JPH02192785A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPH02192785A
JPH02192785A JP1242189A JP1242189A JPH02192785A JP H02192785 A JPH02192785 A JP H02192785A JP 1242189 A JP1242189 A JP 1242189A JP 1242189 A JP1242189 A JP 1242189A JP H02192785 A JPH02192785 A JP H02192785A
Authority
JP
Japan
Prior art keywords
well
layer
wells
quantum
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242189A
Other languages
Japanese (ja)
Inventor
Hajime Imai
元 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1242189A priority Critical patent/JPH02192785A/en
Publication of JPH02192785A publication Critical patent/JPH02192785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a laser having high oscillation efficiency by providing multiple well layers within a semiconductor layer structure such that widths of the wells are decreased gradually from the electron injected side and that the wells have the same quantum units. CONSTITUTION:A semiconductor layer is produced by forming a clad layer 2 of one conductivity type, multiple quantum well layers 5-7, a clad layer 8 of the opposite conductivity type and a contact layer 9 on a substrate 1 sequentially in that order. The well layers 5-7 are formed such that widths of the wells are decreased gradually from the electron injected side towards the center of the device. Further, the wells 5-7 have different compositions from each other so as to align quantums of the wells with each other. Accordingly, injected electrons are stored uniformly in the quantum wells 5-7 and a laser presenting a high oscillation efficiency can be realized. Such laser is accomplished by forming electrodes on the lower face of the substrate and on the upper face of the contact layer 9 and cleaving the substrate 1 at a length of a resonator.

Description

【発明の詳細な説明】 ((概要〕 多重量子井戸(MQW)構造を用いた半導体発光装置に
関し 多重量子井戸構造を用いて高い発振効率を示すレーザを
実現することを目的とし。
DETAILED DESCRIPTION OF THE INVENTION (Summary) The present invention relates to a semiconductor light emitting device using a multiple quantum well (MQW) structure, and aims to realize a laser exhibiting high oscillation efficiency using the multiple quantum well structure.

−導電型クラッド層、多重量子井戸層1反対導電型クラ
ッド層が順に積層された半導体層構造を有し、該多重量
子井戸層は、電子が注入される側から井戸幅が順次薄く
且つ各井戸の量子準位が同じになるように組成が順次変
えられてなるように構成する。
- It has a semiconductor layer structure in which a conductivity type cladding layer, a multiple quantum well layer 1 and an opposite conductivity type cladding layer are laminated in order, and the multiple quantum well layer has a well width that is successively thinner from the side into which electrons are injected, and each well The composition is sequentially changed so that the quantum levels of the two are the same.

〔産業上の利用分野〕[Industrial application field]

本発明は多重量子井戸構造を用いた半導体発光装置に関
する。
The present invention relates to a semiconductor light emitting device using a multiple quantum well structure.

半導体レーザは光伝送システムに不可欠な光源として重
要なものである。近年、光伝送システムの変調速度は速
くなり、ギガビット程度となってきた。このような高速
変調に対し、半導体レーザにおいても高性能が要求され
、特に変調時に波長シフト(チャーピング)の小さいこ
とが切に要求される。
Semiconductor lasers are important as light sources essential to optical transmission systems. In recent years, the modulation speed of optical transmission systems has increased to about gigabit. For such high-speed modulation, semiconductor lasers are also required to have high performance, and in particular, a small wavelength shift (chirping) during modulation is strongly required.

このチャーピングを抑える方法としては半導体レーザの
微分利得を大きくすることが適切であり。
An appropriate way to suppress this chirping is to increase the differential gain of the semiconductor laser.

量子井戸構造はそれを実現するものとして有望視されて
いる。
Quantum well structures are seen as promising as a way to achieve this goal.

〔従来の技術〕[Conventional technology]

従来の量子井戸型レーザには幅が数10〜数100人の
井戸層を複数重ねた多重量子井戸構造と単一1子井戸構
造とがある。
Conventional quantum well lasers include a multiple quantum well structure in which a plurality of well layers each having a width of several tens to hundreds of well layers are stacked, and a single quantum well structure.

低しきい値で発振させるためには3〜5層重ねたものが
最良であることが予測1′されているので。
It has been predicted that 3 to 5 layers would be best in order to oscillate at a low threshold.

このような多重量子井戸レーザが製作されているが、現
状では十分な効果が得られていない。
Although such multiple quantum well lasers have been manufactured, sufficient effects have not been obtained at present.

