JPH02191871A - Start time ignition timing control device for internal combustion engine - Google Patents

Start time ignition timing control device for internal combustion engine

Info

Publication number
JPH02191871A
JPH02191871A JP949589A JP949589A JPH02191871A JP H02191871 A JPH02191871 A JP H02191871A JP 949589 A JP949589 A JP 949589A JP 949589 A JP949589 A JP 949589A JP H02191871 A JPH02191871 A JP H02191871A
Authority
JP
Japan
Prior art keywords
ignition timing
engine
rotational speed
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP949589A
Other languages
Japanese (ja)
Inventor
Takashi Kawase
隆 河瀬
Yuzuru Ito
譲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP949589A priority Critical patent/JPH02191871A/en
Publication of JPH02191871A publication Critical patent/JPH02191871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To improve startability in the time of very low temperature by setting ignition timing of fixed value, when an internal combustion engine is in starting further with the engine in a low temperature condition and when an engine speed is in not more than a predetermined engine speed, and the ignition timing in an advance timing side from the fixed value when the engine speed is larger than the predetermined engine speed. CONSTITUTION:An internal combustion engine M1 is detected for its start by a start detecting means M2, when an engine low temperature condition is detected by a low temperature detecting means M5 and when a speed of the engine M1 is decided to be in not more than a predetermined engine speed in an engine speed decision means M4, ignition timing of fixed value is set by an ignition timing setting means M6. While, when the speed of the engine M1 is decided to be larger than the predetermined engine speed, the ignition timing in an advance timing side from the fixed value is set by the setting means M6. Accordingly, even when the speed of the engine M1 obtains a very low speed in the time of very low temperature of the engine M1 and even when initial explosion occurs in this time, no excessive advance timing is generated of the ignition timing based on a time delay, while when the engine speed in start time is relatively high, the engine is started by large torque.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関の始動時の点火時期を制御する内燃
機関の始動時点火時期制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ignition timing control device at the time of starting an internal combustion engine, which controls ignition timing at the time of starting the internal combustion engine.

[従来の技術] 従来より、ディストリビュータから検出された内燃機関
の回転速度やエアフロメータから検出された吸入空気量
等により内燃機関の運転状態を検出し、その運転状態に
合った最適な点火時期を決定する点火時期制御装置が知
られている。これは、運転状態に対応した点火時期デー
タを予め用意しておき、検出した運転状態に基づいてそ
の制御すべき点火時期を読み取り、その出力信号を点火
装置のパワートランジスタ等へ供給するものである。
[Prior Art] Conventionally, the operating state of an internal combustion engine is detected based on the rotational speed of the internal combustion engine detected from a distributor, the amount of intake air detected from an air flow meter, etc., and the optimal ignition timing is determined according to the operating state. Ignition timing control devices that determine ignition timing are known. In this system, ignition timing data corresponding to the operating state is prepared in advance, the ignition timing to be controlled is read based on the detected operating state, and the output signal is supplied to the power transistor of the ignition device, etc. .

そして、内燃機関の始動時には、前記点火時期データを
用いず、点火時期をディストリビュータの初期セット角
に固定するようなされている。
When starting the internal combustion engine, the ignition timing data is not used, and the ignition timing is fixed at the initial set angle of the distributor.

ところで、前記初期セット角を上死点近傍で固定した場
合、初爆は早く得られるものの連爆中のトルクが充分で
ないために、完爆に到るまでに時期を要し、特に、低温
時では、第6図に示すように内燃機関のオイルの粘度が
大きくなり、そのために、内燃機関を完爆させるには大
きなトルクが必要となることから、より始動性が悪化す
る。
By the way, if the initial set angle is fixed near top dead center, the first detonation can be achieved quickly, but the torque during continuous detonation is not sufficient, so it takes time to reach a complete detonation, especially at low temperatures. In this case, as shown in FIG. 6, the viscosity of the oil in the internal combustion engine increases, and as a result, a large torque is required to completely explode the internal combustion engine, which further deteriorates startability.

