JPH02192043A - Optical information processor - Google Patents

Optical information processor

Info

Publication number
JPH02192043A
JPH02192043A JP1011419A JP1141989A JPH02192043A JP H02192043 A JPH02192043 A JP H02192043A JP 1011419 A JP1011419 A JP 1011419A JP 1141989 A JP1141989 A JP 1141989A JP H02192043 A JPH02192043 A JP H02192043A
Authority
JP
Japan
Prior art keywords
parallelogram prism
polarized light
swing arm
time
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1011419A
Other languages
Japanese (ja)
Other versions
JP2870775B2 (en
Inventor
Koichi Tezuka
耕一 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1011419A priority Critical patent/JP2870775B2/en
Publication of JPH02192043A publication Critical patent/JPH02192043A/en
Application granted granted Critical
Publication of JP2870775B2 publication Critical patent/JP2870775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To cancel the phase dislocation generated according to the rotation of a swing arm by calculating and setting the apex angle and refraction index of a parallelogram prism by means of an optical theoretical expression so that the sum of the phase dislocation quantities of P polarized light and S polarized light at the time of total reflection may be the integer times of 180 deg.. CONSTITUTION:The linearly polarized light made incident on a parallelogram prism 21 is total-reflected for plural times in the parallelogram prism 21, and an apex angle alphaand the refraction index of the parallelogram prism 21 are set by the optical theoretical expression so that the sum of the phase dislocation quantities of the P polarized light and the S polarized light at the time of the total reflection may be integer times of 180 deg.. Consequently on the forward path of the optical system, the phase dislocation quantity from a time when light beams are made incident on the parallelogram prism 21 up to a time when the beams are emitted is made into 180 deg. X M (M is an integer), and the quantity taking the forward and backward path into consideration is 180 deg. XM X 2. Out of the phase dislocation quantity, since integer time of 360 deg. means no dislocation, by using such a parallelogram prism 21, the generation of the phase dislocation quantity due to the rotation of a swing arm 6 can be canceled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報を光を用いて記録・再生する光学式情報
処理装置の改善構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved structure of an optical information processing device that records and reproduces information using light.

近年、コンピュータで扱うデータ量が膨大になるのに伴
い、高速・大容量のファイルメモリが必要とされている
。光学式情報処理装置いわゆる光デイスク装置は、磁気
ディスク装置と比較した場合、記録容量の大きさ及び媒
体の可搬性と言う点では有利ではあるが、−船釣に可動
部の重量がどうしても重くなるため、アクセス時間が長
くなる欠点を有する。光デイスク装置がファイルメモリ
の主役になるためにはこのアクセス時間が遅いという欠
点を克服する必要がある。
In recent years, as the amount of data handled by computers has increased enormously, there has been a need for high-speed, large-capacity file memory. Optical information processing devices, so-called optical disk devices, are advantageous in terms of large storage capacity and medium portability when compared to magnetic disk devices, but the weight of moving parts is unavoidable for boat fishing. Therefore, it has the disadvantage that access time is long. In order for optical disk devices to become a mainstay of file memory, it is necessary to overcome this shortcoming of slow access time.

〔従来の技術〕[Conventional technology]

光デイスク装置において、アクセス時間を短縮する一つ
の方法として、光ビームを目標位置にアクセスさせる機
構にスイングアーム方式を用いる装置が提案されている
As one method for shortening access time in optical disk devices, a device using a swing arm system as a mechanism for accessing a target position with a light beam has been proposed.

第4図は従来のスイングアーム方式の機構要部斜視図、
第5図は従来の光学系の構成を示す斜視図であって、以
下構成、動作の説明を理解し易くするために全図を通じ
て同一部分には同一符号を付してその重複説明を省略す
る。
Figure 4 is a perspective view of the main mechanism of the conventional swing arm system.
FIG. 5 is a perspective view showing the configuration of a conventional optical system, and in order to make the explanation of the configuration and operation easier to understand, the same parts will be given the same reference numerals throughout the figures and their repeated explanation will be omitted. .