1)注1:例えば。1) Note 1: For example.

■、八へakawa  and  A、Yariv、E
nhanced  modurationperfor
mance and reduced quantum
 noise 1nquantu+n well 1a
sers’ CLEO’851tH5,Baltimo
re(1985)。
■, 8 to akawa and A, Yariv, E
enhanced modulation performance
mance and reduced quantum
noise 1nquantu+n well 1a
sers'CLEO'851tH5,Baltimo
re (1985).

この理由は、量子井戸の組成1幅がばらつくと量子井戸
内に形成される量子準位に揺らぎを生じ量子効果が得ら
れないからである。
The reason for this is that if the composition width of the quantum well varies, the quantum level formed within the quantum well fluctuates, making it impossible to obtain a quantum effect.

実際に良い発振特性が得られないのは井戸層に注入され
た電子の緩和時間とドリフト時間の関係で電子が井戸内
に溜まらないうちに井戸層を通過するためと考えられる
。そのために、電子の注入された側の井戸には少なく後
の井戸はど多く電子が溜り、井戸内の電子分布の不均一
を生じ、レーザの特性が阻害されることになる。
The reason why good oscillation characteristics cannot actually be obtained is considered to be that the electrons pass through the well layer before being accumulated in the well due to the relationship between the relaxation time and drift time of the electrons injected into the well layer. As a result, electrons accumulate in the well on the side into which electrons are injected, while more electrons accumulate in the later wells, causing non-uniform distribution of electrons within the well and impairing the characteristics of the laser.

これを防ぐために、従来は単一量子井戸で且つ井戸の両
側のバリア層のエネルギギャップを緩やかに変えるGR
INSCH単一量子井戸構造2′を採用している。
To prevent this, conventional GR has a single quantum well and gently changes the energy gap of the barrier layers on both sides of the well.
An INSCH single quantum well structure 2' is adopted.

2) S、P、Hersee、b、deCremoux
 and J、P、Duckemin。
2) S, P, Hersee, b, de Cremoux
and J., P., Duckemin.

八pp1.  Phys、  Letters、44 
 p476  (1,984)。
8pp1. Phys, Letters, 44
p476 (1,984).

しかし、量子効果を十分に活かすためには3〜4重の多
重量子井戸構造が勝っていることには変わりない。
However, in order to make full use of the quantum effect, a three to four multi-quantum well structure is still superior.

量子井戸層に注入された電子を十分井戸内に緩和させる
には単純には井戸幅を広くすればよい。
In order to sufficiently relax electrons injected into the quantum well layer into the well, it is sufficient to simply widen the well width.

しかし、電子の拡散、ドリフト時間を考えて井戸幅を広
くすると量子効果が得られなくなる。そのため多重量子
井戸が有効となり、ここの井戸幅を順次変えることで高
特性が実現できる。即ち1電子が注入される最初の井戸
幅は広<、最後の井戸幅を一番狭(する。
However, if the well width is widened in consideration of electron diffusion and drift time, quantum effects cannot be obtained. Therefore, multiple quantum wells are effective, and high characteristics can be achieved by sequentially changing the width of the wells. That is, the width of the first well into which one electron is injected is wide, and the width of the last well is the narrowest.

このような多重量子井戸構造により、注入された電子の
エネルギは量子井戸上を走行中に緩和し段々伝導帯近傍
に下りてくるため、最初の井戸幅が広いことは高エネル
ギで注入された電子でも十分井戸内に緩和されることに
なり、後の井戸が狭いことは電子のエネルギが低くなっ
ているため狭くても十分電子が緩和されることになる。
With such a multi-quantum well structure, the energy of injected electrons relaxes while traveling on the quantum well and gradually descends to the vicinity of the conduction band, so a wide initial well width means that the injected electrons with high energy However, the electrons are sufficiently relaxed within the well, and the fact that the latter well is narrow means that the energy of the electrons is low, so even if the well is narrow, the electrons are sufficiently relaxed.

(発明が解決しようとする課題〕 しかし上記の従来例においては、レーザ発振を生じ易い
量子準位は井戸幅依存性があるため、このままでは各井
戸の量子準位は異なり、高い発振特性が期待できない。
(Problem to be solved by the invention) However, in the above conventional example, the quantum level that easily causes laser oscillation is dependent on the well width, so if this continues, the quantum level of each well will be different, and high oscillation characteristics can be expected. Can not.

