JPH02191517A - Leakage detecting device for high efficiency filter - Google Patents

Leakage detecting device for high efficiency filter

Info

Publication number
JPH02191517A
JPH02191517A JP964289A JP964289A JPH02191517A JP H02191517 A JPH02191517 A JP H02191517A JP 964289 A JP964289 A JP 964289A JP 964289 A JP964289 A JP 964289A JP H02191517 A JPH02191517 A JP H02191517A
Authority
JP
Japan
Prior art keywords
filter
efficiency filter
test
light
high efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP964289A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takeda
博幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP964289A priority Critical patent/JPH02191517A/en
Publication of JPH02191517A publication Critical patent/JPH02191517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To efficiently identity the leakage spot of filter by throwing test fine particles into the front side of a high efficiency filter and scanning the back side of the filter to project light to the leaked particles and collecting the light reflected by the test fine particles. CONSTITUTION:The test fine particles B are thrown into the front side of the high efficiency filter 2 through a throwing-in nozzle 6. Two light sources 3a, 3b scan the back surface of the filter 2 to project the light to the test fine particles B leaking from the filter 2. A converging lens 4 and a photomultiplier 4' collect the light 3c reflected by the fine particles B. As a result, the work efficiency is improved and the health of workers in secured in safety. When the equipment to be tested with the leakage test is in an nuclear power plant, or in nuclear fuel treatment facilities, the radioactive ray receiving quantity of a worker is reduced. Moreover, the leakage test of high efficiency filter is swiftly carried out without shortening the life of the sound high efficiency filter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力発電所、核燃料処理施設、半導体製造
工場、バイオテクノロジー施設等に適用されている空気
浄化装置内の高効率フィルタの漏洩検査装置に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to leakage inspection of high-efficiency filters in air purification devices applied to nuclear power plants, nuclear fuel processing facilities, semiconductor manufacturing plants, biotechnology facilities, etc. It is related to the device.

(従来の技術) 高効率フィルタにより空気中の微粒子を除去して、空気
を浄化する空気浄化装置は、各種の施設に適用されてい
る。その従来例を第6,7図により説明すると、(1)
が空気浄化装置本体、(8)が同空気浄化装置(1)内
に溶接により固定したフィルタ取付フレーム、(2)が
同フィルタ取付フレーム(8)にフィルタ押さえ金具(
9)とパツキン(10)とを介して着脱自在に取付けた
高効率フィルタで、この部分をフィルタバンクと称して
いる。このフィルタバンクは、高効率フィルタ(2)の
通気個所以外の個所からバイパスリークしないように設
計、製作されており、微粒子を含む気流(A)を空気浄
化装置本体(1)の入口から高効率フィルタ(2)の正
面側へ導き、微粒子を高効率フィルタ(2)により捕捉
して除去する一方、気流(A)を高効率フィルタ(2)
の背面側−空気浄化装置本体(1)の出口を経て空気浄
化装置本体(1)外へ排出するようにしている。
(Prior Art) Air purification devices that purify the air by removing particulates from the air using high-efficiency filters are used in various facilities. The conventional example is explained with reference to Figs. 6 and 7. (1)
is the main body of the air purifying device, (8) is the filter mounting frame fixed by welding in the air purifying device (1), and (2) is the filter holding bracket (2) attached to the filter mounting frame (8).
9) and a packing (10), this part is called a filter bank. This filter bank is designed and manufactured to prevent bypass leakage from any part other than the ventilation part of the high-efficiency filter (2), and allows the airflow (A) containing particulates to be efficiently routed from the inlet of the air purification device body (1). The airflow (A) is guided to the front side of the filter (2), and particulates are captured and removed by the high efficiency filter (2).
The air is discharged to the outside of the air purifier main body (1) through the outlet of the air purifier main body (1) on the rear side of the air purifier main body (1).

前記第6,7図に示す従来の空気浄化装置では(1)高
効率フィルタ(2)を空気浄化装置本体(1)内のフィ
ルタ取付フレーム(8)に取付けるまでの運搬中や供用
期間中のフィルタの損傷、(■)或いはフィルタ取付時
の高効率フィルタ(2)とフィルタ取付フレーム(8)
との密着不良等により。
In the conventional air purification device shown in FIGS. 6 and 7, (1) the high efficiency filter (2) is not transported during transportation until it is attached to the filter mounting frame (8) in the air purification device main body (1), and during the service period. Damage to the filter (■) or high efficiency filter (2) and filter mounting frame (8) when installing the filter
Due to poor adhesion, etc.

