, polyethylene glycol, polyvinyl alcohol, polyethylene, crosslinked polyethylene, polymers such as fluororesin, water-soluble water-absorbent resin, carboxymethylcellulose, sodium alginate, potassium alginate, fine powder Additives such as thickeners such as silica, antioxidants such as phenols, amines, hydroxylamines, sulfurs and phosphoruss. The total amount of the other additives is usually 1 part by mass or less, preferably 0.05 parts by mass or less, with respect to 100 parts by mass of D-threitol.

本発明の蓄熱材組成物の製造方法は、特に限定されないが、D−スレイトール、セピオライト、融点調節剤及び防錆剤を混合して均一に分散させればよい。より均一に分散させるためには、D−スレイトールをその融点以上の温度まで加熱し、攪拌しながらセピオライト、融点調節剤及び防錆剤を添加する方法等が挙げられる。   Although the manufacturing method of the heat storage material composition of this invention is not specifically limited, D-threitol, sepiolite, a melting | fusing point regulator, and a rust preventive agent should just be mixed and disperse | distributed uniformly. In order to disperse more uniformly, a method of heating D-threitol to a temperature equal to or higher than its melting point and adding sepiolite, a melting point modifier and a rust inhibitor while stirring can be used.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

[実施例1]
D−スレイトール[株式会社エーピーアイコーポレーション製、D−Threitol]100質量部に対し、水2.5質量部、セピオライト[楠本化成株式会社製、PANSIL400](乾燥粉砕品、平均粒径12μm)2.5質量部及びベンゾトリアゾール0.1質量部を添加し、蓄熱材組成物を得た。
[Example 1]
1. 100 parts by mass of D-threitol [manufactured by API Corporation, D-Threitol], 2.5 parts by mass of water, sepiolite [manufactured by Enomoto Kasei Co., Ltd., PANSIL400] (dry pulverized product, average particle size 12 μm) 5 parts by mass and 0.1 part by mass of benzotriazole were added to obtain a heat storage material composition.

[実施例2]
セピオライト2.5質量部の代わりに、セピオライト10質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Example 2]
A heat storage material composition was obtained in the same manner as in Example 1 except that 10 parts by mass of sepiolite was used instead of 2.5 parts by mass of sepiolite.

[実施例3]
セピオライト2.5質量部の代わりに、セピオライト0.1質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Example 3]
A heat storage material composition was obtained in the same manner as in Example 1 except that 0.1 part by mass of sepiolite was used instead of 2.5 parts by mass of sepiolite.

[比較例1]
水2.5質量部の代わりに、水0.05質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 1]
A heat storage material composition was obtained in the same manner as in Example 1 except that 0.05 part by mass of water was used instead of 2.5 parts by mass of water.

[比較例2]
水2.5質量部の代わりに、水6.0質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 2]
A heat storage material composition was obtained in the same manner as in Example 1 except that 6.0 parts by mass of water was used instead of 2.5 parts by mass of water.

[比較例3]
セピオライト2.5質量部の代わりに、セピオライト0.05質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 3]
A heat storage material composition was obtained in the same manner as in Example 1 except that 0.05 parts by mass of sepiolite was used instead of 2.5 parts by mass of sepiolite.

[比較例4]
セピオライト2.5質量部の代わりに、セピオライト11質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 4]
A heat storage material composition was obtained in the same manner as in Example 1 except that 11 parts by mass of sepiolite was used instead of 2.5 parts by mass of sepiolite.

[比較例5]
セピオライトを平均粒径100μm以上のセピオライト[楠本化成株式会社製、SEPITOL60/120](乾燥粉砕品、平均粒径245μm)に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 5]
A heat storage material composition was obtained in the same manner as in Example 1 except that sepiolite was changed to sepiolite with an average particle size of 100 μm or more (SEPITL 60/120 manufactured by Enomoto Kasei Co., Ltd.) (dried and pulverized product, average particle size of 245 μm). .

[比較例6]
ベンゾトリアゾール0.1質量部の代わりに、ベンゾトリアゾール0.005質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 6]
A heat storage material composition was obtained in the same manner as in Example 1 except that 0.005 part by mass of benzotriazole was used instead of 0.1 part by mass of benzotriazole.

