JPH02192556A - Parallel compression refrigerating plant - Google Patents
Parallel compression refrigerating plantInfo
- Publication number
- JPH02192556A JPH02192556A JP900489A JP900489A JPH02192556A JP H02192556 A JPH02192556 A JP H02192556A JP 900489 A JP900489 A JP 900489A JP 900489 A JP900489 A JP 900489A JP H02192556 A JPH02192556 A JP H02192556A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- oil
- suction
- pressure
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 title claims abstract description 50
- 238000007906 compression Methods 0.000 title claims abstract description 50
- 238000005057 refrigeration Methods 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 68
- 230000007423 decrease Effects 0.000 description 5
- 206010010904 Convulsion Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は互いに並列に接続された圧縮機の並列運転時
、或は任意の圧縮機の単独運転時のいずれの場合でも圧
縮機の油面を適正に保つようにした並列圧縮式冷凍装置
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the oil level of the compressor, whether the compressors connected in parallel are operating in parallel or any compressor is operating independently. This invention relates to a parallel compression type refrigeration system that maintains a proper temperature.
第2図は従来の並列圧縮式冷凍装置を示すものであり、
Ill、121は第1及び第2の半密閉形圧縮機(la
)、 (2a)はこの圧縮機fll、+21のクランク
ケースで、この中には隔壁(1b)、 (2b)により
モータ室(lc)、 (2c)と圧縮要素室(td)、
(2d) として区画形成されている。(Is)
、 (2e) 、 (If)、 (2f)は各々モータ
131 (lc) 、 (2c) 、圧縮要素室(td
)、 (2d)に収容されたモータ及び圧縮要素である
。(Ig) 、 (2g)は両要素(te) 、 (2
e)、 (R)、 (2f)を接続するクランク軸(l
h)、 (2h)は隔壁rib)、 (2b)の上部に
設けられた均圧用差圧弁で、起動時のようにモータ室(
lc) 、 (2c)の圧力が圧縮要素室(ld)、
(2d)の圧力よりも肴しく低くなるようなとき閉とな
るものである。(li)。Figure 2 shows a conventional parallel compression refrigeration system.
Ill, 121 is the first and second semi-hermetic compressor (la
), (2a) is the crankcase of this compressor full, +21, which includes a motor chamber (lc), (2c) and a compression element chamber (td),
(2d) Sections are formed as follows. (Is)
, (2e), (If), and (2f) are motors 131 (lc), (2c), and compression element chamber (td), respectively.
), (2d) are the motor and compression element housed in. (Ig), (2g) are both elements (te), (2
e), (R), and (2f).
h) and (2h) are pressure equalizing differential pressure valves installed at the top of the bulkheads rib) and (2b).
lc), (2c) pressure is in the compression element chamber (ld),
It closes when the pressure becomes lower than the pressure in (2d). (li).
(21)は隔壁(lb)、 (2b)の下部に設けた均
油用逆止弁で、モータ室(lc)、 (2c)底部の油
溜(1)、 (2j)から圧a室(ld)、 (2d)
底部の油溜(tk)、 (sA)へのみ油の流入を許容
するものである。(21) is an oil equalizing check valve installed at the bottom of the partition walls (lb) and (2b), and is used to supply oil from the motor chamber (lc), (2c) and the oil sump (1) and (2j) at the bottom to the pressure chamber (a). ld), (2d)
This allows oil to flow only into the oil sump (tk) and (sA) at the bottom.