バイパスリークが起こって、空気浄化装置の微粒子除去
機能が低下することがある。そのため、空気浄化装置を
使用する前に、高効率フィルタ(2)及びその周りの部
分の健全性を検査する必要がある。この漏洩検査は、空
気浄化装置の入口から空気浄化装置内へ試験用微粒子を
気流(A)とともに導き、フィルタバンク上流側とフィ
ルタバンク下流側とにおける気中微粒子濃度の比(また
は気中微粒子個数の比)を測定、演算して、高効率フィ
ルタ(2)及びその周りの部分の健全性を評価し。
Bypass leaks may occur, reducing the particulate removal function of the air purification device. Therefore, before using the air purification device, it is necessary to inspect the health of the high efficiency filter (2) and the parts around it. In this leakage test, test particles are guided into the air purification device from the inlet of the air purification device along with the airflow (A), and the ratio of the airborne particle concentration (or the number of airborne particles) between the upstream side of the filter bank and the downstream side of the filter bank is carried out. The health of the high-efficiency filter (2) and its surrounding parts is evaluated by measuring and calculating the ratio of

微粒子除去機能が悪ければ、試験用微粒子の漏洩個所を
捜して、補修したり、一部の高効率フィルタ(2)を健
全なものと交換するようにしている。
If the particulate removal function is poor, the part where the test particulates are leaking is searched for and repaired, or some of the high-efficiency filters (2) are replaced with healthy ones.

上記漏洩検査装置の従来例を第8.9図に示した。(6
)が空気浄化装置本体(1)の入口に設けた試験用微粒
子投入ノズル、 (11)が光散乱型フォトメータ及び
試験用微粒子吸引装置、 (12)が高効率フィルタ(
2)の背面側を移動して試験用微粒子(B)の漏洩があ
るか否かを走査するサンプリングノズル、 (13)が
フォトメータ指示計で、気流(A)を空気浄化装置本体
(1)の入口から空気浄化装置本体(1)内−高効率フ
ィルタ(2)−空気浄化装置本体の出口から空気浄化装
置本体外へ導いているときに、試験用微粒子(B)を試
験用微粒子投入ノズル(6)から気流(A)に乗せて高
効率フィルタ(2)の上流側(正面側)へ投入し、高効
率フィルタ(2)の一部に漏洩個所(2a)があれば、
試験用微粒子(B)が高効率フィルタ(2)の下流側(
背面側)へ漏洩する。このとき9作業員が光散乱型フォ
トメータ及び試験用微粒子吸引装置(11)に連絡した
サンプリングノズル(12)を高効率フィルタ(2)の
背面側に移動させて、高効率フィルタ(2)等に試験用
微粒子(B)の漏洩があるか否かを走査し1例えば高効
率フィルタ(2)の一部(2a)に漏洩があると、そこ
から漏洩した試験用微粒子(B)をサンプリングノズル
(12)により吸引して捕集し。
A conventional example of the above leakage testing device is shown in Fig. 8.9. (6
) is the test particle injection nozzle installed at the entrance of the air purification device main body (1), (11) is the light scattering photometer and test particle suction device, and (12) is the high efficiency filter (
2) is a sampling nozzle that moves on the back side of the device to scan for leakage of test particles (B); When the test particles (B) are introduced into the air purifier main body (1) through the inlet of the air purifier main body (1) - the high-efficiency filter (2) and the air purifier main body outlet to the outside of the air purifier main body, (6) into the upstream side (front side) of the high-efficiency filter (2) on the airflow (A), and if there is a leakage point (2a) in a part of the high-efficiency filter (2),
The test particles (B) are placed on the downstream side of the high efficiency filter (2) (
leaks to the rear side). At this time, 9 workers moved the sampling nozzle (12) connected to the light scattering photometer and the test particle suction device (11) to the back side of the high efficiency filter (2), etc. If there is a leak in part (2a) of the high-efficiency filter (2), the test particles (B) leaked from there are scanned to see if there is any leakage of test particles (B). (12) to collect by suction.

光散乱型フォトメータ及び試験用微粒子吸引装置(11
)へ送って、気中微粒子濃度を検出し、その結果をフォ
トメータ指示計(13)に表示して、気中微粒子濃度の
変化を読み取り、漏洩個所を特定して、その部分を補修
したり、一部の高効率フィルタ(2)を健全なものと交
換するようにしている。
Light scattering photometer and test particle suction device (11
) to detect the airborne particulate concentration, display the results on the photometer indicator (13), read changes in the airborne particulate concentration, pinpoint the leak location, and repair the area. , some of the high-efficiency filters (2) are replaced with healthy ones.