第4図において、■は情報を記録した媒体、2は媒体1
を回転駆動するスピンドルモーフ、3は対物レンズ、そ
の対物レンズ3を媒体I上の目標トランクに粗アクセス
させるのはスイングアームアクチュエーク12に駆動さ
れるスイングアーム6にて行う。5は平行四辺形プリズ
ムでスイングアーム6に取りつけられ、その一端の光の
入射面にはガルバノミラ−が相対位置に配置され、他端
の出射面には対物レンズ3が相対位置に配置されている
。ガルバノミラ−7で反射された図示しない半導体レー
ザからのビーム光は平行四辺形プリズム5を2回反射し
て対物レンズ3に入射され、対物レンズ3により直径約
IIMのビームスポットに絞られる。フォーカスアクチ
ュエータ4は常にビームスポットが媒体1上に焦点を結
ぶように対物レンズ3を駆動する。
In Figure 4, ■ is the medium on which information is recorded, 2 is medium 1
3 is an objective lens, and rough access of the objective lens 3 to the target trunk on the medium I is performed by a swing arm 6 driven by a swing arm actuator 12. 5 is a parallelogram prism attached to the swing arm 6, and a galvanometer mirror is arranged at a relative position on the light entrance surface at one end, and an objective lens 3 is arranged at a relative position at the exit surface at the other end. . A light beam from a semiconductor laser (not shown) reflected by the galvanomirror 7 is reflected twice by the parallelogram prism 5 and enters the objective lens 3, where it is focused into a beam spot having a diameter of about IIM. The focus actuator 4 drives the objective lens 3 so that the beam spot is always focused on the medium 1.

第5図において、半導体レーザ11を出射したレーザ光
はコリメータレンズ10と真円補正プリズム9により真
円平行光(光ビーム)に変換され、ビームスプリッタ8
を透過し、ガルバノミラ−7により平行四辺形プリズム
5に入射され、その出射光は対物レンズ3に入射される
。ガルバノミラ−7は光ビームを目標トラックに精密ア
クセスさせる働きもする。この光学系において、半導体
レーザ11からガルバノミラ−7までが固定部であり、
平行四辺形プリズム5と対物レンズ3は可動部となって
いる。可動部重量が小さくなっているためアクセス時間
の短縮が図れることになる。ところが、この構造では光
路の途中、すなわちガルバノミラ−7と平行四辺形プリ
ズム5との間に回転運動が加わる。
In FIG. 5, laser light emitted from a semiconductor laser 11 is converted into a perfectly circular parallel light (light beam) by a collimator lens 10 and a perfectly circular correction prism 9, and a beam splitter 8
The light is transmitted through the galvanometer mirror 7 and enters the parallelogram prism 5, and the output light is entered into the objective lens 3. The galvano mirror 7 also serves to provide precise access of the light beam to the target track. In this optical system, from the semiconductor laser 11 to the galvanometer mirror 7 is a fixed part,
The parallelogram prism 5 and the objective lens 3 are movable parts. Since the weight of the movable part is reduced, access time can be shortened. However, in this structure, rotational motion is applied in the middle of the optical path, that is, between the galvanometer mirror 7 and the parallelogram prism 5.

第6図は平行四辺形プリズムから見た直線偏光の入射方
位の変化説明図を示す。図において、半導体レーザ11
から出射した直線偏光(例えば図示するように矢印X方
向とする)は平行四辺形プリズム5がbの位置にセ)る
ときは入射直線偏光は矢印P方向と一致している。この
場合はP方向の光(P偏光成分と呼称し入射面に平行な
面内で振動する光成分)と矢印S方向の光(S偏光成分
と呼称し、入射面に垂直な面内で振動する光成分)との
間に位相ずれは発生しない。何故ならばP偏光成分しか
存在しないからである。
FIG. 6 shows an explanatory diagram of changes in the incident direction of linearly polarized light as seen from a parallelogram prism. In the figure, a semiconductor laser 11
When the parallelogram prism 5 is set at position b, the incident linearly polarized light (for example, in the direction of arrow X as shown) coincides with the direction of arrow P. In this case, light in the P direction (referred to as the P-polarized light component and a light component that vibrates in a plane parallel to the plane of incidence) and light in the direction of arrow S (referred to as the S-polarized light component and that vibrates in a plane perpendicular to the plane of incidence) There is no phase shift between the two light components. This is because only the P-polarized component exists.