また、上記初期セット角を上死点近傍よりも進角させて
固定して連爆中のトルクを得ようとしても、バッテリは
化学変化を利用するものであるために、低温時には、バ
ッテリの能力が低下し、始動時の回転速度は1100r
p付近あるいはそれ以下となり、そのために、点火から
上死点に到着するまでに燃焼が完了してしまい過早着火
となり、その結果、着火しても内燃機関を回転させるト
ルクとならず、むしろ内燃機関を逆転させるトルクとな
り、所謂スタータロ・ンク現象を発生し、始動性が悪化
する。
In addition, even if you try to obtain torque during continuous firing by setting the above initial set angle in advance of the vicinity of top dead center, the battery capacity will decrease at low temperatures because the battery uses chemical changes. decreases, and the rotational speed at startup is 1100r
As a result, combustion is completed before reaching top dead center after ignition, resulting in premature ignition.As a result, even if ignition occurs, it does not generate torque to rotate the internal combustion engine, but rather increases the internal combustion The torque causes the engine to reverse, causing a so-called starter lock phenomenon, which deteriorates starting performance.

そこで、低温時の始動性を向上するものとして、始動時
で回転速度が所定値より低いときに、回転速度の上昇に
応じてその進角量を徐々に増大させるようなされたもの
が提案されている(特開昭55−137359号公報記
載の「始動時点火時期制御装置」)、!IIち、第7図
に示すように、内燃機関の回転速度が値0のときの進角
量を1fJi Oとし、回転速度の上昇に応じてその進
角量を徐々に増大し、回転速度が所定値N1以上となる
とその進角量は一定値に設定される。
Therefore, in order to improve the startability at low temperatures, a method has been proposed in which when the rotational speed is lower than a predetermined value at the time of starting, the advance amount is gradually increased as the rotational speed increases. (``Start-up ignition timing control device'' described in JP-A-55-137359),! II. As shown in Fig. 7, when the rotational speed of the internal combustion engine is 0, the advance angle is set to 1fJiO, and as the rotational speed increases, the advance angle is gradually increased to increase the rotational speed. When the advance angle amount exceeds the predetermined value N1, the advance angle amount is set to a constant value.

[発明が解決しようとする課題] しかしながら、かかる従来の装置でも、内燃機関の温度
が極めて低くなってくると始動性を充分に向上できなか
った。
[Problems to be Solved by the Invention] However, even with such conventional devices, startability cannot be sufficiently improved when the temperature of the internal combustion engine becomes extremely low.

というのは、内燃機関の温度が極めて低い極低温時下で
、初爆が起こると、第8図に示すように、急激な回転速
度の上昇が一時的に発生することになり(極低温時でな
いときは、回転速度の上昇率は少ない。)、その回転速
度の上昇時(例えは、時刻a)に点火時期の進角計算が
なされると、その進角計算から実際に点火時期が進角さ
れるまでの時期遅れがあるために、回転速度が下降した
点(例えは、時刻b)でその進角された点火時期に制御
されることになる。このため、その回転速度が下降した
時点での点火時期が最適な値より進角されて、過早着火
となり、その結果、着火しても内燃機関を回転させるト
ルクとならず、むしろ内燃機関を逆転させるトルクとな
り、スタータロック現象を発生する問題を招致した。
This is because when the first explosion occurs at extremely low temperatures, when the temperature of the internal combustion engine is extremely low, a rapid increase in rotational speed will occur temporarily, as shown in Figure 8. (If not, the rate of increase in rotational speed is small.) If the ignition timing advance is calculated when the rotational speed increases (for example, at time a), the ignition timing will actually advance based on the advance angle calculation. Since there is a timing delay until the ignition timing is ignited, the ignition timing is controlled to the advanced ignition timing at the point where the rotational speed decreases (for example, at time b). For this reason, the ignition timing at the time when the rotation speed decreases is advanced from the optimal value, resulting in premature ignition.As a result, even if the ignition ignites, it does not generate torque to rotate the internal combustion engine, but rather causes the internal combustion engine to rotate. This caused the problem of starter locking due to the torque that caused the engine to reverse.

本発明は、こうした問題点に鑑みてなされたもので、内
燃機関の温度が極めて低い極低温時における始動時にあ
って、スタータロック現象の発生を防止し、始動性の向
上を図った内燃機関の始動時点火時期制御#装置を提供
することを目的とする。
The present invention has been made in view of these problems, and is an internal combustion engine that prevents the occurrence of starter lock phenomenon and improves startability when starting at extremely low temperatures, when the temperature of the internal combustion engine is extremely low. An object of the present invention is to provide a starting ignition timing control device.