(3)は同圧縮機111.12)の圧縮要素室(1d)
、 (2d)を連通ずる均圧均油管、(51は蒸発器(
図示せず)fζ接続された冷凍サイクルの吸入管、(6
)はこの吸入管+51の上部と第1の圧縮機IFIのモ
ータ室(1c)とを接続する第1の圧縮機111の吸入
分岐管、(7)は吸入管(51の下部と第2の圧縮機(
2]のモータ室(2e)とを接続する第2の圧縮機i2
1の吸入分岐管で、第1の吸入分岐管(6)は第2の吸
入分岐管(7)より細い径であり、配管長さも長くされ
ている。(8)は同圧縮機i11. +21の共通吐出
管で、凝縮器、膨張弁(図示せず)を介して蒸発器(図
示せず)に接続されている0
〔発明が解決しようとする課題〕
従来の2台の圧縮機による並列圧縮式冷凍装置に2いて
は、両圧縮機間に均圧均油配管が設けられ、これ等の配
管は並列運転、単独運転を問わず運転中は連通した状態
で運転していた。この結果吸入室要素と圧縮室要素に区
分された半室閉形冷凍機においては、単独運転中、停止
した圧縮機の吸入管、モータ室、圧縮要素室及び均圧管
を通して、運転中の圧縮機の圧縮要素室シこ圧力がかか
る為運転中の圧縮機の均油逆止弁が閉となり、せっかく
吸入室へ戻った油が圧縮要素室へ戻らず、圧縮室の油面
を正常に維持することは雌しく、圧縮機の摺動部への潤
滑油の供給不良等により焼付や運転中の圧縮機の油より
量過大による冷凍能力の低下、及び油圧縮による弁部分
の損傷の恐れがあった。また、単独運転中吸入室へ戻り
溜った油はモータによりかき上げられ吐出され、油上が
りが過大になるのを防止するため、圧縮機の吐出僻に油
分離器を取付け、吐出ガス中に含まれている油を分離し
て圧縮機へ返送する方法もあるが、高温の油がクランク
ケースに戻り、油温を上昇させること、及び長時間停止
後の再始動時には温度の低い分離器内で凝縮した液冷媒
が圧縮機に返送され、油を泡立たせ潤滑不良を発生する
こと等の危険性があった。また、圧縮機の圧縮要素室に
微小な差圧が生じ、運転中の圧縮機の油面がアンバラン
スとなりやすい傾向があり、保守に当り油窓からの油面
位置の確認が難しく保守業務がやり難くなり、また第2
の圧縮機がフォーミンクを起こすと必要以上の油が第1
の圧縮機に流出して、第2の圧縮機の油面が低下する等
の問題点があった。(3) is the compression element chamber (1d) of the same compressor 111.12)
, (2d) are pressure equalizing oil pipes communicating with each other, (51 is an evaporator (
(not shown) fζ connected refrigeration cycle suction pipe, (6
) is the suction branch pipe of the first compressor 111 that connects the upper part of this suction pipe +51 and the motor chamber (1c) of the first compressor IFI, and (7) is the suction branch pipe that connects the upper part of this suction pipe +51 and the motor chamber (1c) of the first compressor IFI. Compressor (
2], the second compressor i2 is connected to the motor room (2e) of
In the first suction branch pipe, the first suction branch pipe (6) has a smaller diameter than the second suction branch pipe (7), and has a longer piping length. (8) is the same compressor i11. +21 common discharge pipe connected to an evaporator (not shown) via a condenser and an expansion valve (not shown) [Problem to be solved by the invention] By two conventional compressors In the parallel compression type refrigeration system 2, pressure equalizing oil piping is provided between both compressors, and these pipings are operated in a state of communication during operation, regardless of parallel operation or individual operation. As a result, in a semi-chamber closed type refrigerator that is divided into a suction chamber element and a compression chamber element, during independent operation, the suction pipe of the stopped compressor, the motor chamber, the compression element chamber, and the pressure equalization pipe are passed through the Due to the pressure applied to the compression element chamber, the oil equalizing check valve of the operating compressor closes, and the oil that has returned to the suction chamber does not return to the compression element chamber, thus maintaining the oil level in the compression chamber at a normal level. Unfortunately, there was a risk of seizure due to insufficient supply of lubricating oil to the sliding parts of the compressor, a decrease in refrigeration capacity due to excessive oil in the compressor during operation, and damage to valve parts due to oil compression. . In addition, during independent operation, the oil that returns to the suction chamber and accumulates is scraped up by the motor and discharged.In order to prevent the oil from becoming excessively high, an oil separator is installed at the discharge end of the compressor, and the oil that accumulates in the suction chamber is removed from the discharge gas. There is also a method of separating the oil from the oil and sending it back to the compressor, but the high temperature oil returns to the crankcase and raises the oil temperature, and when restarting after a long stop, the oil is returned to the compressor at a low temperature. There was a risk that the condensed liquid refrigerant would be returned to the compressor, causing oil to bubble and causing poor lubrication. In addition, a small pressure difference occurs in the compression element chamber of the compressor, which tends to cause the oil level in the compressor to become unbalanced during operation, making it difficult to confirm the oil level position from the oil window during maintenance and maintenance work. It became difficult to do, and the second
If a compressor causes foaming, more oil than necessary is the first problem.