しかし、平行四辺形プリズム5がaの位置や、Cの位置
にいるときには平行四辺形プリズム5から見ると、入射
される直線偏光が回転しているように見える。すなわち
、入射光がP成分とS成分を持つようになり、もし平行
四辺形プリズム5の反射面がただの全反射を利用してい
るだけだとすると、必ずP偏光とS偏光との間に位相差
(後述する理論式■参照)を発生する。
However, when the parallelogram prism 5 is at position a or position C, the incident linearly polarized light appears to be rotating when viewed from the parallelogram prism 5. In other words, if the incident light now has a P component and an S component, and if the reflecting surface of the parallelogram prism 5 is just using total internal reflection, there will always be a phase difference between the P and S polarized light. (Refer to the theoretical formula ■ below) is generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のスイングアーム方式の光デイスク装置では、媒体
上の情報にアクセスしようとしてアームが回転すると光
に位相差を発生し、位相差が発生するとCD−ROMや
、WORMタイプの光デイスフ装置では検出系に戻って
くる光量が減少したり、また、光磁気方式の光デイスク
装置では再生信号の劣化を発生するという問題がある。
In conventional swing arm type optical disk devices, when the arm rotates to access information on the medium, a phase difference is generated in the light, and when a phase difference occurs, the detection system in CD-ROM and WORM type optical disk devices There are also problems in that the amount of light that returns to the optical disk decreases, and in magneto-optical optical disk devices, the reproduced signal deteriorates.

本発明は上記従来の問題に鑑みてなされたもので、スイ
ングアーム方式の光デイスク装置において、スイングア
ームが回転したときに発生するP偏光とS@光との間の
位相ずれを打ち消し可能な手段の提供を目的とする。
The present invention has been made in view of the above conventional problems, and is a means for canceling the phase shift between P polarized light and S@ light that occurs when the swing arm rotates in a swing arm type optical disk device. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図である。情報を記録した媒
体1上の目標トラックに光ビームを導くための平行四辺
形プリズム21を具備したスイングアーム6のアクセス
機構を有する光学式情報処理装置において、前記平行四
辺形プリズム21に入射される直線偏光を当該平行四辺
形プリズム21内で複数回全反射させ、各全反射時にお
けるP偏光とS偏光との位相ずれ量の合計が180度の
整数倍になるように前記平行四辺形プリズム21の頂角
と屈折率とを光学理論式により計算設定し、前記スイン
グアーム6の回転に伴って発生する前記位相ずれを打ち
消すように構成する。
FIG. 1 is a diagram explaining the principle of the present invention. In an optical information processing apparatus having an access mechanism of a swing arm 6 equipped with a parallelogram prism 21 for guiding a light beam to a target track on a medium 1 on which information is recorded, the light beam is incident on the parallelogram prism 21. The parallelogram prism 21 is configured such that the linearly polarized light is totally reflected within the parallelogram prism 21 multiple times, and the total amount of phase shift between the P polarized light and the S polarized light at each total reflection is an integral multiple of 180 degrees. The apex angle and the refractive index of the swing arm 6 are calculated and set using optical theoretical formulas, and the structure is configured so that the phase shift that occurs with the rotation of the swing arm 6 is canceled out.

〔作 用〕[For production]