[課題を解決するための手段] かかる目的を達成するために、課題を解決するための手
段として、本発明は以下に示す構成を取った。即ち、本
発明の内燃機関の始動時点火時期制御装置は、第1図に
例示するように、内燃機関M1の始動を検出する始動検
出手段M2と、 内燃機関M10回転速度を検出する回転速度検出手段M
3と、 該回転速度検出手段M3で検出された回転速度が所定回
転速度以下であるか否かを判定する回転速度判定手段M
4と、 内燃機関M1の温度が所定温度以下となる機関低温状態
を検出する低温検出手段M5と、前記始動検出手段M2
で内燃機fsffM1の始動が検出され、かつ前記低温
検出手段M5で機関低温状態が検出されているとき、前
記回転速度判定手段M4で回転速度が所定回転速度以下
と判定されると一定値の点火時期を設定するとともに、
前記回転速度判定手段M4で回転速度が前記所定回転速
度より大きいと判定されると前記一定値よりも進角側の
点火時期を設定する点火時期設定手段M6と、 を備えたことを特撮としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention has adopted the configuration shown below as a means for solving the problems. That is, the starting ignition timing control device for an internal combustion engine of the present invention, as illustrated in FIG. Means M
3, and a rotational speed determination means M for determining whether the rotational speed detected by the rotational speed detection means M3 is below a predetermined rotational speed.
4, a low temperature detection means M5 for detecting an engine low temperature state in which the temperature of the internal combustion engine M1 is below a predetermined temperature, and the start detection means M2.
When the start of the internal combustion engine fsffM1 is detected and the engine low temperature state is detected by the low temperature detection means M5, and the rotation speed is determined to be below the predetermined rotation speed by the rotation speed determination means M4, the ignition timing is set to a constant value. In addition to setting
The special effects include: ignition timing setting means M6 for setting ignition timing on the advanced side than the constant value when the rotational speed determining means M4 determines that the rotational speed is higher than the predetermined rotational speed. .

ここで、点火時期設定手段M6で回転速度の判定に用い
られる所定回転速度とは、内燃機関M1の始動時の初爆
によフて得られる回転速度よりやや高めの値をいう。
Here, the predetermined rotational speed used for determining the rotational speed by the ignition timing setting means M6 is a value slightly higher than the rotational speed obtained by the first explosion at the time of starting the internal combustion engine M1.

[作用] 以上のように構成された本発明の内燃機関の始動時点火
時期制御装置は、始動検出手段M2で内燃機関の始動が
検出され、低温検出手段M5で機関低温状態が検出され
ているときに、回転速度判定手段M4で内燃機関M1の
回転速度が所定回転速度以下と判定されると、点火時期
設定手段M6によって一定値の点火時期が設定され、同
じく内燃機関M1の始動が検出され機関低温状態が検出
されているときに、回転速度判定手段M4で回転速度が
その所定回転速度より大きいと判定されると、同じく点
火時期設定手段M6によってその一定値よりも進角側の
点火時期が設定される。
[Operation] In the internal combustion engine starting ignition timing control device of the present invention configured as described above, the starting of the internal combustion engine is detected by the starting detecting means M2, and the low temperature state of the engine is detected by the low temperature detecting means M5. At times, when the rotational speed determination means M4 determines that the rotational speed of the internal combustion engine M1 is less than or equal to a predetermined rotational speed, the ignition timing setting means M6 sets the ignition timing to a constant value, and also detects the starting of the internal combustion engine M1. When the engine low temperature state is detected, if the rotational speed determination means M4 determines that the rotational speed is higher than the predetermined rotational speed, the ignition timing setting means M6 sets the ignition timing to be more advanced than the certain value. is set.

したがって、内燃機関M1の極低温時に、内燃機関M1
の始動時の回転速度が極低回転になフても、点火時期は
一定値となり、その結果、その極低回転時において初爆
が起きても、「発明が解決しようとする課題」の項で述
べた、時期遅れに基づく点火時期の過進角が生ずるよう
なこともない。
Therefore, when the internal combustion engine M1 is at an extremely low temperature, the internal combustion engine M1
Even if the rotational speed at the time of starting becomes extremely low, the ignition timing remains constant, and as a result, even if the first explosion occurs at that extremely low rotational speed, the ignition timing will remain constant even if the engine starts at an extremely low rotational speed. There is no possibility that the ignition timing will be over-advanced due to timing delay as described in .

また、内燃機関M1の極低温時で、内燃機関M1の始動
時の回転速度が比較的高いときには、点火時期はその一
定値よりも進角側の値となり、大きなトルクで始動がな
される。
Further, when the internal combustion engine M1 is at an extremely low temperature and the rotation speed at the time of starting the internal combustion engine M1 is relatively high, the ignition timing becomes a value on the advanced side of the constant value, and starting is performed with a large torque.

