JPH02192171A - Switching element - Google Patents

Switching element

Info

Publication number
JPH02192171A
JPH02192171A JP1009958A JP995889A JPH02192171A JP H02192171 A JPH02192171 A JP H02192171A JP 1009958 A JP1009958 A JP 1009958A JP 995889 A JP995889 A JP 995889A JP H02192171 A JPH02192171 A JP H02192171A
Authority
JP
Japan
Prior art keywords
superconductor
electron beam
light
switching element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009958A
Other languages
Japanese (ja)
Inventor
Masaki Yamabe
山部 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1009958A priority Critical patent/JPH02192171A/en
Publication of JPH02192171A publication Critical patent/JPH02192171A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a switching element of simple structure which is turned ON or OFF corresponding to ON or OFF of a light beam or an electron beam by a method wherein a superconductor is made to fluctuate in temperature centering about its critical temperature as a light beam or an electron beam is made to serve as an input source. CONSTITUTION:A part or the whole of a conductor is formed of a superconductor 11, which is made to serve as an irradiation section 12 irradiated with a light beam or an electron beam, and the whole conductor is kept at a critical temperature or lower where the superconductor 11 is kept in a superconductive state. When the irradiation section 12 is not irradiated with a light beam or an electron beam, the superconductor 11 is kept at a critical temperature Tc or lower and zero in electrical resistivity, the voltage of a power source 13 does not appear at an output terminal 15. When the irradiation section 12 is irradiated with a light beam or an electron beam, the temperature of the superconductor 11 rises slightly higher than the critical temperature Tc and the superconductor 11 grows to have resistivity, a voltage appears at the output terminal 15. That is, the superconductor 11 functions as a switching element.

Description

【発明の詳細な説明】 〔概要〕 スイッチング素子、特に超伝導体を用いて光またはエレ
クトロンビームによって動作するスイッチング素子に関
し、 光またはエレクトロンビームを入力源としそれのオン・
オフを利用する簡単な構造のスイッチング素子を提供す
ることを目的とし、 一端側が電源端子に接続される一部または全部が超伝導
体からなる導体と、前記超伝導体の一部に光またはエレ
クトロンビームを照射する窓と、前記光またはエレクト
ロンビームが照射される超伝導体端部の電圧を外部に取
り出す出力端子とを備え、前記光またはエレクトロンビ
ームのオン・オフによって出力電圧をオン・オフまたは
オフ・オンを行うことを特徴とするスイッチング素子を
含み構成する。
[Detailed Description of the Invention] [Summary] Regarding a switching element, particularly a switching element using a superconductor and operated by light or an electron beam, the switching element uses light or an electron beam as an input source and turns it on and off.
The purpose of the present invention is to provide a switching element with a simple structure that utilizes the OFF state, and includes a conductor partially or entirely made of a superconductor whose one end side is connected to a power supply terminal, and a part of the superconductor that is irradiated with light or electrons. It is equipped with a window for irradiating the beam and an output terminal for extracting the voltage at the end of the superconductor to which the light or electron beam is irradiated, and the output voltage can be turned on or off by turning on or off the light or electron beam. The device includes a switching element that turns off and on.

〔産業上の利用分野〕[Industrial application field]

本発明はスイッチング素子、特に超伝導体を用いて光ま
たはエレクトロンビームによって動作するスイッチング
素子に関する。
The present invention relates to a switching element, and particularly to a switching element using a superconductor and operated by light or an electron beam.

〔従来の技術] 従来のスイッチング素子は主にトランジスタのスイッチ
ング特性を利用している。電圧を入力とするものは、例
えばバイポーラトランジスタや電界効果トランジスタ等
があり、また、光を入力とするものは、光検出器として
フォトダイオードを使用しているものが多い。
[Prior Art] Conventional switching elements mainly utilize the switching characteristics of transistors. Those that take voltage as input include, for example, bipolar transistors and field effect transistors, and those that take light as input often use photodiodes as photodetectors.

照射される超伝導体端部の電圧を外部に取り出す出力端
子とを備え、前記光またはエレクトロンビームのオン・
オフによって出力電圧をオン・オフまたはオフ・オンを
行うことを特徴とするスイッチング素子によって解決さ
れる。
It is equipped with an output terminal for taking out the voltage at the end of the superconductor to be irradiated,
This problem is solved by a switching element that turns the output voltage on and off or off and on depending on when it is turned off.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、どちらの場合も、半導体にpn接合を形成す
る必要があり構造が複雑となり、簡単に製造することが
できない。
However, in either case, it is necessary to form a pn junction in the semiconductor, resulting in a complicated structure and cannot be easily manufactured.