平行四辺形プリズム21に入射される直線偏光を当該平
行四辺形プリズム21内で複数回全反射させ、各全反射
時におけるP偏光とS偏光との位相ずれ量の合計が18
0度の整数倍になるように光学理論式によって、平行四
辺形プリズム21の頂角と屈折率とを設定することによ
り、光学系の往路では光ビームが平行四辺形プリズム2
1に入射してから出射するまでの位相ずれ量は180度
XM(Mは整数)となり、往復路を考えると180度×
M×2となる。位相ずれ量の内360度の整数倍は、ず
れていないことと同じであるからこのような平行四辺形
プリズム21を用いることにより、スイングアーム6の
回転による位相ずれ量の発生を打ち消すことが可能とな
る。
The linearly polarized light incident on the parallelogram prism 21 is totally reflected multiple times within the parallelogram prism 21, and the total amount of phase shift between the P polarized light and the S polarized light at each total reflection is 18.
By setting the apex angle and refractive index of the parallelogram prism 21 according to an optical theoretical formula so that the angle is an integral multiple of 0 degrees, the light beam passes through the parallelogram prism 2 on the outward path of the optical system.
The amount of phase shift from entering the 1 to exiting is 180 degrees XM (M is an integer), and considering the round trip, it is 180 degrees x
It becomes M×2. Since an integer multiple of 360 degrees in the amount of phase shift is the same as no shift, by using such a parallelogram prism 21, it is possible to cancel out the amount of phase shift caused by rotation of the swing arm 6. becomes.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の原理説明図である。図示するように平
行四辺形プリズム21内で複数回全反射するような光学
系を考える。光ビームがある媒体内で全反射するときの
位相ずれは入射角をψ1位相ずれ量をδ、平行四辺形プ
リズム21の屈折率をnとすると、光学理論の示すとこ
ろにより、jan(δ/2 ) = (cosψ 5i
n2ψ−1/n2)/5in2ψ−■にて表される。
FIG. 1 is a diagram explaining the principle of the present invention. As shown in the figure, consider an optical system in which total reflection occurs multiple times within a parallelogram prism 21. The phase shift when a light beam is totally reflected in a medium is jan(δ/2 ) = (cosψ 5i
It is expressed as n2ψ-1/n2)/5in2ψ-■.

第1の全反射面R1での入射角をα1位相ずれ量をδh
第2の全反射面R2での入射角をβ2位相ずれ量を62
.以下箱にの全反射面Rkでの位相ずれ量をδWとする
と、幾何光学的に全反射面Rkでの入射角は全反射面R
1における入射角と同じであり、R3〜Rk−1の各全
反射面における入射角は全反射面R2における入射角と
同じであるから、光ビームがAから入射してBに出射す
るまでの総位相ずれ量δto ta I は、 δto ta 1−δ、十δ2+・・・+δW−2δ、
+(n−2)  δ2 ・ ・ ・ ・■ただし、 jan (δ+ /2 )=(cosα 5in2α−
1/n”)/sin”αtan (δ2/2 ) = 
(cosβ 5in2β−1/n”)/5in2βとな
る。ここで、Mを正の整数として δtotal = 1806XM・・・・・・・・・・
■を満足するように0式におけるδ1.δ2+  nの
値を計算する。
The angle of incidence at the first total reflection surface R1 is α1, and the amount of phase shift is δh
The angle of incidence at the second total reflection surface R2 is β2, and the amount of phase shift is 62
.. If the amount of phase shift at the total reflection surface Rk in the box below is δW, the angle of incidence at the total reflection surface Rk in terms of geometric optics is the total reflection surface R
1, and the angle of incidence on each total reflection surface R3 to Rk-1 is the same as the angle of incidence on total reflection surface R2. The total phase shift amount δto ta I is δto ta 1-δ, 10 δ2+...+δW-2δ,
+(n-2) δ2 ・ ・ ・ ・ ■ However, jan (δ+ /2 ) = (cosα 5in2α-
1/n”)/sin”αtan (δ2/2) =
(cosβ 5in2β-1/n")/5in2β. Here, M is a positive integer and δtotal = 1806XM...
δ1 in equation 0 so as to satisfy ■. Calculate the value of δ2+n.

ここでAから入射する光ビームは第3の全反射面R3に
対して垂直方向に入射するから直角三角形の関係で第1
の全反射面R1での入射角αと平行四辺形プリズム21
の頂角とは等しくなる。
Here, the light beam incident from A is incident perpendicularly to the third total reflection surface R3, so due to the relationship of a right triangle, the first
The angle of incidence α at the total reflection surface R1 of the parallelogram prism 21
is equal to the apex angle of

すなわち、0式を満足させるように第1図における平行
四辺形プリズム21の頂角αと屈折率nを計算により求
める。第1の反射面R1と第2の反射面R2にそれぞれ
立てた垂線がなす角度はαに等しいからβ=180’−
2αで求められる。
That is, the apex angle α and the refractive index n of the parallelogram prism 21 in FIG. 1 are calculated so as to satisfy Equation 0. Since the angle formed by the perpendicular lines drawn to the first reflective surface R1 and the second reflective surface R2 is equal to α, β=180'-
It is found by 2α.