(発明が解決しようとする課題) 前記第8.9図に示す従来の高効率フィルタの漏洩試験
装置では1作業員が光散乱型フォトメータ及び試験用微
粒子吸引装置(11)に連絡したサンプリングノズル(
12)を高効率フィルタ(2)の背面側に移動させて、
高効率フィルタ(2)等に試験用微粒子(B)の漏洩が
あるか否かを走査する必要があり、高効率フィルタ(2
)の漏洩試験に多くの時間を要して、■作業効率が悪い
上に1作業員が試験用微粒子(B)を吸い込んで、健康
を害する。■原子力発電所や核燃料施設の空気浄化装置
では。
(Problems to be Solved by the Invention) In the conventional high-efficiency filter leakage testing apparatus shown in FIG. (
12) to the back side of the high efficiency filter (2),
It is necessary to scan the high efficiency filter (2) etc. to see if there is any leakage of test particles (B).
) It takes a lot of time to perform the leakage test, which results in poor work efficiency and one worker inhaling the test particles (B), which is harmful to his health. ■For air purification equipment at nuclear power plants and nuclear fuel facilities.

漏洩試験時間が長く、その間1作業員が放射線に曝され
ることになって、放射線被曝量が増大する。
The leakage test takes a long time, during which one worker is exposed to radiation, increasing the amount of radiation exposure.

■試験用微粒子が長い漏洩試験時間の間、健全な高効率
フィルタ(2)により捕集されることになって、健全な
高効率フィルタ(2)の寿命が短縮する。
(2) The test particles will be collected by the healthy high-efficiency filter (2) during the long leak test time, which will shorten the life of the healthy high-efficiency filter (2).

また空気浄化装置本体(1)が小さい場合1作業員の空
気浄化装置本体(1)内への立ち入りが困難で、高効率
フィルタ(2)等に対する漏洩試験作業を実施できない
という問題があった。
Further, when the air purifying device main body (1) is small, it is difficult for one worker to enter the air purifying device main body (1), and there is a problem that it is impossible to perform leakage test work on the high efficiency filter (2), etc.

本発明は前記の問題点に鑑み提案するものであり、その
目的とする処は1作業効率を向上できる上に9作業員の
健康を損なわない。放射線被曝量を低減できる。健全な
高効率フィルタの寿命を損なわない。さらに空気浄化装
置本体が小さくても。
The present invention has been proposed in view of the above-mentioned problems, and its purpose is to improve work efficiency without impairing the health of workers. Radiation exposure can be reduced. Does not impair the life of a healthy high-efficiency filter. Furthermore, even if the air purification device itself is small.

漏洩試験作業を実施できる高効率フィルタの漏洩検査装
置を提供しようとする点にある。
The object of the present invention is to provide a leak testing device for a highly efficient filter that can perform leak testing work.

(課題を解決するための手段) 上記の目的を達成するために9本発明の高効率フィルタ
の漏洩検査装置は、高効率フィルタの正面側に向かって
試験用微粒子を投入する投入ノズルと、同高効率フィル
タの背面側を走査して同高効率フィルタから漏洩した試
験用微粒子に光を当てる2つの光源体と、同試験用微粒
子を反射した反射光を集める集光レンズ及び光電子倍増
管とを具えている。
(Means for Solving the Problems) In order to achieve the above objects, the high-efficiency filter leakage testing device of the present invention has an injection nozzle that injects test particles toward the front side of the high-efficiency filter, and a Two light sources that scan the back side of the high-efficiency filter and illuminate the test particles leaking from the high-efficiency filter, and a condenser lens and photomultiplier tube that collect the reflected light from the test particles. It is equipped with

(作用) 本発明の高効率フィルタの漏洩検査装置は前記のように
構成されており、試験用微粒子を投入ノズルから投入す
る試験前に、一方の光源体の照射光を高効率フィルタの
フィルタバンク下流側に同高効率フィルタに平行に照射
して、同フィルタバンク下流側全域を走査し、その際の
光電子倍増管の応答(バックグランドレベル)を調べて
、バックグランドの曲線を描く。次いで他方の光源体の
照射光を高効率フィルタのフィルタバンク下流側に同高
効率フィルタに平行に照射して、同フィルタバンク下流
側全域を走査し、ぞの際の光電子倍増管の応答(バック
グランドレベル)を調べて。
(Function) The high-efficiency filter leakage inspection device of the present invention is configured as described above, and before the test in which test particles are introduced from the injection nozzle, the irradiated light from one light source is applied to the filter bank of the high-efficiency filter. The downstream side is irradiated parallel to the same high-efficiency filter, the entire downstream side of the filter bank is scanned, the response (background level) of the photomultiplier tube at that time is examined, and a background curve is drawn. Next, the irradiation light from the other light source is irradiated onto the downstream side of the filter bank of the high-efficiency filter in parallel to the same high-efficiency filter, and the entire downstream side of the filter bank is scanned, and the response of the photomultiplier tube at that time (back (ground level).