[実施例コ 次に本発明の好適な一実施例を図面と共に説明する。[Example code] Next, a preferred embodiment of the present invention will be described with reference to the drawings.

第2図は、本発明の一実施例である始動時点火時期制御
装置を搭載した自動車用エンジンおよびその周辺装置を
表す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an automobile engine and its peripheral devices equipped with a starting ignition timing control device according to an embodiment of the present invention.

同図に示す如く、エンジン1には燃焼室2内の燃料に点
火を行なう点火プラグ3、エンジン1の冷却水温を検出
する水温センサ4等が取り付けられ、エンジン1の吸気
管5には、図示しないアクセルペダルの踏込み量に従っ
てその開度が調節されるスロ・ントルバルブ6、吸気管
5内に燃料を噴射して燃料供給を行なう燃料噴射弁8等
が取り付けられている。またエンジン1の排気管9には
、排気中の酸素濃度を検出する酸素センサ10等が取り
付けられている。
As shown in the figure, the engine 1 is equipped with a spark plug 3 that ignites the fuel in the combustion chamber 2, a water temperature sensor 4 that detects the cooling water temperature of the engine 1, and the like. A throttle valve 6 whose opening degree is adjusted according to the amount of depression of the accelerator pedal, a fuel injection valve 8 which injects fuel into the intake pipe 5, and the like are installed. Further, an oxygen sensor 10 and the like are attached to the exhaust pipe 9 of the engine 1 to detect the oxygen concentration in the exhaust gas.

スロ・ントルバルブ6の開度は、スロットルポジション
センサ11により検出され、吸気管5内部の吸入空気の
圧力は、サージタンク12に取り付けられたバキューム
センサ13により検出される。
The opening degree of the throttle valve 6 is detected by a throttle position sensor 11, and the pressure of intake air inside the intake pipe 5 is detected by a vacuum sensor 13 attached to a surge tank 12.

また点火プラグ3には、イグナイタ140発生する高電
圧がディストリビュータ15を介して分配供給され、デ
ィストリビュータ15にはエンジン10回転速度を検出
するための回転速度センサ16が設けられている。
Further, the high voltage generated by the igniter 140 is distributed and supplied to the spark plug 3 via a distributor 15, and the distributor 15 is provided with a rotation speed sensor 16 for detecting the rotation speed of the engine 10.

前記各センサからの検出信号は、電子制御装置30に人
力され、点火時期や燃料噴射量を制御するのに用いられ
る。また電子制御装置30には、エンジン1の始動装置
であるスタータモータ35からそのスタータの回転状態
を示す信号が人力されている。
Detection signals from each of the sensors are input to the electronic control unit 30 and used to control ignition timing and fuel injection amount. Further, the electronic control device 30 receives a signal indicating the rotational state of the starter from a starter motor 35, which is a starting device for the engine 1.

電子制御装置30は、周知のCPU30a、ROM30
b、RAM30c等を中心とし、これらと入力回路30
d及び出力回M30e等をバス30fにより相互に接続
した論理演算回路として構成されている。そして入力回
路30dには、前記の各種センサやスタータモータ35
が接続され、出力回路30eには、前述した燃料噴射弁
8およびイグナイタ14等が接続されている。
The electronic control device 30 includes a well-known CPU 30a and a ROM 30.
b, RAM 30c, etc., and the input circuit 30
d, output circuit M30e, etc. are connected to each other by a bus 30f as a logic operation circuit. The input circuit 30d includes the various sensors and starter motor 35.
is connected to the output circuit 30e, and the aforementioned fuel injection valve 8, igniter 14, etc. are connected to the output circuit 30e.

なお、36はバ・ンテリであり、イグニションスイ・ン
チ37を介して、電子制御装置30.スタータモータ3
5.イグナイタ14等に電力供給される。
Note that 36 is a battery, which is connected to the electronic control unit 30 through the ignition switch 37. starter motor 3
5. Power is supplied to the igniter 14 and the like.

以上のように構成された電子制御装置30では、前記各
センサやスタータモータ35からの検出信号に基づき周
知の燃料噴射制御や点火時期制御のが実行されることと
なるのであるが、以下に本発明にかかわる主要な処理で
ある点火時期制御について説明する。
In the electronic control device 30 configured as described above, well-known fuel injection control and ignition timing control are executed based on detection signals from the sensors and the starter motor 35. Ignition timing control, which is the main process related to the invention, will be explained.

第3図は、点火時期算出処理を表わすフローチャートで
ある。
FIG. 3 is a flowchart showing the ignition timing calculation process.