本発明は多重量子井戸(11造を用いて高い発振効率を
示ずレーザを実現することを目的とする。
An object of the present invention is to realize a laser that does not exhibit high oscillation efficiency using a multiple quantum well (11 structures).

(課題を解決するための手段〕 上記課題の解決は、−導電型クラッド層、多重量子井戸
層1反対導電型クラッド層が順に積層された半導体層構
造を有し、該多重量子井戸層は。
(Means for Solving the Problems) The above problems are solved by having a semiconductor layer structure in which a -conductivity type cladding layer, a multiple quantum well layer 1 and an opposite conductivity type cladding layer are laminated in this order, and the multiple quantum well layer has the following.

電子が注入される側から井戸幅が順次薄く且つ各井戸の
量子(V位が同じになるように組成が順次変えられてな
ることを特徴とする半導体発光装置により達成される。
This is achieved by a semiconductor light-emitting device characterized in that the well width is successively thinner from the side into which electrons are injected, and the composition is successively changed so that the quantum (V) of each well becomes the same.

[作用] 本発明は各井戸毎に組成を変えることで各井戸毎の量子
準位を整合させることにより、量子井戸レーザとして最
適な多重量子井戸レーザを実現するようにしたものであ
る。
[Function] The present invention realizes a multi-quantum well laser that is optimal as a quantum well laser by matching the quantum level of each well by changing the composition of each well.

多重量子井戸レーザにおいて、量子準位を合わせること
により高特性を狙うことは従来から行われているが1本
発明のように井戸幅を変えて且つ量子単位を合わせると
注入電子が均一に各量子井戸に溜ることになり、従来の
ように不均一に溜ることにより特性が悪(なることが防
げることになる。
In multi-quantum well lasers, it has been conventional practice to aim for high performance by matching the quantum levels. However, by changing the well width and matching the quantum units as in the present invention, the injected electrons can be uniformly distributed to each quantum well. It will accumulate in the well, and it will prevent the characteristics from becoming bad due to non-uniform accumulation as in the past.

第1図Q)、 (2)は本発明の原理図で、バンド構造
図と井戸内の電子分布図である。
FIG. 1Q) and (2) are diagrams of the principle of the present invention, including a band structure diagram and an electron distribution diagram within a well.

第1図(1)は本発明、第1図(2)は従来の多重量子
井戸構造に対する図である。
FIG. 1(1) is a diagram of the present invention, and FIG. 1(2) is a diagram of a conventional multiple quantum well structure.

図でr  Ecは伝導帯底+  EVは価電子帯類であ
り1点線で第1量子単位が示される。又nは電子数、X
は井戸に垂直な方向の距離である。
In the figure, r Ec is the bottom of the conduction band + EV is the valence band, and the first quantum unit is indicated by a dotted line. Also, n is the number of electrons,
is the distance perpendicular to the well.

従来は、各井戸は井戸幅が同しで、又組成も同じである
ため、n側から注入された電子は図示の分布になり、電
子が井戸内に十分溜まっていないとごろはロスとなるた
め、特性の向上はできなかった。
Conventionally, each well has the same width and composition, so the electrons injected from the n side have the distribution shown in the figure, and if enough electrons are not accumulated in the well, there will be a loss. Therefore, the characteristics could not be improved.

これに対して5本発明では、各井戸は井戸幅が可変で、
且つ組成を変えて量子準位を合わせているため注入電子
は分布むらがなく−様な利得が得られるため高特性が得
られる。
On the other hand, in the present invention, the width of each well is variable,
In addition, since the composition is changed and the quantum levels are matched, the injected electrons have an even distribution and a -like gain can be obtained, resulting in high characteristics.

ここで、多重量子井戸の組成、井戸幅の変え方は次の手
順による。
Here, how to change the composition of the multiple quantum well and the well width is as follows.

まず、電子に着目して説明する。正孔は量子準位差が小
さいので無視する。
First, let's focus on electrons. Holes are ignored because their quantum level difference is small.

井戸内へ電子を十分緩和させるためには次式に示される
ように井戸幅W(x)の分布を指数関数的に変化させる
In order to sufficiently relax electrons into the well, the distribution of the well width W(x) is changed exponentially as shown in the following equation.