そこで本発明は、光またはエレクトロンビームを入力源
としそれのオン・オフを利用する簡単な構造のスイッチ
ング素子を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a switching element with a simple structure that uses light or electron beams as an input source and utilizes the on/off operation of the light or electron beams.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、一端側が電源端子に接続される一部または
全部が超伝導体からなる導体と、前記超伝導体の一部に
光またはエレクトロンビームを照射する窓と、前記光ま
たはエレクトロンビームが(作用〕 第1図は本発明の原理説明図である。同図において、一
部または全部が超伝導体11から成る導体は、光または
エレクトロンビームが照射される照射部12になってお
り、この超伝導体11の一端部側は保護抵抗体14を介
して電源13に接続され、他端部側は接地され、また超
伝導体11の端子電圧を取り出す出力端子15が設けら
れている。そして、全体は超伝導体11が超伝導特性を
示す臨界温度以下に保持されている。すなわち本発明で
は、光またはエレクトロンビームを照射しない時には、
超伝導特性を示す温度に保持されているため、第3図に
示すように臨界温度Tc以下の温度(a)に保たれ電気
抵抗率が0となる。従って、第2図(a)に示す等価回
路の構成となり、電源13の電圧は出力端子15に表れ
ない。一方、光またはエレクトロンビームを照射した時
には、超伝導体11の温度が臨界温度Tcよりわずかに
高い温度(b)に上昇して0.数用Ω・cmの電気抵抗
率を持つ。従って、第2図(b)に示す等価回路の構成
となり、電TX13の電圧をE、抵抗体14の抵抗値を
Ro、超伝導体11の抵抗値をRIとすると、出力端子
15には、V、=R。
The above problem consists of a conductor partially or entirely made of a superconductor whose one end side is connected to a power supply terminal, a window for irradiating a part of the superconductor with light or an electron beam, and a window for irradiating the light or electron beam ( [Operation] Fig. 1 is an explanatory diagram of the principle of the present invention. In the figure, a conductor partially or entirely made of a superconductor 11 serves as an irradiation part 12 to which light or electron beam is irradiated. One end of the superconductor 11 is connected to a power source 13 via a protective resistor 14, the other end is grounded, and an output terminal 15 is provided for taking out the terminal voltage of the superconductor 11. , the entire superconductor 11 is maintained below a critical temperature at which it exhibits superconducting properties.That is, in the present invention, when not irradiated with light or electron beam,
Since it is maintained at a temperature that exhibits superconducting properties, it is maintained at a temperature (a) below the critical temperature Tc, as shown in FIG. 3, and its electrical resistivity becomes 0. Therefore, the equivalent circuit configuration shown in FIG. 2(a) is obtained, and the voltage of the power supply 13 does not appear at the output terminal 15. On the other hand, when irradiated with light or an electron beam, the temperature of the superconductor 11 rises to a temperature (b) slightly higher than the critical temperature Tc and reaches 0. It has an electrical resistivity of several Ωcm. Therefore, the configuration of the equivalent circuit shown in FIG. 2(b) is obtained, and if the voltage of the electric TX 13 is E, the resistance value of the resistor 14 is Ro, and the resistance value of the superconductor 11 is RI, the output terminal 15 has the following: V,=R.

/(Ro+R+)・Eの電圧が表れる。全体は超伝導状
態が起こる温度に冷却されているため、光またはエレク
トロンビームの照射を止めれば超伝導体11部分は、再
び超伝導状態に復帰し出力電圧は0となる。すなわち、
スイッチング素子としての動作を行う。
A voltage of /(Ro+R+)·E appears. Since the entire structure is cooled to a temperature at which a superconducting state occurs, when the irradiation with light or electron beam is stopped, the superconductor 11 returns to the superconducting state and the output voltage becomes zero. That is,
Operates as a switching element.

〔実施例〕〔Example〕

以下、本発明を図示の一実施例により具体的に説明する
Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.

第4図は本発明第一実施例のスイッチング素子の超伝導
体部分斜視図、第5図は第4図のスイッチング素子の断
面図である。
FIG. 4 is a partial perspective view of the superconductor of the switching element according to the first embodiment of the present invention, and FIG. 5 is a sectional view of the switching element of FIG. 4.