[比較例7]
ベンゾトリアゾール0.1質量部の代わりに、ベンゾトリアゾール6.0質量部を使用した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 7]
A heat storage material composition was obtained in the same manner as in Example 1 except that 6.0 parts by mass of benzotriazole was used instead of 0.1 parts by mass of benzotriazole.

[比較例8]
セピオライトを雲母[株式会社ヤマグチマイカ製、SJ−010]に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 8]
A heat storage material composition was obtained in the same manner as in Example 1 except that sepiolite was changed to mica [manufactured by Yamaguchi Mica Co., Ltd., SJ-010].

[比較例9]
セピオライトをアロフェン[品川化成株式会社製、セカードD−1]に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 9]
A heat storage material composition was obtained in the same manner as in Example 1 except that sepiolite was changed to allophane [manufactured by Shinagawa Kasei Co., Ltd., Secard D-1].

[比較例10]
セピオライトをタルク[富士タルク工業株式会社製、LMR−100]に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 10]
A heat storage material composition was obtained in the same manner as in Example 1 except that sepiolite was changed to talc [manufactured by Fuji Talc Industrial Co., Ltd., LMR-100].

[比較例11]
D−スレイトールをエリスリトール[株式会社エーピーアイコーポレーション製、Erythritol]に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 11]
A heat storage material composition was obtained in the same manner as in Example 1 except that D-threitol was changed to erythritol [Erythritol, manufactured by API Corporation].

[比較例12]
D−スレイトールを酢酸ナトリウム3水和物[和光純薬工業株式会社製、酢酸ナトリウム3水和物]に変更した以外は、実施例1と同様にして蓄熱材組成物を得た。
[Comparative Example 12]
A heat storage material composition was obtained in the same manner as in Example 1 except that D-threitol was changed to sodium acetate trihydrate [manufactured by Wako Pure Chemical Industries, Ltd., sodium acetate trihydrate].

[比較例13]
D−スレイトール100質量部の蓄熱材組成物を得た。
[Comparative Example 13]
A heat storage material composition having 100 parts by mass of D-threitol was obtained.

実施例1及び比較例1〜13の蓄熱材組成物について、融点、熱耐久性、金属防食性及び潜熱を以下の方法で測定した。   About the thermal storage material composition of Example 1 and Comparative Examples 1-13, melting | fusing point, heat durability, metal corrosion resistance, and latent heat were measured with the following method.

<融点>
DSC(示差走査熱量測定)にて、各組成物の融点を測定した。
<Melting point>
The melting point of each composition was measured by DSC (differential scanning calorimetry).

<熱耐久性>
各組成物約2gを透明容器に充填密閉し、1サイクル(25℃で2時間、95℃で2時間)の条件下で400サイクル経過させた。400サイクル経過したサンプルを50℃の恒温状態にした。次に、25℃に温調した水槽にサンプルを投入し、投入してから組成物が凝固するまでの時間を計測した。
<Thermal durability>
About 2 g of each composition was filled and sealed in a transparent container, and 400 cycles were allowed to elapse under the condition of 1 cycle (2 hours at 25 ° C., 2 hours at 95 ° C.). The sample after 400 cycles was brought to a constant temperature of 50 ° C. Next, the sample was put into a water tank whose temperature was adjusted to 25 ° C., and the time from when the sample was put to the solidification of the composition was measured.

<金属防食性>
各組成物約20gとアルミニウム試験片及び銅試験片をガラス容器に入れて密閉し、90℃で400時間放置後、試験片の腐食状態を目視で確認した。
<Metal corrosion resistance>
About 20 g of each composition, an aluminum test piece, and a copper test piece were put in a glass container and sealed, and after standing at 90 ° C. for 400 hours, the corrosion state of the test piece was visually confirmed.

<潜熱>
DSC(示差走査熱量測定)にて、各組成物の潜熱を測定した。
実施例1及び比較例1−13の蓄熱材組成物についての上記測定結果を表1に示す。
<Latent heat>
The latent heat of each composition was measured by DSC (differential scanning calorimetry).
Table 1 shows the measurement results of the heat storage material compositions of Example 1 and Comparative Example 1-13.