W(x)  −Wo exp(x/L)、 ・・・(1
)ここで、最初の井戸幅−6は量子効果が得られる厚さ
以下で、且つ十分厚い幅(例200人)にとり、Lは電
子の緩和時間τと拡散定数りで決まり、M#(Dτ)1
″が目安である。
W(x) −Wo exp(x/L), ...(1
) Here, the initial well width -6 is less than the thickness at which the quantum effect can be obtained and is sufficiently thick (for example, 200 people), and L is determined by the electron relaxation time τ and the diffusion constant, and M#(Dτ )1
” is a guideline.

又、バリア層の幅Bは一定でよく1例えば。Further, the width B of the barrier layer may be constant, for example.

50〜100人にする。Have 50-100 people.

次に、井戸内の量子準位を合わせるためには以下の弐〇
に従って組成を決める。
Next, in order to match the quantum level in the well, the composition is determined according to the following 2.

(αL、/2) tan(αLz/2)−十(βL2/
2)(m”/m*′)。
(αL, /2) tan (αLz/2) - ten (βL2/
2) (m"/m*').

(αL、/2)cot(αL、/2) −一(βL、/2) (m”/m” )、=42)ただ
し、+:井戸数が奇数の場合。
(αL, /2) cot (αL, /2) −1 (βL, /2) (m”/m”), =42) However, +: when the number of wells is odd.

:井戸数が奇数の場合 である。: When the number of wells is odd It is.

ここで。here.

α” = 2 m” E、、/h/2π。α” = 2 m” E,, /h/2π.

β” = 2 m″′(シーE、、> /h/2π。β" = 2 m"' (C E,, > /h/2π.

L2は井戸幅1m′″は電子の有効質L m”は正孔の
有効質l、  E、は量子準位、 Vは各井戸の深さ(
組成で決まる)、hはPlanckの定数である。
L2 is the well width 1m'' is the effective quality of electrons L, m'' is the effective quality of holes L, E is the quantum level, and V is the depth of each well (
h is Planck's constant.

3)例えば 金沢英夫゛量子力学゛朝倉書店(1965) 。3) For example Hideo Kanazawa, Quantum Mechanics, Asakura Shoten (1965).

井戸内の量子単位を合わせるためには、E9を各井戸の
バンドギャップ(組成で決まる)とすると、  E、+
E、、を一定にすればよい。各井戸のE、は変数であり
、各井戸の幅L2は予め与えられた一定値であるので、
上式を解くことによりE、 + Enが各井戸に対して
一定になるようにE9を決めることができる。E、が決
まるとそれに対応する組成が決まる。
In order to match the quantum units in the well, if E9 is the band gap (determined by the composition) of each well, then E, +
It is sufficient to keep E, , constant. Since E of each well is a variable and the width L2 of each well is a fixed value given in advance,
By solving the above equation, E9 can be determined so that E, + En is constant for each well. Once E is determined, the corresponding composition is determined.

C実施例〕 第2図はp型1nP M板を用いた半導体発光素子の一
実施例を説明する要部断面図である。
Embodiment C] FIG. 2 is a sectional view of a main part of an embodiment of a semiconductor light emitting device using a p-type 1nP M plate.

図において、1はp型(p−Hnp基板。In the figure, 1 is a p-type (p-Hnp substrate).

2はp−1nPバッファ層、3は活性層で。2 is a p-1nP buffer layer, and 3 is an active layer.

fnGaAsP/InP MQW層、4はn型(n−)
InPnワクド層15はp−rnl’埋込層、6はn−
1nP埋込層、7はp−[nP埋込層、8はn−InP
クラッド層、9ばn−1nGaAsPコンタクト層であ
る。
fnGaAsP/InP MQW layer, 4 is n type (n-)
The InPn quad layer 15 is a p-rnl' buried layer, and 6 is an n-
1nP buried layer, 7 is p-[nP buried layer, 8 is n-InP
They are a cladding layer and a 9ban-1nGaAsP contact layer.

又、クラッド層4と活性層3とバッファ層2がメサスト
ライプ10を構成している。
Further, the cladding layer 4, the active layer 3, and the buffer layer 2 constitute a mesa stripe 10.

次に実施例の構造を製法の概略を含めて以下に説明する
Next, the structure of the example will be explained below, including the outline of the manufacturing method.

MQIQ層を含む連続成長は量子効果を有する薄膜を成
長する関係上有機金属気相成長(MOVPIE)法が適
している。
For continuous growth including the MQIQ layer, metal organic vapor phase epitaxy (MOVPIE) is suitable because it grows a thin film having a quantum effect.