これらの図において、シリコン基板21上に酸化膜など
の絶縁膜22が形成され、この絶縁膜22上にほぼT字
状の酸化物超伝導体23から成る導体パターンが形成さ
れている。また、この酸化物超伝導体23上は光照射部
24を除いて酸化膜などから成る絶縁膜25で覆われ、
更にこの光照射部24以外に光が照射されるのを防ぐた
め絶縁膜25上に遮光性膜26が覆われている。すなわ
ち、光照射部24上には、遮光性膜26と絶縁膜25を
開口して光が入射する窓27が形成されている。そして
、酸化物超伝導体23の一方側は図示しない電源に接続
され、他端部側は接地され、更にT字の中央部は酸化物
超伝導体23端部の電圧を外部に取り出す出力端子とな
り、これらの全体は酸化物超伝導体23が超伝導特性を
示す臨界温度よりわずかに低い温度に保持されている。
In these figures, an insulating film 22 such as an oxide film is formed on a silicon substrate 21, and a substantially T-shaped conductor pattern made of an oxide superconductor 23 is formed on this insulating film 22. The oxide superconductor 23 is covered with an insulating film 25 made of an oxide film, etc., except for the light irradiation part 24.
Further, in order to prevent light from being irradiated to areas other than the light irradiation section 24, a light shielding film 26 is covered on the insulating film 25. That is, a window 27 is formed on the light irradiation section 24 through which the light shielding film 26 and the insulating film 25 are opened to allow light to enter. One side of the oxide superconductor 23 is connected to a power source (not shown), the other end is grounded, and the center of the T-shape is an output terminal for taking out the voltage at the end of the oxide superconductor 23 to the outside. All of these are maintained at a temperature slightly lower than the critical temperature at which the oxide superconductor 23 exhibits superconducting properties.

上記構成のスイッチング素子では、光が照射されない時
には、酸化物超伝導体23は超伝導状態に保持されてい
るため、抵抗率がOになり出力端子に電源による電圧が
表れない。一方、光が窓27を通して酸化物超伝導体2
3の光照射部24に照射された時には、その照射された
光照射部24の温度が上昇し所定の値の電気抵抗率を持
ち、出力端子に電源による電圧が表われる。そして、全
体は超伝導状態が起こる臨界温度以下に冷却されている
ため、光の照射を止めれば再び超伝導状態に復帰し出力
電圧はOとなる。すなわち、光のオン・オフにより出力
端子の電圧がオン・オフするスイッチング素子としての
動作を行う。
In the switching element having the above configuration, when the oxide superconductor 23 is not irradiated with light, the oxide superconductor 23 is maintained in a superconducting state, so that the resistivity becomes O and no voltage from the power source appears at the output terminal. On the other hand, light passes through the window 27 into the oxide superconductor 2.
When the light irradiation section 24 of No. 3 is irradiated with light, the temperature of the irradiated light irradiation section 24 rises and has a predetermined electrical resistivity, and a voltage from the power source appears at the output terminal. Since the entire structure is cooled below the critical temperature at which a superconducting state occurs, when the light irradiation is stopped, the superconducting state is restored and the output voltage becomes O. That is, it operates as a switching element in which the voltage at the output terminal is turned on and off by turning on and off light.

第6図は本発明第二実施例のスイッチング素子の断面図
、第7図は第6図のA部分の拡大図である。
FIG. 6 is a sectional view of a switching element according to a second embodiment of the present invention, and FIG. 7 is an enlarged view of portion A in FIG. 6.

これらの図において、シリコン基板31上に酸化膜など
の絶縁膜32が形成され、この絶縁膜32上にアルミニ
ュウム(Aりまたはタングステン(W)などの材料から
成るカソードを形成する金属膜33が形成され、この金
属膜33上に酸化膜などの絶縁膜34が形成され、さら
にこの絶縁膜34中にl、Uなどの材料から成るグリッ
ドを形成する金属膜35が形成されている。そして、上
記絶縁膜34と金属膜35の一部を開口した溝36が形
成され、この溝36の底部の金属膜33上に先端が細く
形成された微細電子銃37が形成されている。微細電子
銃としては、例えばオランダのフィリップス・リサーチ
・ラボラトリ−の作ったものが知られている。従来のE
B詰装置はイオンが電子銃にぶつかり、先端を損傷する
ため寿命が短かかったが、この微細電子銃はグリッドと
なる金属膜35で隠れる部分が多いため、ぶつかるイオ
ンが少なく長寿命が期待できる。
In these figures, an insulating film 32 such as an oxide film is formed on a silicon substrate 31, and a metal film 33 forming a cathode made of a material such as aluminum (A) or tungsten (W) is formed on this insulating film 32. An insulating film 34 such as an oxide film is formed on this metal film 33, and a metal film 35 forming a grid made of materials such as L and U is further formed in this insulating film 34. A groove 36 is formed by opening a part of the insulating film 34 and the metal film 35, and a fine electron gun 37 having a thin tip is formed on the metal film 33 at the bottom of the groove 36.As a fine electron gun. For example, the one made by Philips Research Laboratory in the Netherlands is known.
The life of the B-packing device was short because ions collided with the electron gun and damaged the tip, but this microelectron gun has many parts hidden by the metal film 35 that forms the grid, so fewer ions collide and it can be expected to have a long life. .