There were problems such as leakage into the second compressor and lowering the oil level in the second compressor.
この発明は上記のような問題点を解消するためになされ
たもので、互いに並列に接続された圧縮機の並列運転時
、或は任意の圧縮機の単独運転時のいずれの場合でも圧
縮機の油面が適正に維持できる並列圧縮式冷凍装置を得
ることを目的とする。This invention was made in order to solve the above-mentioned problems, and the present invention has been made to solve the above-mentioned problems. The objective is to obtain a parallel compression type refrigeration system that can maintain an appropriate oil level.
この発明に係る並列圧縮式冷凍装置は、吸入配管途中に
冷媒ガスと油に分離する手段を設け1分離後の冷媒ガス
の一部を第1の圧縮機に吸引させ、残りの冷媒と油を第
2の圧縮機に吸引させるとともに、上記同圧縮機の油溜
を均圧均油管により互いに連通し、この均圧均油管中に
上記第1の圧縮機より第2の圧縮機側へのガスの流れを
塞止する逆止弁を設けると共に、第1および第2の圧縮
機の均圧均油管の接続口部にそれぞれオリフィスを設け
、上記冷凍サイクルの吸入管の分岐点から各々の上記圧
縮機の吸入口までの吸入分岐管の圧力損失を、(第1の
圧縮機の吸入分岐管の圧損)≧(第2の圧縮機の吸入分
岐管の圧損)にしたものである。The parallel compression type refrigeration system according to the present invention includes means for separating refrigerant gas and oil in the middle of the suction pipe, and a part of the refrigerant gas after one separation is sucked into the first compressor, and the remaining refrigerant and oil are removed. At the same time, the oil reservoirs of the same compressor are communicated with each other through a pressure equalizing oil pipe, and gas flows from the first compressor to the second compressor side through the pressure equalizing oil pipe. A check valve is provided to block the flow of the compressor, and an orifice is provided at the connection port of the pressure equalizing oil pipe of the first and second compressors, so that the compressed air flows from the branch point of the suction pipe of the refrigeration cycle to the respective compressor. The pressure loss in the suction branch pipe to the suction port of the compressor is set to (pressure loss in the suction branch pipe of the first compressor)≧(pressure loss in the suction branch pipe of the second compressor).
この発明に2ける均圧均油配管は、オリアイス並びに逆
止弁を介して連結され、ガスの逆流人を塞止するととも
に、オリフィスにより抵抗をつけ、必要以上の油の流入
を防止する。The pressure equalizing oil piping according to the second aspect of the present invention is connected via an orifice and a check valve to block gas backflow and provide resistance with an orifice to prevent oil from flowing in more than necessary.
以下、この発明の一実施例を図について説明する。第1
図に2いて、 ill 、 +21は第1及び第2の半
密閉形圧縮機、 (la)、 (2a)はこの圧縮機
Ill 、 121 (Dクランクケースで、この中に
は隔壁(1b)、 (2b)によりモータiii (l
c)、 (2c)、圧縮要素室(1d)、 (2d)と
して区画形成されている。(le) 、 (2e) 、
(tf) 。An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figure 2, Ill, +21 are the first and second semi-hermetic compressors, (la), (2a) are the compressors Ill, 121 (D crankcase, which includes the partition wall (1b), (2b) causes motor iii (l
c), (2c), compression element chambers (1d), (2d). (le), (2e),
(tf).
(2f)は各々モータ室(lc)、 (2c) 、圧縮
要素室(ld)。(2f) are a motor chamber (lc), (2c) and a compression element chamber (ld), respectively.