まず+ p−1nP基板1上に。First, on the +p-1nP substrate 1.

p−1nPバッファ層2 (Cdドープ、キャリア濃度6X10”cm−’厚さ〜
0.5 μm)7 InGaAsl’/InP MI層3゜n4nPクラッ
ド層4 (Snドープ、キャリア濃度I X 10”cm−”厚
さ〜0.5 μm)8 を順次成長する。
p-1nP buffer layer 2 (Cd doped, carrier concentration 6X10"cm-'thickness ~
0.5 .mu.m) 7 InGaAsl'/InP MI layer 3.n4nP cladding layer 4 (Sn doped, carrier concentration I.times.10"cm" thick ~ 0.5 .mu.m) 8 are grown sequentially.

ここで、 InGaAsP/InP MQW層3は厚さ
50人のInPバリア層5層表層さ及び組成が変化する
InGaAsPウェル層を4N交互に積層したものであ
る。
Here, the InGaAsP/InP MQW layer 3 is made by alternately laminating 4N InGaAsP well layers having a thickness of 50 layers and 5 layers of InP barrier layers whose surface layer thickness and composition vary.

InGaAsPウェル層は電子の注入側(n側)より順
次前記の(1)、 (2)式で導かれた次のような組成
と厚さを持つ。
The InGaAsP well layer has the following composition and thickness derived from the above equations (1) and (2) sequentially from the electron injection side (n side).

No、    Mi成     厚さ (μm)       (入) 1   1.450     200 2   1.462     150 3   1.496     100 4   1.550      50 ただし2組成はバンドギャップE9の代わりにフォトル
ミネセンススペクトルのピーク波長で表示した。
No, Mi thickness (μm) (included) 1 1.450 200 2 1.462 150 3 1.496 100 4 1.550 50 However, for 2 compositions, the peak wavelength of the photoluminescence spectrum is used instead of the band gap E9. displayed.

次いで、 5iOzストライプマスクを形成し、これを
マスクにしてメサエッチングを行いメサストライプIO
を形成する。
Next, a 5iOz stripe mask is formed, and mesa etching is performed using this as a mask to form a mesa stripe IO.
form.

次いで、 SiO□ストライプマスクをつけたまま。Next, leave the SiO□ stripe mask on.

液相エピタキシャル成長(LPE)法により埋込層とし
て。
As a buried layer by liquid phase epitaxial growth (LPE) method.

p−1nP層5 (Cdドープ、キャリア濃度5X10”cm−’) 。p-1nP layer 5 (Cd doped, carrier concentration 5X10"cm-').

n−InP層6 (Snドープ、キャリア濃度lXl018cm−3) 
n-InP layer 6 (Sn doped, carrier concentration lXl018cm-3)
.

p−1nP第2埋込層7 (Znドープ、キャリア濃度I X 10 ’ !1c
m−3)を順次成長する。
p-1nP second buried layer 7 (Zn doped, carrier concentration I x 10'!1c
m-3) are grown sequentially.

更に、 SiO□ストライプマスク除去した後n−1n
Pクラツド層8 (Snドープ、キャリア濃度1×10I810l8厚さ
〜0.3 μm)+ n−1nGaAsPコンタクト層9 (Snドープ、キャリア濃度2.4X1018cm−’
厚さ〜0.2 μm) を成長する。
Furthermore, after removing the SiO□ stripe mask, n-1n
P cladding layer 8 (Sn-doped, carrier concentration 1×10I810l8 thickness ~0.3 μm) + n-1nGaAsP contact layer 9 (Sn-doped, carrier concentration 2.4X1018cm-'
Grow to a thickness of ~0.2 μm).

この後は1図示しないが基板1の下面及びコンタクト層
9の上面にオーミンクコンタクトの電極を形成し、共振
器長(メサストライプ方向)で基板側面をへき関してレ
ーザを完成する。
After this, although not shown, ohmink contact electrodes are formed on the lower surface of the substrate 1 and the upper surface of the contact layer 9, and the side surfaces of the substrate are separated at the resonator length (in the mesa stripe direction) to complete the laser.

又、実施例ではInGaAsP/ InP系のレーザに
ついて説明したが5本発明はその他の化合物半導体。
Furthermore, in the embodiments, an InGaAsP/InP-based laser was described, but the present invention applies to other compound semiconductors.

例えばA lGaAs/GaAs系、 AlGa1nP
/GaAs系のレーザについても適用できる。
For example, AlGaAs/GaAs system, AlGa1nP
/GaAs-based lasers can also be applied.