バックグランドの曲線を描く。次いで試験用微粒子を投
入ノズルから空気浄化装置本体の入口へ投入し、同試験
用微粒子を気流に乗せて、高効率フィルタの上流側(正
面側)へ導く。この漏洩試験時に、一方の光源体の照射
光を高効率フィルタのフィルタバンク下流側に同高効率
フィルタに平行に照射して、同フィルタバンク下流側全
域を走査し、その際の光電子倍増管の応答(バックグラ
ンドレベル)を調べて、バックグランドの曲線を描く。
Draw the background curve. Next, the test particles are introduced into the inlet of the air purifier main body from the injection nozzle, carried by the airflow, and guided to the upstream side (front side) of the high-efficiency filter. During this leakage test, the irradiated light from one light source is irradiated parallel to the filter bank downstream of the high-efficiency filter, and the entire downstream side of the filter bank is scanned, and the photomultiplier tube at that time is Examine the response (background level) and draw the background curve.

次いで他方の光源体の照射光を高効率フィルタのフィル
タバンク下流側に同高効率フィルタに平行に照射して、
同フィルタバンク下流側全域を走査し、その際の光電子
倍増管の応答(バックグランドレベル)を調べて、バッ
クグランドの曲線を描き、また以上の走査により得られ
たグラフから反射光、即ち、漏洩した試験用微粒子に当
たって9反射した反射光(散乱光)が存在する各光源体
のを読み取り、同各走査角と各光源体間の距離とにより
、他方の光源体から漏洩した試験用微粒子までの水平距
離及び同光源体から漏洩した試験用微粒子までの垂直距
離とを算出して、高効率フィルタの漏洩個所を特定する
Next, the irradiation light from the other light source is irradiated onto the downstream side of the filter bank of the high-efficiency filter in parallel to the same high-efficiency filter.
Scan the entire downstream side of the same filter bank, examine the response (background level) of the photomultiplier tube at that time, draw a background curve, and use the graph obtained from the above scanning to determine the reflected light, that is, the leakage. Read the reflected light (scattered light) from each light source that hits the test particles, and calculate the distance from the other light source to the test particles leaking from the other light source using the scanning angle and the distance between each light source. The horizontal distance and the vertical distance from the light source to the leaked test particles are calculated to identify the leak point of the high efficiency filter.

(実施例) 次に本発明の高効率フィルタの漏洩検査装置を第1図乃
至第5図に示す一実施例により説明すると、(1)が空
気浄化装置本体、(8)が同空気浄化装置(1)内に溶
接により固定したフィルタ取付フレーム、 (2)が同
フィルタ取付フレーム(8)にフィルタ押さえ金具とパ
ツキンとを介して着脱自在に取付けた高効率フィルタ、
 (2a)が同高効率フィルタ(2)の漏洩個所、 (
3a) (3b)が同高効率フィルタ(2)のフルイタ
バンク下流側(背面側)に配設した2つの光源体、(3
aυ(3bl)が同光源体(3a) (3b)からの照
射光(高効率フィルタ(2)のフィルタバンク下流側に
高効率フィルタ(2)に平行に照射して、同フィルタバ
ンク下流側全域を走査する照射光)、(θa)が同光源
体(3a)の走査角、(θb)が同光源体(3b)の走
査角、 (3c)が漏洩した試験用微粒子CB)から反
射した反射光(散乱光)、(4)が同反射光(3c)を
集める集光レンズ、(4”)が光電子倍増管。
(Example) Next, the high-efficiency filter leakage inspection device of the present invention will be explained with reference to an example shown in FIGS. (1) A filter mounting frame fixed by welding inside the frame, (2) a high-efficiency filter detachably mounted to the same filter mounting frame (8) via a filter holding fitting and packing;
(2a) is the leakage point of the same high efficiency filter (2), (
3a) (3b) are two light source bodies arranged downstream (back side) of the filter bank of the same high efficiency filter (2), (3
aυ (3bl) irradiates the irradiated light from the same light source (3a) (3b) to the downstream side of the filter bank of the high efficiency filter (2) in parallel to the high efficiency filter (2), and illuminates the entire downstream area of the filter bank. irradiation light), (θa) is the scanning angle of the light source (3a), (θb) is the scanning angle of the light source (3b), and (3c) is the reflection reflected from the leaked test particle CB). Light (scattered light), (4) is a condenser lens that collects the reflected light (3c), and (4”) is a photomultiplier tube.