この処理はエンジン1の運転中電子制御装置30で繰り
返し実行されるもので、処理が開始されると、まずステ
・ンブ100を実行し、回転速度センサ16.バキュー
ムセンサ13および水温センサ4の検出結果からエンジ
ン1の回転速度NE。
This process is repeatedly executed by the electronic control unit 30 while the engine 1 is running. When the process is started, the stem 100 is first executed, and the rotational speed sensor 16. The rotation speed NE of the engine 1 is determined from the detection results of the vacuum sensor 13 and the water temperature sensor 4.

吸気管圧力PMおよび冷却水温THWを算出する。Calculate intake pipe pressure PM and cooling water temperature THW.

次にステップ110では、現在エンジン1が始励時にあ
るか否かをスタータモータ35がON状態にあるか否か
から判断し、スタータモータ35がOFF状態、即ちエ
ンジン1が始動時にないと判断されると、ステップ12
0に移行する。ステップ120では、ステップ100で
算出された回転速度NEおよび吸気管圧力PMに基づき
、予め設定されたマツプを用いて点火時期5PARKを
算出する周知の点火時期算出処理を実行し、その後、−
旦処理を終了する。
Next, in step 110, it is determined whether the engine 1 is currently in the starting state based on whether the starter motor 35 is in the ON state, and it is determined that the starter motor 35 is in the OFF state, that is, the engine 1 is not in the starting state. Then step 12
Transition to 0. In step 120, a well-known ignition timing calculation process is executed to calculate the ignition timing 5PARK using a preset map based on the rotational speed NE and intake pipe pressure PM calculated in step 100, and then -
The process ends once.

一方ステップ110において、スタータモータ35がO
N状態、即ちエンジン1が始動時にあると判断されると
、ステップ130に移行し、現在エンジン1が極低温時
にあるか否かをステップ100で算出された冷却水温T
HWが所定温度(本実施例の場合、−20℃)以下か否
かから判断する。ここで、冷却水温THWが一20℃以
下、即ちエンジン1が極低温時にあると判断されると、
ステップ140に移行し、ステ・ンブ1ooで算出され
た回転速度NEが所定回転速度(本実施例の場合、20
Orpm)以下か否かを判断する。
On the other hand, in step 110, the starter motor 35 is
When it is determined that the engine 1 is in the N state, that is, the engine 1 is at the time of starting, the process moves to step 130, and the cooling water temperature T calculated in step 100 is checked to determine whether the engine 1 is currently at an extremely low temperature.
The determination is made based on whether the HW is below a predetermined temperature (-20° C. in this embodiment). Here, when it is determined that the cooling water temperature THW is below 120 degrees Celsius, that is, the engine 1 is at an extremely low temperature,
The process moves to step 140, and the rotational speed NE calculated in step 1oo is set to a predetermined rotational speed (in the case of this embodiment, 20
Orpm) or less.

ステップ140で、回転速度NEが200 rpm以下
と判断されると、ステップ150に移行し、点火時期5
PARKを上死点前5クランク角度(BTDC5℃A)
に設定する処理を実行し、その後、−旦処理を終了する
If it is determined in step 140 that the rotational speed NE is 200 rpm or less, the process moves to step 150, and the ignition timing 5
PARK 5 crank angles before top dead center (BTDC5℃A)
Execute the process to set the value, and then end the process on -d.

一方、ステップ130でエンジン1が極低温時であると
判断されて、ステップ140で回転速度NEが200 
rpmより大きいと判断されると、ステップ160に移
行し、ステップ100で算出された回転速度NEの増加
に応じて点火時期5PARKの進角量を増大する点火時
期算出処理を実行する。詳しくは、第4図に示すような
マツプを用いて点火時期5PARKを算出するもので、
このマツプによれば、点火時IJIS P A RKの
値は、回転速度NEが200 rpmを越えたときには
BTD05℃Aで、その回転速度NEの増加に応じてそ
の進角量が徐々に増大され、更に所定回転後に一定とな
る。ステップ180の実行後、−旦処理を終了する。
On the other hand, in step 130 it is determined that the engine 1 is at an extremely low temperature, and in step 140 the rotational speed NE is set to 200.
If it is determined that the rotational speed NE is larger than the rpm, the process proceeds to step 160, and an ignition timing calculation process is executed to increase the advance amount of the ignition timing 5PARK in accordance with the increase in the rotational speed NE calculated in step 100. In detail, the ignition timing 5PARK is calculated using a map as shown in Figure 4.
According to this map, the value of IJIS P ARK at the time of ignition is BTD 05°C when the rotational speed NE exceeds 200 rpm, and the advance amount is gradually increased as the rotational speed NE increases. Furthermore, it becomes constant after a predetermined rotation. After executing step 180, the process ends.