(2d)に収容されたモータ及び圧縮要素である。(2d) The motor and compression element housed in (2d).
(Ig>、 (2g)は両要素(Is)、 (2e)、
(If)、 (2f)を接続するクランク軸、 (
lh)、 (2h)は隔壁(1b)、 (21))
の上部に設けられた均圧用差圧弁で、起動時のようにモ
ータ室(lc)、 (2c)の圧力が圧縮要素室(ld
)。(Ig>, (2g) is both elements (Is), (2e),
(If), the crankshaft connecting (2f), (
lh), (2h) is the partition wall (1b), (21))
The pressure equalizing differential pressure valve installed at the top of the motor chamber (LC) and (2C) equalizes the pressure in the compression element chamber (LD) at the time of startup.
).
(2d)の圧力よりも著しく低くなるようなとき閉とな
るものである。It closes when the pressure becomes significantly lower than the pressure in (2d).
(xi)、 (2i)は隔壁(tb)、 (2b)の下
部に設けた均油用逆止弁で、モータ室(lc)、 (2
c)底部の油溜(li)。(xi) and (2i) are oil equalizing check valves installed at the bottom of the partition walls (tb) and (2b);
c) Bottom oil sump (li).
(21)から圧縮要素室(ld)、 (2d)底部の油
溜(1k) 。(21) to compression element chamber (ld), (2d) bottom oil sump (1k).
(2k)へのみ油の流入を許容するものである。This allows oil to flow only into (2k).
(3)は両正縮機111.121の圧縮要素室(xd)
、 (2d)を連通ずる均圧均油管、(4)はこの均圧
均油管(3)に設けられ、第1の圧縮機Illの圧縮要
素i (Id)より第2の圧縮機【2)の圧縮要素室(
2d)へのガスの流れを基土するものである。(5)は
蒸発器(図示せず)に接続された冷凍サイクルの吸入管
、(6)はこの吸入管(5)の上部と第1の圧縮機fi
+のモータ室(1c)とを接続する第1の圧縮機Il+
の吸入分岐管、(7)は吸入管+51の下部と第2の圧
縮機12)のモータ室(2c)とを接続する第2の圧縮
機+2)の吸入分岐管で、第1の吸入分岐管(6)は第
2の吸入分岐管(1)より細い径であり配管長さも長く
されている。(8)は両正縮機+1)。(3) is the compression element chamber (xd) of both positive compressors 111 and 121
, (2d) is installed in this pressure equalizing pipe (3), and the compression element i (Id) of the first compressor Ill is connected to the second compressor [2]. compression element chamber (
2d). (5) is a suction pipe of the refrigeration cycle connected to the evaporator (not shown), and (6) is the upper part of this suction pipe (5) and the first compressor fi.
The first compressor Il+ is connected to the + motor chamber (1c).
(7) is the suction branch pipe of the second compressor +2) that connects the lower part of the suction pipe +51 and the motor chamber (2c) of the second compressor 12); The pipe (6) has a smaller diameter than the second suction branch pipe (1) and has a longer piping length. (8) is a bidirectional reduction machine +1).
(2]の共通吐出管で、凝縮器、膨張弁(図示せず)を
介して蒸発器(図示せず)に接続されている。The common discharge pipe (2) is connected to an evaporator (not shown) via a condenser and an expansion valve (not shown).
また、(9)は上記(3)の均圧均油管と第1の圧縮機
用及び、第2の圧縮機(21の間に組み込まれたオリフ
ィスである。Further, (9) is an orifice installed between the pressure equalizing oil pipe of (3) above and the first compressor and the second compressor (21).