(5)が同光電子倍増管(4”)に接続した指示計、(
6)が上記空気浄化装置本体(1)の入口に設けた試験
用微粒子投入ノズル、(7)が上記高効率フィルタ(2
)のフルイタバンク下流側の空気浄化装置本体(1)外
周壁に設けた光熱反射板、(し)が光源体(3a)(3
b)間の距離、(X)が光源体(3b)から漏洩した試
験用微粒子(B)までの水平距離、(Y)が光源体(3
b)から漏洩した試験用微粒子(B)までの垂直距離で
ある。
(5) is the indicator connected to the same photomultiplier tube (4”), (
6) is the test particulate injection nozzle installed at the entrance of the air purification device main body (1), and (7) is the high efficiency filter (2).
) The main body of the air purifying device (1) on the downstream side of the fluita bank (1) is the light heat reflecting plate installed on the outer peripheral wall, (2) is the light source body (3a) (3)
b), (X) is the horizontal distance from the light source (3b) to the leaked test particles (B), and (Y) is the distance between the light source (3b)
It is the vertical distance from b) to the leaked test particles (B).

次に前記第1図乃至第5図に示す高効率フィルタの漏洩
検査装置の作用を具体的に説明する。試験用微粒子(B
)を投入ノズル(6)から投入する試験前に1光源体(
3a)の照射光(3a1)を高効率フィルタ(2)のフ
ィルタバンク下流側に同高効率フィルタ(2)に平行に
照射して1同フイルタバンク下流側全域を走査し、その
際の光電子倍増管(4′)の応答(バックグランドレベ
ル)を調べ、これを指示計(5)で読み取って、バック
グランドの曲線を描く (第4図(I)の破線参照)。
Next, the operation of the high-efficiency filter leakage testing device shown in FIGS. 1 to 5 will be explained in detail. Test fine particles (B
) from the injection nozzle (6). 1 light source (
The irradiation light (3a1) of 3a) is irradiated onto the downstream side of the filter bank of the high-efficiency filter (2) in parallel to the high-efficiency filter (2) to scan the entire downstream side of the filter bank, and the photoelectrons are multiplied at that time. Check the response (background level) of the tube (4'), read it with the indicator (5), and draw a background curve (see the broken line in Figure 4 (I)).

次いで光源体(3b)の照射光(ab+)を高効率フィ
ルタ(2)のフィルタバンク下流側に同高効率フィルタ
(2)に平行に照射して、同フィルタバンク下流側全域
を走査し、その際の光電子倍増管(4゛)の応答(バッ
クグランドレベル)を調べ、これを指示計(5)で読み
取って、バックグランドの曲線を描く (第4図(n)
の破線参照)。次いで試験用微粒子(8)を投入ノズル
(6)から空気浄化装置本体(1)の入口へ投入し、同
試験用微粒子(B)を気流(A)に乗せて、高効率フィ
ルタ(2)の上流側(正面側)へ導く。この漏洩試験時
に、光源体(3a)の照射光(3a、)を高効率フィル
タ(2)のフィルタバンク下流側に同高効率フィルタ(
2)に平行に照射して、同フィルタバンク下流側全域を
走査し、その際の光電子倍増管(4゛)の応答(バック
グランドレベル)を調べ、これを指示計(5)で読み取
って、バックグランドの曲線を描く (第4図(1)の
実線参照)。次いで光源体(3b)の照射光(3bl)
を高効率フィルタ(2)のフィルタバンク下流側に同高
効率フィルタ(2)に平行に照射して、同フィルタバン
ク下流側全域を走査し、その際の光電子倍増管(4゛)
の応答(バックグランドレベル)を調べ、これを指示計
(5)で読み取って、バックグランドの曲線を描く (
第4図(n)の実線参照)。以上の走査により得られた
第4図のグラフから反射光。
Next, the irradiation light (ab+) from the light source (3b) is irradiated onto the downstream side of the filter bank of the high-efficiency filter (2) in parallel to the high-efficiency filter (2) to scan the entire downstream side of the filter bank. Examine the response (background level) of the photomultiplier tube (4゛) at this time, read it with the indicator (5), and draw the background curve (Fig. 4 (n)
). Next, the test particles (8) are introduced from the injection nozzle (6) into the inlet of the air purification device main body (1), and the test particles (B) are carried by the airflow (A) to the high-efficiency filter (2). Lead to the upstream side (front side). During this leakage test, the irradiated light (3a,) from the light source (3a) is transferred to the downstream side of the filter bank of the high efficiency filter (2).
2), scan the entire downstream side of the same filter bank, check the response (background level) of the photomultiplier tube (4゛) at that time, and read this with the indicator (5). Draw a background curve (see solid line in Figure 4 (1)). Next, the irradiation light (3bl) of the light source (3b)
is irradiated onto the downstream side of the filter bank of the high-efficiency filter (2) in parallel to the same high-efficiency filter (2), the entire downstream side of the filter bank is scanned, and the photomultiplier tube (4゛)
Check the response (background level), read it with the indicator (5), and draw the background curve (
(See solid line in FIG. 4(n)). Reflected light from the graph in Figure 4 obtained by the above scanning.