第2図は本発明の改良平行四辺形プリズムの一実施例を
示す図である。平行四辺形プリズム21の光学ガラスの
材料としては785257−3FII (837nmに
おける屈折率n = 1 、76037)を用い、図中
頂角α=57°17゛ としC,D、 E、  Fの4
面で全反射するように設計されている。ここで反射面C
においては入射角は57°17゛  となる。この値を
0式に代入してδ、 =50’41°を得る。Dにおい
ては入射角は65°26”でδ2=39619“を得る
。Eでの入射角はDと同じ、Fでの入射角はCと同じな
ので結局、光ビームがAから入射してBに出射するまで
の位相ずれ量の合計δto ta lは、δtotal
 = (50841’  +39°19’ ) X2=
 180゜となる。往路と復路を考えると180 ’ 
x 2 =360 ’で3606位相がずれるというこ
とは、位相がずれないことと同じである。
FIG. 2 is a diagram showing one embodiment of the improved parallelogram prism of the present invention. As the material of the optical glass of the parallelogram prism 21, 785257-3FII (refractive index n = 1 at 837 nm, 76037) was used, and in the figure, the apex angle α = 57°17°, and 4 of C, D, E, and F were used.
It is designed for total reflection on surfaces. Here, the reflective surface C
In this case, the angle of incidence is 57°17°. By substituting this value into the equation 0, we obtain δ, =50'41°. In D, the incident angle is 65°26'' and δ2=39619'' is obtained. Since the incident angle at E is the same as D, and the incident angle at F is the same as C, the total amount of phase shift from when the light beam enters from A to when it exits to B is δtotal
= (50841'+39°19') X2=
The angle will be 180°. Considering the outbound and return trips, it is 180'
A phase shift of 3606 at x 2 =360' is the same as no phase shift.

第3図は本発明の光学系全体の配置図を示す。FIG. 3 shows a layout diagram of the entire optical system of the present invention.

図において、平行四辺形プリズム21の位置が第5図の
平行四辺形プリズム5に対応する前述した改良型の配置
であってその他の部分は従来例と同じである。
In the figure, the position of the parallelogram prism 21 corresponds to the parallelogram prism 5 of FIG. 5 in the improved arrangement described above, and the other parts are the same as in the conventional example.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、媒体上
目標トランクへのアクセス時間の短縮をねらったスイン
グアーム方式の光デイスク装置において、スイングアー
ムの回転に伴い発生する光ビームの位相差を往復路で3
60°に設定することによりその影響を回避し、再生信
号劣化阻止に寄与する効果がある。
As is clear from the above description, according to the present invention, in a swing arm type optical disk device that aims to shorten the access time to a target trunk on a medium, the phase difference of the optical beam that occurs due to the rotation of the swing arm can be reduced. 3 on the round trip
Setting the angle to 60° has the effect of avoiding this effect and contributing to preventing deterioration of the reproduced signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の改良平行四辺形プリズムの一実施例を
示す図、 第3図は本発明の光学系全体の配置図、第4図は従来の
スイングアーム方式の機構要部斜視図、 第5図は従来の光学系の構成を示す斜視図、第6図は平
行四辺形プリズムから見た直線偏光の入射方位の変化説
明図を示す。 第1図と第4図において、■は媒体、6はスイングアー
ム、5と21は平行四辺形プリズムを示す。 善
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a diagram showing an embodiment of the improved parallelogram prism of the present invention, Fig. 3 is a layout diagram of the entire optical system of the present invention, and Fig. 4 is a conventional diagram. FIG. 5 is a perspective view showing the configuration of a conventional optical system, and FIG. 6 is an explanatory diagram of changes in the incident direction of linearly polarized light as seen from a parallelogram prism. In FIGS. 1 and 4, ■ indicates a medium, 6 indicates a swing arm, and 5 and 21 indicate parallelogram prisms. good