次に動作について説明する。両正縮機Ill、 12)
が運転されているときは1通常、冷媒循環量の0.54
程度含まれた油は冷媒サイクルの吸入管(51内を蒸発
した冷媒ガスと共に圧縮機I11. (2)側へ戻って
くる。この時、この油の大部分は東方の影響で第2の圧
縮機(2]の吸入分岐管(υへ流入し、第2の圧縮機1
2)のモータ室(2c)均油逆止弁(21)を通り、圧
縮要素! (2d)へ供給される。第1の吸入分岐管+
6)は第2の吸入分岐管(7)より細く長くなっている
為吸入分岐管+6)、 (7)に窓ける冷媒の圧力損失
は第1の吸入分岐v!+6)の万が大きくなる。従って
、各モータ室(lc)、 (2c)と各圧縮要素It
(ld)、 (2d)の圧力の関係は第1のlEa機の
モータ室rlc)の圧力≦第1の圧縮機の圧縮要素室(
ld)の圧力く第2の圧縮機の圧縮要素室(2d)の圧
力≦第2の[E51機(21のモータ室(2C)の圧力
となり油は第2の0]縮機12)の圧縮要素室(2d)
から均圧均油管(3)Sよび、逆止弁(4)を通り第1
の圧縮機Illの圧縮要素室(1d)へ供給され正常に
潤滑+J!能をはたすことが出来る。Next, the operation will be explained. Both positive reduction machine Ill, 12)
When the is in operation, 1 Normally, 0.54 of the refrigerant circulation amount
The oil contained in the refrigerant cycle returns to the compressor I11 (2) side along with the evaporated refrigerant gas in the suction pipe (51). The suction branch pipe (υ) of the compressor (2) flows into the second compressor 1
2) through the motor chamber (2c) oil equalizing check valve (21) and the compression element! (2d). First suction branch pipe +
6) is thinner and longer than the second suction branch pipe (7), so the pressure loss of the refrigerant through the window in (7) is the first suction branch v! +6) 10,000 becomes larger. Therefore, each motor chamber (lc), (2c) and each compression element It
The relationship between the pressures in (ld) and (2d) is that the pressure in the motor chamber rlc) of the first lEa machine ≦ the compression element chamber of the first compressor (
ld) pressure in the compression element chamber (2d) of the second compressor ≦ the pressure in the motor chamber (2C) of the second E51 machine (21, and the oil is in the second 0] compressor 12) Element room (2d)
1 through the pressure equalizing oil pipe (3) S and the check valve (4).
is supplied to the compression element chamber (1d) of the compressor Ill and is properly lubricated +J! You can perform your abilities.
次に、第1の圧縮機Illだけが運転する場合、吸入管
【51より冷媒ガスは第1の圧縮機Illの吸入分岐管
(6)よりモータ室(+c)へ流入する。この間の配管
の圧力損失fこより約300mmAq程度圧力低下する
。Next, when only the first compressor Ill is operated, the refrigerant gas flows from the suction pipe [51] into the motor chamber (+c) through the suction branch pipe (6) of the first compressor Ill. During this time, the pressure decreases by about 300 mmAq due to the pressure loss f in the piping.
また、圧縮要素室(ld)の圧力も均圧差圧弁(1h)
の作用で低下する。一方、油は吸入管〔51より、第2
の圧縮機12)の吸入分岐管(7)、モータ室(2c)
、均油逆止弁(21)を介して圧縮要素? (2d)へ
流入するが。In addition, the pressure in the compression element chamber (ld) is also controlled by the equalization differential pressure valve (1h).
It decreases due to the action of On the other hand, oil flows from the suction pipe [51] to the second
Suction branch pipe (7) of compressor 12), motor room (2c)
, the compression element via the oil equalizing check valve (21)? It flows into (2d).
@2の圧縮機(2)は運転していない為、吸入分岐管(
7)の圧力損失は極めて少ない。そのため第1の圧a機
11)の圧縮要素室(1d)の圧力p+dと@2の圧縮
機+2)の圧縮要素室(2d)の圧力pgdはP+d<
1)Idとなり、第2の圧縮機+21の圧縮要素室(2
d)に溜った油の一部に圧力差により@lの圧縮機(1
)の圧縮要素室(1d)へ供給され、正常に運転を続け
ることが可能である。@2 compressor (2) is not operating, so the suction branch pipe (
7) The pressure loss is extremely small. Therefore, the pressure p+d in the compression element chamber (1d) of the first pressure a machine 11) and the pressure pgd in the compression element chamber (2d) of @2 compressor +2) are P+d<
1) Id, the second compressor + 21 compression element chamber (2
Due to the pressure difference in part of the oil accumulated in d), the compressor @l (1
) is supplied to the compression element chamber (1d), allowing normal operation to continue.