即ち、漏洩した試験用微粒子(B)に当たって5反射し
た反射光(散乱光) (3c)が存在する走査角(ea
) (θb)を読み取り、同走査角(ea) (θb)
と光源体(3a) (3b)間の距離(L)とにより(
次式参照)、光源体(3b)から漏洩した試験用微粒子
(B)までの水平距離(X)及び光源体(3b)から漏
洩した試験用微粒子(B)までの垂直距離(Y)とを算
出して、高効率フィルタ(2)の漏洩個所(2a)を特
(発明の効果) 本発明の高効率フィルタの漏洩検査装置は前記のように
試験用微粒子を投入ノズルから投入する試験前に、一方
の光源体の照射光を高効率フィルタのフィルタバンク下
流側に同高効率フィルタに平行に照射して、同フィルタ
バンク下流側全域を走査し、その際の光電子倍増管の応
答(バックグランドレベル)を調べて、バックグランド
の曲線を描く。次いで他方の光源体の照射光を高効率フ
ィルタのフィルタバンク下流側に同高効率フィルタに平
行に照射して、同フィルタバンク下流側全域を走査し、
その際の光電子倍増管の応答(バックグランドレベル)
を8周べて、バンクグランドの曲線を描く。次いで試験
用微粒子を投入ノズルから空気浄化装置本体の人口へ投
入し、同試験用微粒子を気流に乗せて、高効率フィルタ
の上流側(正面側)へ導く。この漏洩試験時に、一方の
光源体の照射光を高効率フィルタのフィルタバンク下流
側に同高効率フィルタに平行に照射して、同フィルタバ
ンク下流側全域を走査し、その際の光電子倍増管の応答
(バックグランドレベル)を調べて、バックグランドの
曲線を描く。次いで他方の光源体の照射光を高効率フィ
ルタのフィルタバンク下流側に同高効率フィルタに平行
に照射して。
That is, the scan angle (ea
) (θb) and calculate the same scanning angle (ea) (θb)
and the distance (L) between the light sources (3a) and (3b), (
(see the following formula), the horizontal distance (X) from the light source (3b) to the leaked test particles (B), and the vertical distance (Y) from the light source (3b) to the leaked test particles (B). Calculate and identify the leak point (2a) of the high efficiency filter (2) (Effects of the Invention) The high efficiency filter leak inspection device of the present invention, as described above, detects the leak point (2a) of the high efficiency filter (2) before the test in which the test particles are introduced from the input nozzle. , the irradiation light from one light source is irradiated parallel to the filter bank downstream of the high-efficiency filter, and the entire downstream side of the filter bank is scanned, and the response of the photomultiplier tube at that time (background level) and draw the background curve. Next, the irradiation light from the other light source is irradiated onto the downstream side of the filter bank of the high-efficiency filter in parallel with the high-efficiency filter to scan the entire downstream side of the filter bank,
Response of the photomultiplier tube at that time (background level)
Go around 8 times and draw the curve of the bank ground. Next, test particles are introduced into the main body of the air purification device through the injection nozzle, carried by the airflow, and guided to the upstream side (front side) of the high-efficiency filter. During this leakage test, the irradiated light from one light source is irradiated parallel to the filter bank downstream of the high-efficiency filter, and the entire downstream side of the filter bank is scanned, and the photomultiplier tube at that time is Examine the response (background level) and draw the background curve. Next, the irradiation light from the other light source is irradiated onto the downstream side of the filter bank of the high-efficiency filter in parallel to the same high-efficiency filter.