なお、ステップ130で、冷却水温THWが一20℃よ
り大きい、即ちエンジン1が極低温時でないと判断され
た場合にも、前述したステップ150 C:fJ行Lし
、点火時期5PARKfi−BTDC5’CAに設定す
る処理を実行し、その後、−旦処理を終了する。
Note that even if it is determined in step 130 that the cooling water temperature THW is higher than 120° C., that is, the engine 1 is not at an extremely low temperature, the above-described step 150 C: fJ line L is performed and the ignition timing 5PARKfi-BTDC5'CA Execute the process to set the value, and then end the process on -d.

こうして構成された点火時期算出処理によれば、エンジ
ン1が始動時にあって、且つ極低温にあると、第5図に
示すように、点火時期は、エンジン1の回転速度NEが
200 rpm以下のときに、B1” D C5℃Aと
なり、また、回転速度NEが20Orpmより大きくな
ると、その回転速度NEの増加に応じてその進角量がB
TDC5℃Aより徐々に増大される。
According to the ignition timing calculation process configured in this way, when the engine 1 is started and is at an extremely low temperature, the ignition timing is determined when the rotational speed NE of the engine 1 is 200 rpm or less, as shown in FIG. When the rotational speed NE becomes larger than 20 Orpm, the amount of advance becomes B1'' D C5℃A.
It is gradually increased from TDC5°C.

したがって、本実施例によれば、エンジン1の極低温時
に、エンジン1の始動時の回転速度NEが極低回転(2
0Orpm以下)となっても、点火時期はBTDC5℃
Aとなり、そのために、極低回転時において初爆が起き
ても、例え、実際の点火時期に時期的な遅れがあろうと
、点火時期が過進角となることもなく、その結果、スタ
ータロック現象の発生を防止することができ、始動性を
高めることができる。また、エンジン1の極低温時で始
動時の回転速度NEが比較的高い(20Orpmより大
きい)ときには、点火時期はそのBTDC5℃Aよりも
進角側の値となり、その高い回転速度NEに適した点火
時期で始動がなされ、始動性を高めることができる。特
に、本実施例では、回転速度NEが200「1mより大
きくなるとその回転速度NEの増加に応じて点火時期の
進角量が徐々に増大されるよう構成されているため、エ
ンジン1の運転状態に適した点火時期を課すことができ
、より一層始動性を高めることができる。
Therefore, according to this embodiment, when the engine 1 is at an extremely low temperature, the rotational speed NE at the time of starting the engine 1 is extremely low (2
0Orpm or less), the ignition timing is BTDC5℃.
Therefore, even if the first explosion occurs at extremely low rpm, the ignition timing will not be over-advanced, even if there is a delay in the actual ignition timing, and as a result, the starter lock will not occur. It is possible to prevent the phenomenon from occurring and improve starting performance. Also, when the engine 1 is at an extremely low temperature and the rotational speed NE at startup is relatively high (greater than 20 rpm), the ignition timing will be a value on the advanced side than the BTDC 5°C, and the ignition timing will be set to a value that is more advanced than the BTDC of 5°C, which is suitable for the high rotational speed NE. Starting is performed at the ignition timing, improving startability. In particular, in this embodiment, when the rotational speed NE becomes larger than 200 m or more, the amount of advance of the ignition timing is gradually increased in accordance with the increase in the rotational speed NE. It is possible to impose an ignition timing suitable for the engine, further improving startability.

なお、前記実施例では、エンジン1の極低温時の始動時
に、回転速度NEが20 Orpmより大きくなると、
その回転速度NEの増加に応じて点火時期の進角量がB
TDC5℃Aより徐々に増大されるように構成されてい
たが、これに替わり、そのようなときに、点火時期を、
そのBTDC5℃Aの埴(回転速度NEが200 rp
m以下の時の一定値)よりも進角側に大きな一定値、例
えばBTDCIO℃Aに設定するように構成してもよい
In addition, in the above embodiment, when the engine 1 is started at an extremely low temperature, when the rotational speed NE becomes larger than 20 Orpm,
As the rotational speed NE increases, the ignition timing advances B.
It was configured so that the ignition timing was gradually increased from TDC5℃, but instead of this, the ignition timing was changed to
The BTDC 5℃ A clay (rotational speed NE is 200 rp)
It may be configured to set a larger constant value on the advance side than the constant value when the angle is less than or equal to m, for example, BTDCIO°CA.