次に、第2の圧a m 12)だけが運転した場合、冷
媒ガスと油は吸入管(51より第2の圧縮機+2)の吸
入分岐管(7)を経てモータ室(2c)へ流入する。こ
の間に配管の圧力損失により褐2の圧縮機12)のモー
タi1 (2c)の圧力は約200 mmAQ程度圧力
低下する。Next, when only the second pressure a m 12) is operated, the refrigerant gas and oil flow into the motor room (2c) through the suction branch pipe (7) of the suction pipe (from 51 to the second compressor + 2). do. During this time, the pressure of motor i1 (2c) of brown 2 compressor 12) decreases by about 200 mmAQ due to pressure loss in the piping.
−万、均圧均油管(3)に逆止弁(4)がない場合、停
止中の第1の圧縮機Illの吸入分岐管(6)より第1
の圧縮機113のモータ′@(+c)、均油逆止弁(l
i) 、圧縮要素室(ld)、均油管(3)を介して、
運転中の第2の圧縮機(2)の圧縮要素室@ (2d)
を通してガスが流入し、圧力を高め第2の圧縮機12)
の均油逆止弁(21)を閉とし、せっかくモータ室(2
c)まで戻った油を圧縮要素1! (2d)へ移動する
ことが不可能であり、短時間に油不足による潤滑不良を
発生する可能性があったが、この発明ではtoommA
qa&で作用する逆止弁(4)を均油管(3)に設けて
いる為、第1の圧縮機用から第2の圧縮機121へのガ
スの流入が阻止され、圧縮要素室(2d)の圧力は均圧
差圧弁(2h)の作用でほぼモータN (2c)と同一
レベルに維持される。- If there is no check valve (4) in the pressure equalization pipe (3), the first
The motor ′@(+c) of the compressor 113, the oil equalizing check valve (l
i) Via the compression element chamber (ld) and the oil equalizing pipe (3),
Compression element chamber of the second compressor (2) in operation @ (2d)
Gas flows through the second compressor 12) and increases the pressure.
The oil equalizing check valve (21) is closed, and the motor room (2
The oil returned to c) is compressed into element 1! (2d), and there was a possibility that lubrication failure would occur due to lack of oil in a short period of time, but in this invention, toommA
Since a check valve (4) that operates at qa & is provided in the oil equalizing pipe (3), gas is prevented from flowing from the first compressor to the second compressor 121, and the compression element chamber (2d) The pressure of the motor N (2c) is maintained at approximately the same level as that of the motor N (2c) by the action of the equalizing pressure differential valve (2h).
従ってモータ室(2c)へ戻った油を圧縮要素i1 (
2d)へ送り込むことが可能となる。Therefore, the oil returned to the motor chamber (2c) is compressed by the compression element i1 (
2d).
また、両圧縮機I11. +21が運転されている場合
。Also, both compressors I11. When +21 is in operation.
第1の圧縮機11)がフォーミングを起こした場合。When the first compressor 11) causes foaming.
必要以上の油が第2の圧縮機シ2)に流出してしまって
いたが、両方の圧縮6&ill 、 [21の均油管取
付口に設けられたオリアイス(9)により抵抗をつけ、
第2の圧縮機+2)への油の必要以上の流入を阻とする
。More oil than necessary had leaked into the second compressor (2), but the oil was put in resistance by the oriice (9) installed at the oil equalizing pipe installation port of both compressors (6) and (21).
This prevents more oil from flowing into the second compressor +2) than necessary.