同フィルタバンク下流側全域を走査し、その際の光電子
倍増管の応答(バックグランドレベル)を調べて、バッ
クグランドの曲線を描き、また以上の走査により得られ
たグラフから反射光、即ち。
The entire downstream side of the filter bank was scanned, the response (background level) of the photomultiplier tube at that time was examined, a background curve was drawn, and the reflected light, ie, the reflected light, was drawn from the graph obtained by the above scanning.

漏洩した試験用微粒子に当たって1反射した反射光(散
乱光)が存在する各光源体のを読み取り。
Read the reflected light (scattered light) from each light source that is reflected by the leaked test particles.

同各走査角と各光源体間の距離とにより、他方の光源体
から漏洩した試験用微粒子までの水平距離及び同光源体
から漏洩した試験用微粒子までの垂直距離とを算出して
、高効率フィルタの漏洩個所を特定するので1作業員が
空気浄化装置本体内に入って、漏洩試験作業を行う必要
がなくて5作業効率を向上できる上に2作業員の健康を
損なわない。また漏洩試験対象設備が原子力発電所や核
燃料処理施設では1作業員の放射線被曝量を低減できる
。また高効率フィルタの漏洩試験を迅速に行うことがで
きて、健全な高効率フィルタの寿命を損なわない。また
作業員が空気浄化装置本体内に入る必要がなく、空気浄
化装置本体が小さくても。
Using each scanning angle and the distance between each light source, the horizontal distance from the other light source to the leaked test particles and the vertical distance from the same light source to the test particles leaked are calculated to achieve high efficiency. Since the leakage point of the filter is identified, there is no need for one worker to enter the main body of the air purifying device to perform leakage test work, which improves work efficiency and does not harm the health of the workers. Furthermore, if the equipment being tested for leakage is a nuclear power plant or nuclear fuel processing facility, the amount of radiation exposure per worker can be reduced. In addition, the leakage test of the high-efficiency filter can be quickly performed without damaging the life of a healthy high-efficiency filter. Additionally, there is no need for workers to enter the air purification device itself, even if the air purification device itself is small.

漏洩試験作業を実施できる効果がある。This has the effect of allowing leak test work to be carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる高効率フィルタの漏洩検査装置
の一実施例を示す斜視図、第2図はその縦断側面図、第
3図は第2図の矢視m−m線に沿う縦断正面図、第4.
5図はその作用説明図、第6図は従来の空気浄化装置を
示す縦断側面図、第7図は第6図の矢印■部分の拡大縦
断側面図、第8図は従来の高効率フィルタの漏洩検査装
置を示す縦断側面図、第9図は第8図の矢印■部分の拡
大縦断側面図である。 (2)・・・高効率フィルタ、 (3a) (3b) 
 ・・・光源体、 (3a+) (3b+)  ” ’
照射光、(3c)・・・反射光。 (4)・・・集光レンズ、(4’)  ・・・光電子倍
増管。 (6)・・・投入ノズル、(A)・・・気流、(B)・
・・試験用微粒子。
FIG. 1 is a perspective view showing an embodiment of a leakage testing device for a high-efficiency filter according to the present invention, FIG. 2 is a vertical cross-sectional side view thereof, and FIG. Front view, 4th.
Fig. 5 is an explanatory diagram of its operation, Fig. 6 is a longitudinal side view showing a conventional air purifying device, Fig. 7 is an enlarged longitudinal side view of the arrow ■ in Fig. 6, and Fig. 8 is an illustration of a conventional high-efficiency filter. FIG. 9 is an enlarged vertical side view of the portion indicated by the arrow ■ in FIG. 8. (2)...High efficiency filter, (3a) (3b)
...Light source, (3a+) (3b+) ” '
Irradiation light, (3c)...Reflected light. (4)...Condensing lens, (4')...Photomultiplier tube. (6)...Input nozzle, (A)...Airflow, (B)...
...Particles for testing.