また、前記実施例では、点火時期の進角量を一定値BT
DC5℃Aからエンジン回転速度NEに応じて増大する
値へと切り替える回転速度NEの切替値を、200「0
mと一定の値をとるように構成されているが、これに替
わり、その切替値を冷却水温THWに応じて可変するよ
うに構成してもよい。即ち、極低温はど、オイル粘性が
大きくなり、初爆における回転速度の一時的な上昇が低
回転速度側へ移行することから、前記切替値を冷却水温
THWが低いほど低回転速度側に制御するように構成す
ればよく、その結果、早い時期から回転速度NEの増加
に応じてその進角量が増大されることになり、トルクの
大きな状態での制御が早くから可能となり、より始動性
を高めることができる。
Further, in the above embodiment, the amount of advance of the ignition timing is set to a constant value BT.
The switching value of the rotational speed NE, which switches from DC5℃A to a value that increases according to the engine rotational speed NE, is set to 200 "0".
Although the switching value is configured to take a constant value m, instead of this, the switching value may be configured to be variable depending on the cooling water temperature THW. That is, at extremely low temperatures, oil viscosity increases and the temporary increase in rotational speed at the first explosion shifts to the lower rotational speed side, so the switching value is controlled to the lower rotational speed side as the cooling water temperature THW is lower. As a result, the amount of advance is increased in accordance with the increase in rotational speed NE from an early stage, and control in a state of large torque becomes possible from an early stage, thereby improving startability. can be increased.

さらに、前記実施例では、エンジン回転速度NEと吸気
管圧力PMとに基づいて点火時朋を定めるようD−J方
式のエンジンに採用されて構成されていたが、これに替
わり、エンジン回転速度NEとエアフロメータで検出さ
れた吸入空気量とに基づいて点火時朋を定めるようL−
J方式のエンジンに採用して構成してもよい。
Further, in the above embodiment, the ignition timing is determined based on the engine rotational speed NE and the intake pipe pressure PM, but instead of this, the engine rotational speed NE The ignition timing is determined based on the amount of intake air detected by the air flow meter.
It may be adopted and configured in a J-type engine.

[発明の効果コ 以上詳述したように本発明の内燃機関の始動時点火時期
制御装置は、内燃機関の温度が極めて低い極低温時にお
ける始動時にあって、スタータロック現象の発生を防止
することができ、始動性に優れている。
[Effects of the Invention] As detailed above, the internal combustion engine starting ignition timing control device of the present invention can prevent the occurrence of starter lock phenomenon during starting at extremely low temperatures when the temperature of the internal combustion engine is extremely low. It has excellent startability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を例示するプロ・ンク図、
第2図は本発明の一実施例である始動時点火時期制御装
置を搭載した自動車用エンジンおよびその周辺装置を表
す概略構成図、第3図はその電子制御回路にて実行され
る点火時期算出処理を表わすフローチャート、第4図は
その処理を実行するに際し用いられるマツプを表すグラ
フ、第5図はその処理によって算出される極低温始動時
における点火時期の動向を表すグラフ、第6図は機関温
度とオイルの粘度との関係を表すグラフ、第7図は従来
技術における回転速度と進角量との関係を表すグラフ、
第8図は従来技術の問題点を表すグラフである。 Ml・・・内燃機関    M2・・・始動検出手段M
3・・・回転速度検出手段 M4・・一回転速度判定手段 M5・・・低温検出手段 M6・・・点火時期設定手段 1・・・エンジン 4・・・水温センサ   1 16・・・回転速度センサ 30・・・電子制御装置 3・・・点火プラグ 3・・・バキュームセンサ
FIG. 1 is a diagram illustrating the basic configuration of the present invention;
Fig. 2 is a schematic configuration diagram showing an automobile engine equipped with a starting ignition timing control device and its peripheral equipment, which is an embodiment of the present invention, and Fig. 3 is an ignition timing calculation executed by the electronic control circuit. Flowchart showing the process, Figure 4 is a graph showing the map used to execute the process, Figure 5 is a graph showing the trend of ignition timing during cryogenic start calculated by the process, Figure 6 is the engine graph. A graph showing the relationship between temperature and oil viscosity, FIG. 7 is a graph showing the relationship between rotational speed and advance angle amount in the conventional technology,
FIG. 8 is a graph showing problems with the prior art. Ml...Internal combustion engine M2...Start detection means M
3...Rotational speed detection means M4...1 Rotational speed determination means M5...Low temperature detection means M6...Ignition timing setting means 1...Engine 4...Water temperature sensor 1 16...Rotational speed sensor 30...Electronic control unit 3...Spark plug 3...Vacuum sensor