よって、常に油面を正常に維持して、安定した運転を行
うことが出来る。この方式によれば、第1の圧縮機Il
l、第2の圧縮機+2)の全運転及び何れの圧縮機/1
1.+21の部分運転でも油面を常lこ正常な位置に保
つことができる。従って、第1の圧縮機Ill及び第2
の圧縮機12+を異る容量の圧縮機とし、例えば第1の
圧縮機111を5.5 kw 、第2の圧縮機(2)を
10.81cwとすれば、第1の圧縮機Il+だけで3
34運転、第2の圧縮機(2)で674運転、両方の圧
縮機/13. +2)を運転して1004と、合計3段
階の容量制御が可能となり、負荷変動の多い食品店舗の
オープンショーケース等の冷却用冷凍機として使用した
場合、負荷変動に対応して冷凍機の能力をコントロール
し、常に設計条件に近い蒸発温度で運転可能となりエネ
ルギー利用効率が大巾1こ改善される。Therefore, the oil level can always be maintained at a normal level and stable operation can be performed. According to this system, the first compressor Il
l, full operation of the second compressor +2) and any compressor/1
1. Even during partial operation at +21, the oil level can always be maintained at a normal position. Therefore, the first compressor Ill and the second
If the compressors 12+ are compressors with different capacities, for example, the first compressor 111 is 5.5 kW and the second compressor (2) is 10.81 cw, then only the first compressor Il+ 3
34 runs, 674 runs with second compressor (2), both compressors/13. +2) and 1004, making it possible to control the capacity in three stages in total, and when used as a refrigerator for cooling open showcases in food stores, etc., where the load fluctuates frequently, the capacity of the refrigerator can be adjusted in response to load fluctuations. control, it is possible to always operate at an evaporation temperature close to the design conditions, and energy usage efficiency is greatly improved.
以上のようにこの発明によれば、−万の圧縮機に対して
積極的に冷凍サイクル中の油を戻しながら1両圧縮機に
よる全運転、及び何れかの圧縮機による部分運転と全て
の条件に3いて両圧縮機の油面を適正に維持することが
可能であり、従来のように摺動部の焼付、油上り量過大
による冷凍能力の低下、弁部分損傷を防止することがで
きる。As described above, according to the present invention, the oil in the refrigeration cycle is actively returned to the 10,000 compressors while full operation is performed by one compressor, and partial operation is performed by either compressor under all conditions. (3) It is possible to maintain an appropriate oil level in both compressors, and it is possible to prevent seizure of sliding parts, decrease in refrigeration capacity due to excessive oil flow, and damage to valve parts as in the past.
第1図はこの発明の一実施例を示す並列圧縮式冷凍装置
の構成図、第2図は従来の並列圧縮式冷凍装置を示す構
成図である。
図に8いて、111.121は第1及び第2の圧縮機。
(lc)、 (2c)はモータ室、(Ld)、 (2d
)は圧縮要素室、(lh)、 (2h)は均圧用差圧弁
、(li)、 (2i)は均油用逆止弁、(3jは均圧
均油管、(4)は逆止弁、(6ン、(7〕は吸入分岐管
、(9)はオリフィスである。
な2、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a block diagram of a parallel compression type refrigeration system showing one embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional parallel compression type refrigeration system. 8 in the figure, 111.121 are the first and second compressors. (lc), (2c) are motor chambers, (Ld), (2d
) is a compression element chamber, (lh), (2h) are pressure equalizing differential pressure valves, (li), (2i) are oil equalizing check valves, (3j is a pressure equalizing oil pipe, (4) is a check valve, (6), (7) is a suction branch pipe, and (9) is an orifice. (2) In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
画する隔壁の所定位置に、均圧用差圧弁及び上記モータ
室側から、圧縮要素室側へのみ油流通を許容する均油逆
止弁を有する第1及び第2の圧縮機を互いに並列に配管
接続したものにおいて、吸入配管途中に冷媒ガスと油に
分離する手段を設け、分離後の冷媒ガスの一部を第1の
圧縮機に吸引させ、残りの冷媒と油を第2の圧縮機に吸
引させると共に、上記両圧縮機の油溜を均圧均油管によ
り互いに連通し、この均圧均油管中に上記第1の圧縮機
より第2の圧縮機側へのガスの流れを塞止する逆止弁を
設けると共に、第1の圧縮機及び第2の圧縮機の均圧均
油管接続口に、それぞれオリフィスを設け、上記冷凍サ
イクルの吸入管の分岐点から各々の上記圧縮機の吸入口
までの吸入分岐管の圧力損失を、(第1の圧縮機の吸入
分岐管の圧損)≧(第2の圧縮機の吸入分岐管の圧損)