実施例の素子は、従来例と対比して周波数特性で約1.
5倍向上し、しきい値電流で約30%減少し図において
The device of the example has a frequency characteristic of about 1.0% compared to the conventional example.
In the figure, there is a 5x improvement and an approximately 30% reduction in threshold current.

1はp−1nP基板 2はp−1nPバッファ層 3はInGaAsPウェル層 M(IW層。1 is p-1nP substrate 2 is p-1nP buffer layer 3 is an InGaAsP well layer M (IW layer).

4はn−In22971層。4 is an n-In22971 layer.

5.6.7はInP理込周込 層はn−In22971層。5.6.7 is InP Rikome Shukomi The layer is an n-In22971 layer.

9はn−InGaAsP コンタクト層。9 is an n-InGaAsP contact layer.

10はメサストライプ [発明の効果] 以上説明したように本発明によれば、多重量子井戸構造
を用いて高い発振効率を示すレーザを実現することがで
きた。
10 is a mesa stripe [Effects of the Invention] As explained above, according to the present invention, a laser exhibiting high oscillation efficiency using a multiple quantum well structure could be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)、 (2)は本発明の原理図で、バンド構
造図と井戸内の電子分布図。 第2図はp型1nP M板を用いた半導体発光素子の一
実施例を説明する要部断面図である。 (2)をロー)をこtクリ 本発明の康理図 第 図 ←正孔 ←正孔 第 図
Figures 1 (1) and (2) are diagrams of the principle of the present invention, including a band structure diagram and an electron distribution diagram within a well. FIG. 2 is a sectional view of a main part of an embodiment of a semiconductor light emitting device using a p-type 1nP M plate. (2) is low) Click here for the present invention's Kori diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 一導電型クラッド層、多重量子井戸層、反対導電型クラ
ッド層が順に積層された半導体層構造を有し、該多重量
子井戸層は、電子が注入される側から井戸幅が順次薄く
且つ各井戸の量子準位が同じになるように組成が順次変
えられてなることを特徴とする半導体発光装置。
It has a semiconductor layer structure in which a cladding layer of one conductivity type, a multiple quantum well layer, and a cladding layer of an opposite conductivity type are laminated in this order. A semiconductor light emitting device characterized in that the composition of the semiconductor light emitting device is sequentially changed so that the quantum levels of the semiconductor light emitting devices are the same.
JP1242189A 1989-01-20 1989-01-20 Semiconductor light-emitting device Pending JPH02192785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242189A JPH02192785A (en) 1989-01-20 1989-01-20 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242189A JPH02192785A (en) 1989-01-20 1989-01-20 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPH02192785A true JPH02192785A (en) 1990-07-30

Family

ID=11804803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242189A Pending JPH02192785A (en) 1989-01-20 1989-01-20 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPH02192785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235732A (en) * 1993-12-28 1995-09-05 Nec Corp Semiconductor laser
JP2004335792A (en) * 2003-05-08 2004-11-25 Sharp Corp Oxide semiconductor light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235732A (en) * 1993-12-28 1995-09-05 Nec Corp Semiconductor laser
US5636236A (en) * 1993-12-28 1997-06-03 Nec Corporation Semiconductor laser
JP2004335792A (en) * 2003-05-08 2004-11-25 Sharp Corp Oxide semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JPS6215875A (en) Semiconductor device and manufacture thereof
JPH11330605A (en) Semiconductor laser
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPH06302908A (en) Semiconductor laser
JPH02192785A (en) Semiconductor light-emitting device
JP4984514B2 (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
JPH08236857A (en) Long wavelength semiconductor laser and its manufacture
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPS6237557B2 (en)
JPS6124839B2 (en)
JPH03104292A (en) Semiconductor laser
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JP2812069B2 (en) Semiconductor laser
JPS62279689A (en) Manufacture of semiconductor light emitting device
JPH1140897A (en) Semiconductor laser element and its manufacture
KR900000021B1 (en) Semiconductor laser
JPH03174793A (en) Semiconductor laser
JPH0832171A (en) Semiconductor laser
JPS6355878B2 (en)
JPS60126880A (en) Semiconductor laser device
JPH0728093B2 (en) Semiconductor laser device
US6635502B1 (en) Method of manufacturing semiconductor optical devices
JPH08316584A (en) Semiconductor optical element and fabrication thereof
JPS60198790A (en) Semiconductor laser device
JPH0961763A (en) Semiconductor optical modulation device