Claims (1)

【特許請求の範囲】 内燃機関の始動を検出する始動検出手段と、内燃機関の
回転速度を検出する回転速度検出手段と、 該回転速度検出手段で検出された回転速度が所定回転速
度以下であるか否かを判定する回転速度判定手段と、 内燃機関の温度が所定温度以下となる機関低温状態を検
出する低温検出手段と、 前記始動検出手段で内燃機関の始動が検出され、かつ前
記低温検出手段で機関低温状態が検出されているとき、
前記回転速度判定手段で回転速度が所定回転速度以下と
判定されると一定値の点火時期を設定するとともに、前
記回転速度判定手段で回転速度が前記所定回転速度より
大きいと判定されると前記一定値よりも進角側の点火時
期を設定する点火時期設定手段と、 を備えたことを特徴とする内燃機関の始動時点火時期制
御装置。
[Scope of Claims] Start detection means for detecting the start of the internal combustion engine; rotation speed detection means for detecting the rotation speed of the internal combustion engine; and the rotation speed detected by the rotation speed detection means is less than or equal to a predetermined rotation speed. a low temperature detection means for detecting an engine low temperature state in which the temperature of the internal combustion engine is below a predetermined temperature; and a low temperature detection means for detecting a start of the internal combustion engine by the start detection means, When an engine low temperature condition is detected by the means,
When the rotational speed determination means determines that the rotational speed is less than or equal to the predetermined rotational speed, the ignition timing is set to a constant value, and when the rotational speed determination means determines that the rotational speed is greater than the predetermined rotational speed, the ignition timing is set to the constant value. A starting ignition timing control device for an internal combustion engine, comprising: ignition timing setting means for setting ignition timing on the advanced side of the ignition timing value.
JP949589A 1989-01-18 1989-01-18 Start time ignition timing control device for internal combustion engine Pending JPH02191871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP949589A JPH02191871A (en) 1989-01-18 1989-01-18 Start time ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP949589A JPH02191871A (en) 1989-01-18 1989-01-18 Start time ignition timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH02191871A true JPH02191871A (en) 1990-07-27

Family

ID=11721819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP949589A Pending JPH02191871A (en) 1989-01-18 1989-01-18 Start time ignition timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02191871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022163B4 (en) * 2003-05-06 2019-05-29 Denso Corporation Start control system of an internal combustion engine with ignition timing control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022163B4 (en) * 2003-05-06 2019-05-29 Denso Corporation Start control system of an internal combustion engine with ignition timing control device

Similar Documents

Publication Publication Date Title
JP2006090308A (en) Method and apparatus for operating internal combustion engine having catalyst
JPWO2004018869A1 (en) Start control device and start control method for internal combustion engine
JP2006169999A (en) Fuel injection control device of internal combustion engine
JPH02191871A (en) Start time ignition timing control device for internal combustion engine
JP2001304084A (en) Vehicle control method and vehicle control device
JPS6088870A (en) Ignition timing controller for engine
JPH11270386A (en) Fuel injection control device of internal combustion engine
JP3259511B2 (en) Ignition timing control device for internal combustion engine
JPH0211730B2 (en)
JPS6017268A (en) Method of controlling ignition timing for internal- combustion engine
JP2623570B2 (en) Electronic ignition timing control device
JP3124011B2 (en) Fuel injection control device for starting internal combustion engine
JP4476150B2 (en) Ignition timing control method for internal combustion engine
JP2503466B2 (en) Fuel injection control device for internal combustion engine
JPS59173560A (en) Method for controlling ignition timing of engine
JP2746648B2 (en) Engine ignition timing control device
JP2002021610A (en) Fuel injection control device of diesel engine
JP2940035B2 (en) Fuel injection control device for internal combustion engine
JPH06146980A (en) Rotation speed controller for internal combustion engine
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPS6181531A (en) Fuel feed controlling method in time of starting of internal-combustion engine
JPH10184514A (en) Ignition timing control device for internal combustion engine
JPH0428895B2 (en)
JPS6245948A (en) Idling speed controller for internal combustion engine
KR19980015142A (en) Method of controlling fuel injection quantity