そして、絶縁膜34上に溝36上を覆うようほぼT字状
の酸化物超伝導体38から成る導体パターンが形成され
ている。そして、一方の金属膜33にマイナス、他方の
金属膜35に入力信号に応じたプラスのオン・オフ信号
が入力される。すなわち、溝36の上部の窓39に臨む
酸化物超伝導体38部分がアノードを形成し微細電子銃
37からの電子の照射部40となっている。
Then, a substantially T-shaped conductor pattern made of an oxide superconductor 38 is formed on the insulating film 34 so as to cover the groove 36. Then, a negative on/off signal is inputted to one metal film 33 and a positive on/off signal corresponding to the input signal is inputted to the other metal film 35. That is, the portion of the oxide superconductor 38 facing the window 39 at the top of the groove 36 forms an anode and serves as a portion 40 irradiated with electrons from the microelectron gun 37.

上記構成のスイッチング素子では、微細電子銃37は電
界により先端から電子を放出する電子銃であり、グリッ
ドを形成する金属膜35に入力電圧が印加されると、微
細電子銃37からエレクトロンビームが放出し、アノー
ドを形成する酸化物超伝導体38に衝突し、この部分(
照射部40)の温度を上昇させる。これにより、その酸
化物超伝導体38部分が電気抵抗率を持ち、前記した実
施例の場合と同様に出力端子に電源による電圧が表われ
る。そして、全体は超伝導状態が起こる臨界温度以下に
冷却されているため、電圧の印加を止めればエレクトロ
ンビームの放出がなくなり再び超伝導状態に復帰し出力
電圧はOとなる。すなわち、エレクトロンビームのオン
・オフにより出力端子の電圧がオン・オフするスイッチ
ング素子としての動作を行う。この実施例の場合には、
電圧を入力として出力電圧を得るため、−素子の出力を
他の素子の入力とすることが容易になり、集積化に好適
である。
In the switching element having the above configuration, the microelectron gun 37 is an electron gun that emits electrons from its tip by an electric field, and when an input voltage is applied to the metal film 35 forming the grid, an electron beam is emitted from the microelectron gun 37. collides with the oxide superconductor 38 forming the anode, and this part (
The temperature of the irradiation section 40) is increased. As a result, the oxide superconductor 38 portion has electrical resistivity, and the voltage from the power supply appears at the output terminal as in the above-described embodiment. Since the entire structure is cooled below the critical temperature at which a superconducting state occurs, when the voltage application is stopped, the electron beam is no longer emitted and the superconducting state is restored again, and the output voltage becomes O. That is, it operates as a switching element in which the voltage at the output terminal is turned on and off by turning on and off the electron beam. In this example,
Since an output voltage is obtained by using a voltage as an input, it is easy to use the output of a negative element as an input of another element, which is suitable for integration.