にしたことを特徴とする並列圧縮式冷凍装置。A pressure equalizing differential pressure valve and an oil equalizing check valve that allows oil to flow only from the motor chamber side to the compression element chamber side are installed at predetermined positions on the partition wall that divides the inside of the crankcase into the motor chamber side and the compression element chamber side. A first and a second compressor having a first and second compressors are connected in parallel with each other by piping, and a means for separating refrigerant gas and oil is provided in the middle of the suction piping, and a part of the separated refrigerant gas is sucked into the first compressor. At the same time, the remaining refrigerant and oil are sucked into the second compressor, and the oil reservoirs of the two compressors are communicated with each other through a pressure-equalizing oil pipe. A check valve is provided to block the flow of gas to the second compressor side, and an orifice is provided at the pressure equalization oil pipe connection port of the first compressor and the second compressor, respectively. The pressure loss in the suction branch pipe from the branch point of the suction pipe to the suction port of each of the compressors is calculated as follows: (Pressure drop in the suction branch pipe of the first compressor) ≧ (Pressure drop in the suction branch pipe of the second compressor) )
A parallel compression type refrigeration system characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP900489A JPH02192556A (en) | 1989-01-18 | 1989-01-18 | Parallel compression refrigerating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP900489A JPH02192556A (en) | 1989-01-18 | 1989-01-18 | Parallel compression refrigerating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02192556A true JPH02192556A (en) | 1990-07-30 |
Family
ID=11708516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP900489A Pending JPH02192556A (en) | 1989-01-18 | 1989-01-18 | Parallel compression refrigerating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02192556A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02144373U (en) * | 1989-05-09 | 1990-12-07 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58210380A (en) * | 1982-05-31 | 1983-12-07 | Mitsubishi Electric Corp | Parallel compression system refrigerator |
JPS6332254A (en) * | 1986-07-23 | 1988-02-10 | 三菱電機株式会社 | Parallel compression type refrigerator |
-
1989
- 1989-01-18 JP JP900489A patent/JPH02192556A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58210380A (en) * | 1982-05-31 | 1983-12-07 | Mitsubishi Electric Corp | Parallel compression system refrigerator |
JPS6332254A (en) * | 1986-07-23 | 1988-02-10 | 三菱電機株式会社 | Parallel compression type refrigerator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02144373U (en) * | 1989-05-09 | 1990-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6219593B2 (en) | ||
JP4013261B2 (en) | Refrigeration equipment | |
EP0403239B1 (en) | Capacity controllable compressor apparatus | |
US5236311A (en) | Compressor device for controlling oil level in two-stage high dome compressor | |
KR100807498B1 (en) | Refrigerator | |
EP0852324B1 (en) | Refrigerant circulating apparatus | |
JP2003130474A (en) | Refrigeration device | |
US2076332A (en) | Lubrication system | |
US7231783B2 (en) | Oil control system for a refrigeration system | |
JP2011202817A (en) | Refrigerating cycle device | |
US11391496B2 (en) | Refrigerating cycle apparatus | |
JPH02192556A (en) | Parallel compression refrigerating plant | |
JPH0217190Y2 (en) | ||
JPH02230985A (en) | Parallel compression type refrigerator | |
JPS5877183A (en) | Parallel compression system refrigerating device | |
KR100710368B1 (en) | Multi-type air conditioner | |
KR101203848B1 (en) | A compressor oil retrieving apparatus of multi-type air conditioner | |
JPS6151156B2 (en) | ||
JPH10238881A (en) | Multi-type heat pump system air conditioner and oil equilibrium operation of the same | |
JPS6346274B2 (en) | ||
JPH0137598B2 (en) | ||
JPH0139913Y2 (en) | ||
JPH048705B2 (en) | ||
JPS6245110Y2 (en) | ||
JPH06159826A (en) | Multistage compression refrigerating apparatus |