Claims (1)

【特許請求の範囲】[Claims] 高効率フィルタの正面側に向かって試験用微粒子を投入
する投入ノズルと、同高効率フィルタの背面側を走査し
て同高効率フィルタから漏洩した試験用微粒子に光を当
てる2つの光源体と、同試験用微粒子を反射した反射光
を集める集光レンズ及び光電子倍増管とを具えているこ
とを特徴とした高効率フィルタの漏洩検査装置。
An injection nozzle that injects test particles toward the front side of the high-efficiency filter, and two light sources that scan the back side of the high-efficiency filter and shine light on the test particles leaked from the high-efficiency filter. A leak testing device for a high-efficiency filter, characterized by comprising a condenser lens and a photomultiplier tube that collect reflected light reflected from the test particles.
JP964289A 1989-01-20 1989-01-20 Leakage detecting device for high efficiency filter Pending JPH02191517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP964289A JPH02191517A (en) 1989-01-20 1989-01-20 Leakage detecting device for high efficiency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP964289A JPH02191517A (en) 1989-01-20 1989-01-20 Leakage detecting device for high efficiency filter

Publications (1)

Publication Number Publication Date
JPH02191517A true JPH02191517A (en) 1990-07-27

Family

ID=11725874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP964289A Pending JPH02191517A (en) 1989-01-20 1989-01-20 Leakage detecting device for high efficiency filter

Country Status (1)

Country Link
JP (1) JPH02191517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296125A1 (en) * 2001-03-30 2003-03-26 Ngk Insulators, Ltd. Inspection method and device for detecting defect
WO2007126692A2 (en) 2006-03-31 2007-11-08 Corning Incorporated Honeycomb filter defect detecting method and appartus
JP2009092480A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Defect detection method and defect detector
US9038439B2 (en) 2012-11-28 2015-05-26 Corning Incorporated Apparatus and methods for testing a honeycomb filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296125A1 (en) * 2001-03-30 2003-03-26 Ngk Insulators, Ltd. Inspection method and device for detecting defect
EP1296125A4 (en) * 2001-03-30 2006-12-13 Ngk Insulators Ltd Inspection method and device for detecting defect
WO2007126692A2 (en) 2006-03-31 2007-11-08 Corning Incorporated Honeycomb filter defect detecting method and appartus
EP2001576A2 (en) * 2006-03-31 2008-12-17 Corning Incorporated Honeycomb filter defect detecting method and appartus
EP2001576A4 (en) * 2006-03-31 2009-07-15 Corning Inc Honeycomb filter defect detecting method and appartus
US7674309B2 (en) 2006-03-31 2010-03-09 Corning Incorporated Honeycomb filter defect detecting method and apparatus
JP2009092480A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Defect detection method and defect detector
US9038439B2 (en) 2012-11-28 2015-05-26 Corning Incorporated Apparatus and methods for testing a honeycomb filter

Similar Documents

Publication Publication Date Title
JP5508852B2 (en) Defect inspection method for specimen
US5640236A (en) Method and apparatus for detecting the position of defect in a hollow fiber membrane module
JP2002357562A (en) Method and apparatus for inspecting defect
US10712267B2 (en) Cleaning-performance evaluation system
JPS63233351A (en) Instantaneous measuring device for content of gas in aerosol
JP2012509486A (en) Method and system for analyzing solid particles in a medium
CN107238558A (en) A kind of Multifunctional particulate matter sampling apparatus based on CCD/CMOS chips
JP2007507705A (en) Particle detector
JPH02191517A (en) Leakage detecting device for high efficiency filter
JPH0477646A (en) Method and apparatus for testing air filter leakage
US3535531A (en) High-volume airborne-particle light scattering detector system having rectangularly shaped elongated scanning zone
JPH0363544A (en) Emitted particle measuring apparatus
CN111307677A (en) Laser front scattering particulate matter monitoring device
JP2011002232A (en) Light transmission type analyzer
CN212646224U (en) Smoke and dust flue gas sampling check out test set of taking U-shaped three-way pipe
JP3343247B2 (en) Emission monitoring method
Heitbrink et al. Evaluation of leakage from a metal machining center using tracer gas methods: a case study
CN219142576U (en) High-efficient multi-functional particulate matter concentration measuring device
CN216433844U (en) Oil smoke and particulate matter concentration detection device
CN214749612U (en) Particulate matter concentration tester
KR102147627B1 (en) Fine dust analysis apparatus
JP2001215164A (en) Apparatus utilizing misty water drop for detecting vacuum/gas leakage
JPS56150827A (en) Inspection device for abnormality of mask
Masic et al. Evaluation of Face Mask Filtering Efficiency Using High-End Scanning Mobility Particle Sizer
CN212432910U (en) Device for rapidly measuring concentration of particulate matters in gas