Figure 2012201810
Figure 2012201810

本発明の蓄熱材組成物(実施例1−3)は、自動車用温度域である80〜88℃に融点を有し、かつ、熱耐久性、金属防食性及び潜熱のすべてにおいて良好な結果を示した。   The heat storage material composition of the present invention (Example 1-3) has a melting point in the automotive temperature range of 80 to 88 ° C., and has good results in all of heat durability, metal corrosion resistance and latent heat. Indicated.

潜熱蓄熱物質がD−スレイトール以外である蓄熱材組成物(比較例11及び12)は、自動車用温度域内に融点を有さず、また熱耐久性に劣ることがわかる。   It can be seen that the heat storage material composition (Comparative Examples 11 and 12) whose latent heat storage material is other than D-threitol does not have a melting point in the automotive temperature range and is inferior in thermal durability.

発核剤であるセピオライト平均粒径が100μm以上である蓄熱材組成物(比較例5)は、熱耐久性に劣ることがわかる。また、タルク、アロフェン又は雲母をD−スレイトールに添加しても、セピオライトのような熱耐久性に対する効果が得られないことがわかる(比較例8−10)。   It can be seen that the heat storage material composition (Comparative Example 5) having a sepiolite average particle size of 100 μm or more as a nucleating agent is inferior in thermal durability. Moreover, it turns out that the effect with respect to thermal durability like a sepiolite is not acquired even if talc, allophane, or mica is added to D-threitol (Comparative Example 8-10).

D−スレイトール単独である蓄熱材組成物(比較例13)は、自動車用温度域内に融点を有さず、また熱耐久性及び金属防食性に劣ることがわかる。   It can be seen that the heat storage material composition that is D-threitol alone (Comparative Example 13) does not have a melting point in the automotive temperature range and is inferior in heat durability and metal corrosion resistance.

本発明の蓄熱材組成物は、自動車エンジン用蓄熱システム、暖房及び給湯等の蓄熱体に好適に使用される。   The heat storage material composition of this invention is used suitably for heat storage bodies, such as a heat storage system for motor vehicle engines, heating, and hot water supply.

Claims (4)

D−スレイトール、平均粒子径が100μm未満のセピオライト、融点調節剤及び防錆剤を含む蓄熱材組成物。   A heat storage material composition comprising D-threitol, sepiolite having an average particle diameter of less than 100 μm, a melting point regulator and a rust inhibitor. セピオライトの含量が、D−スレイトール100質量部に対して、0.1〜10質量部であることを特徴とする、請求項1に記載の蓄熱材組成物。   The heat storage material composition according to claim 1, wherein the sepiolite content is 0.1 to 10 parts by mass with respect to 100 parts by mass of D-threitol. 融点調節剤が水又は水とアルコール類との混合物であり、融点調節剤の含量が、D−スレイトール100質量部に対して、0.1〜5質量部であることを特徴とする、請求項1又は2に記載の蓄熱材組成物。   The melting point regulator is water or a mixture of water and alcohols, and the content of the melting point regulator is 0.1 to 5 parts by mass with respect to 100 parts by mass of D-threitol. The heat storage material composition according to 1 or 2. 防錆剤がベンゾトリアゾールであり、防錆剤の含量が、D−スレイトール100質量部に対して、0.01〜5質量部であることを特徴とする、請求項1〜3のいずれか1項に記載の蓄熱材組成物。   The rust preventive agent is benzotriazole, and the content of the rust preventive agent is 0.01 to 5 parts by mass with respect to 100 parts by mass of D-threitol. The heat storage material composition according to item.
JP2011068178A 2011-03-25 2011-03-25 Thermal storage material composition Expired - Fee Related JP5660949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068178A JP5660949B2 (en) 2011-03-25 2011-03-25 Thermal storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068178A JP5660949B2 (en) 2011-03-25 2011-03-25 Thermal storage material composition

Publications (2)