なお、上記実施例では酸化物超伝導体23.38を用い
ているが、本発明の適用範囲はこれに限らず他の種類の
超伝導体に適用ができる。
Note that although oxide superconductors 23 and 38 are used in the above embodiments, the scope of application of the present invention is not limited thereto, and can be applied to other types of superconductors.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、光またはエレクトロ
ンビームを入力源として、超伝導体を臨界温度の上下に
変化させることで、光またはエレクトロンビームのオン
・オフに対応してオン・オフする簡単な構造のスイッチ
ング素子を得ることができる。
As explained above, according to the present invention, the superconductor is turned on and off in response to the on/off of the light or electron beam by changing the temperature above and below the critical temperature using light or an electron beam as an input source. A switching element with a simple structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図(a)及び(b)は本発明の等価回路図、第3図
は超伝導体の抵抗−温度曲線を示す図、第4図は本発明
第一実施例の超伝導体部分の斜視図、 第5図は本発明第一実施例の断面図、 第6図は本発明第二実施例の断面図、 第7図は第6図のA部分の拡大断面図である。 図中、 11は超伝導体、 12は照射部、 13は電源、 14は抵抗体、 15は出力端子、 21はシリコン基板 22.25は絶縁膜、 23は酸化物超伝導体、 24は光照射部、 26は遮光性膜、 27は窓、 31はシリコン基板、 32.34は@縁膜、 33.35は金属膜、 36は溝、 37は微細電子銃、 38は酸化物超伝導体、 39は窓、 40は照射部 を示す。 」
Figure 1 is a diagram explaining the principle of the present invention, Figures 2 (a) and (b) are equivalent circuit diagrams of the present invention, Figure 3 is a diagram showing the resistance-temperature curve of a superconductor, and Figure 4 is a diagram of the present invention. FIG. 5 is a sectional view of the first embodiment of the invention, FIG. 6 is a sectional view of the second embodiment of the invention, and FIG. 7 is the same as that of FIG. 6. It is an enlarged sectional view of A part. In the figure, 11 is a superconductor, 12 is an irradiation part, 13 is a power supply, 14 is a resistor, 15 is an output terminal, 21 is a silicon substrate 22, 25 is an insulating film, 23 is an oxide superconductor, 24 is a light Irradiation part, 26 is a light-shielding film, 27 is a window, 31 is a silicon substrate, 32.34 is an @edge film, 33.35 is a metal film, 36 is a groove, 37 is a microelectron gun, 38 is an oxide superconductor , 39 is a window, and 40 is an irradiation part. ”

Claims (1)

【特許請求の範囲】[Claims] 一端側が電源端子に接続される一部または全部が超伝導
体(11)からなる導体と、前記超伝導体(11)の一
部に光またはエレクトロンビームを照射する窓と、前記
光またはエレクトロンビームが照射される超伝導体(1
1)端部の電圧を外部に取り出す出力端子(15)とを
備え、前記光またはエレクトロンビームのオン・オフに
よって出力電圧のオン・オフまたはオフ・オンを得るこ
とを特徴とするスイッチング素子。
a conductor partially or entirely made of a superconductor (11), one end of which is connected to a power supply terminal; a window for irradiating a part of the superconductor (11) with light or an electron beam; A superconductor (1
1) A switching element characterized in that it is equipped with an output terminal (15) for extracting the voltage at the end to the outside, and that the output voltage is turned on and off by turning on and off the light or electron beam.
JP1009958A 1989-01-20 1989-01-20 Switching element Pending JPH02192171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009958A JPH02192171A (en) 1989-01-20 1989-01-20 Switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009958A JPH02192171A (en) 1989-01-20 1989-01-20 Switching element

Publications (1)

Publication Number Publication Date
JPH02192171A true JPH02192171A (en) 1990-07-27

Family

ID=11734454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009958A Pending JPH02192171A (en) 1989-01-20 1989-01-20 Switching element

Country Status (1)

Country Link
JP (1) JPH02192171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828078A (en) * 1995-07-24 1998-10-27 Hughes Electronics Electrostatic discharge protection using high temperature superconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828078A (en) * 1995-07-24 1998-10-27 Hughes Electronics Electrostatic discharge protection using high temperature superconductors

Similar Documents

Publication Publication Date Title
US3670213A (en) Semiconductor photosensitive device with a rare earth oxide compound forming a rectifying junction
US4521682A (en) Photodetecting device having Josephson junctions
GB2318208A (en) Electronic switching device
Holonyak et al. Gallium-arsenide tunnel diodes
US5099300A (en) Gated base controlled thyristor
US5138415A (en) Photo-semiconductor device with a zero-cross function
US2786880A (en) Signal translating device
US3150282A (en) High efficiency cathode structure
US4549194A (en) Light sensitive detector
US4520277A (en) High gain thyristor switching circuit
US5506425A (en) Semiconductor device and lead frame combination
JPH02192171A (en) Switching element
US5793063A (en) High voltage, vertical-trench semiconductor device
US4631560A (en) MOMS tunnel emission transistor
WO1986000469A1 (en) Controlled turn-on thyristor
US3204115A (en) Four-terminal solid state superconductive device with control current flowing transverse to controlled output current
US4231054A (en) Thyristor with starting and generating cathode base contacts for use in rectifier circuits
US4163241A (en) Multiple emitter and normal gate semiconductor switch
JP2603233B2 (en) Optical switching electron-emitting device
JP2740034B2 (en) Semiconductor device
US6831328B2 (en) Anode voltage sensor of a vertical power component and use for protecting against short circuits
US3599321A (en) Inverted space charge limited triode
KR100279502B1 (en) Triac element and manufacturing method
JPS5812374A (en) Semiconductor detector
GB2030796A (en) Thyristor circuit