Claims (1)

【特許請求の範囲】 情報を記録した媒体(1)上の目標トラックに光ビーム
を導くための平行四辺形プリズム(21)を具備したス
イングアーム(6)のアクセス機構を有する光学式情報
処理装置において、 前記平行四辺形プリズム(21)に入射される直線偏光
を当該平行四辺形プリズム(21)内で複数回全反射さ
せ、各全反射時におけるP偏光とS偏光との位相ずれ量
の合計が180度の整数倍になるように前記平行四辺形
プリズム(21)の頂角と屈折率とを光学理論式により
計算設定し、 前記スイングアーム(6)の回転に伴って発生する前記
位相ずれを打ち消すようにしたことを特徴とする光学式
情報処理装置。
[Claims] An optical information processing device having an access mechanism of a swing arm (6) equipped with a parallelogram prism (21) for guiding a light beam to a target track on a medium (1) on which information is recorded. In, the linearly polarized light incident on the parallelogram prism (21) is totally reflected multiple times within the parallelogram prism (21), and the total amount of phase shift between the P polarized light and the S polarized light at each total reflection is calculated. The apex angle and refractive index of the parallelogram prism (21) are calculated and set using optical theoretical formulas so that An optical information processing device characterized by canceling out.
JP1011419A 1989-01-19 1989-01-19 Optical information processing device Expired - Lifetime JP2870775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011419A JP2870775B2 (en) 1989-01-19 1989-01-19 Optical information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011419A JP2870775B2 (en) 1989-01-19 1989-01-19 Optical information processing device

Publications (2)

Publication Number Publication Date
JPH02192043A true JPH02192043A (en) 1990-07-27
JP2870775B2 JP2870775B2 (en) 1999-03-17

Family

ID=11777538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011419A Expired - Lifetime JP2870775B2 (en) 1989-01-19 1989-01-19 Optical information processing device

Country Status (1)

Country Link
JP (1) JP2870775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230237B1 (en) * 1994-07-30 1999-11-15 윤종용 Optical pickup for recording and reproducing
WO2004010201A3 (en) * 2002-07-23 2004-05-21 Koninkl Philips Electronics Nv Optical scanning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288435A (en) * 1987-05-20 1988-11-25 Canon Inc Optical information processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288435A (en) * 1987-05-20 1988-11-25 Canon Inc Optical information processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230237B1 (en) * 1994-07-30 1999-11-15 윤종용 Optical pickup for recording and reproducing
WO2004010201A3 (en) * 2002-07-23 2004-05-21 Koninkl Philips Electronics Nv Optical scanning device

Also Published As

Publication number Publication date
JP2870775B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP4022412B2 (en) Composite reflection prism and optical pickup device using the same
JP3167066B2 (en) Optical recording / reproducing device
JPH0316040A (en) Optical device for optical storage device
JPH02192043A (en) Optical information processor
US5220553A (en) Optical head
JP2738543B2 (en) Optical pickup
JPH01315036A (en) Optical pickup device
JP3545008B2 (en) Optical pickup device
US6324155B1 (en) Optical information recording medium with flat reflecting film and reading system for reading information recorded thereon
JP2745673B2 (en) Optical memory device
JP2584739B2 (en) Focus detection device
JP2813255B2 (en) Optical tape memory device, signal detection method for optical tape memory device, and optical tape cassette
JPH0224843A (en) Optical pickup device
JP2972042B2 (en) Optical recording / reproducing device
JPS6297148A (en) Optical information processor
JPH051532B2 (en)
JPH02103743A (en) Optical information processor
JPH04181525A (en) Optical information recorder/reproducer
JP2626605B2 (en) Light equivalent method
JPH02108249A (en) Optical recording medium
JPS6015828A (en) Pickup of optical recording device
JPH01237939A (en) Optical pickup device
JPS6282518A (en) Optical tape device
JPH0242647A (en) Optical pick-up device
JPH0114561B2 (en)