Publication Number Publication Date
JP2012201810A true JP2012201810A (en) 2012-10-22
JP5660949B2 JP5660949B2 (en) 2015-01-28

Family

ID=47183139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068178A Expired - Fee Related JP5660949B2 (en) 2011-03-25 2011-03-25 Thermal storage material composition

Country Status (1)

Country Link
JP (1) JP5660949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124267A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Thermal storage medium, and thermal storage device
JP2015124268A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Heat storage material composition, and heat storage device
JP2015183973A (en) * 2014-03-26 2015-10-22 古河電気工業株式会社 Supercooling-type latent heat storage material composition and heat storage system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194083A (en) * 1989-01-24 1990-07-31 Yoshinobu Yamaguchi Latent heat storage material
JP2000087020A (en) * 1998-09-10 2000-03-28 Mitsubishi Chemicals Corp Heat storage material composition and heat storage type hot water supplying apparatus using the same
JP2007314741A (en) * 2006-05-29 2007-12-06 Michiko Yamaguchi Latent heat storage material composition
JP2009073985A (en) * 2007-09-21 2009-04-09 Toyota Motor Corp Heat-absorbing or releasing capsule, method for producing heat-absorbing or releasing capsule, heat-absorbing or releasing capsule dispersion, and cooling liquid for fuel cell stack
JP2009079159A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194083A (en) * 1989-01-24 1990-07-31 Yoshinobu Yamaguchi Latent heat storage material
JP2000087020A (en) * 1998-09-10 2000-03-28 Mitsubishi Chemicals Corp Heat storage material composition and heat storage type hot water supplying apparatus using the same
JP2007314741A (en) * 2006-05-29 2007-12-06 Michiko Yamaguchi Latent heat storage material composition
JP2009073985A (en) * 2007-09-21 2009-04-09 Toyota Motor Corp Heat-absorbing or releasing capsule, method for producing heat-absorbing or releasing capsule, heat-absorbing or releasing capsule dispersion, and cooling liquid for fuel cell stack
JP2009079159A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124267A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Thermal storage medium, and thermal storage device
JP2015124268A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Heat storage material composition, and heat storage device
JP2015183973A (en) * 2014-03-26 2015-10-22 古河電気工業株式会社 Supercooling-type latent heat storage material composition and heat storage system

Also Published As

Publication number Publication date
JP5660949B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
CN104726069B (en) A kind of novel phase-change material composition
JPWO2006087809A1 (en) Heat medium liquid composition
BRPI0608737A2 (en) antifreeze / anti-corrosion concentrate, process for preparing it, aqueous refrigerant composition, and use thereof
TW201506142A (en) Paraffin latent heat storage material composition and use of paraffin composition as latent heat storage material
JP2015218212A (en) New latent heat storage material composition
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
JP6598076B2 (en) Latent heat storage material
CN105073942B (en) Antifreeze concentrates and aqueous coolant composition prepared therefrom with anti-corrosion function
CN107142091B (en) All-organic nano anti-freezing solution and preparation method thereof
JP5660949B2 (en) Thermal storage material composition
JP7266282B2 (en) Heat storage material composition
JP5013499B2 (en) Latent heat transport slurry
JP5584395B2 (en) Paraffin heat storage material composition
Hidaka et al. New PCMs prepared from erythritol-polyalcohols mixtures for latent heat storage between 80 and 100 C
EP1564277A1 (en) Heat transfer medium liquid composition
JP2826211B2 (en) Oily substance carrier and method for producing the same
JP2019123832A (en) Latent heat storage material composition
KR101300238B1 (en) Compositions of Antifreezing Liquid or Cooling Liquid with Improvements in Anticorrosion and pH Buffering
JP2009096826A (en) Heat storage material composition
JP5044544B2 (en) Coolant composition
JP2006131856A (en) Latent heat cold storage material composition
WO2007099798A1 (en) Heat-storage material composition
JP2022052747A (en) Heat storage material composition
KR100962792B1 (en) Antifreeze liquid composition having high stabilization of heat-oxidation
JP2011008942A (en) Cooling liquid for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R151 Written notification of patent or utility model registration

Ref document number: 5660949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees