JPH02190889A - 積が一定長になる2数の選出方法 - Google Patents

積が一定長になる2数の選出方法

Info

Publication number
JPH02190889A
JPH02190889A JP1135289A JP1135289A JPH02190889A JP H02190889 A JPH02190889 A JP H02190889A JP 1135289 A JP1135289 A JP 1135289A JP 1135289 A JP1135289 A JP 1135289A JP H02190889 A JPH02190889 A JP H02190889A
Authority
JP
Japan
Prior art keywords
product
length
numbers
bit length
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1135289A
Other languages
English (en)
Inventor
Kazue Tanaka
田中 和恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1135289A priority Critical patent/JPH02190889A/ja
Publication of JPH02190889A publication Critical patent/JPH02190889A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は暗号における鍵設定に用い積が一定長になる2
数の選出方法に関する。
(従来の技術) 暗号には鍵設定のため、特別な条件が設定されることが
ある。たとえばR8A暗号においては、あるパラメータ
Nを2つの素数と規定している。このパラメータNをハ
ードウェア上の制限などから、例えば512ビツトであ
ることをか必要になることがある。また安全性の面から
、素因数分解を困難にするために素数をほぼ同長に取る
ことが望ましい。
素数を設定するためには、乱数を発生させて素数判定を
行なう方法が知られている。従来の技術は、256ビツ
トの素数を2つ発生させ、それらの積が512ビツトに
満たなければ、2つとも放棄し、新たに256ビツトの
素数を発生させ、これらが条件を満たすまで続けるとい
う処理を行なっていた。
(発明が解決しようとする問題点) ところが、素数を発生させるために必要な素数判定には
処理時間がかかり、せっかく発生させた素数をみすみす
捨てるのは処理時間の無駄である。
(問題点を解決するための手段) 上記問題点は、以下のようにして解決することができる
。すなわち、 (1)積が一定偶数ビット長になるほぼ同長の2数を選
出したい場合、積の長さの半分のビット長の2数を候補
とし、それらの積が求める長さにならない場合、小さく
ない方の数を残し、新たに一つだけ候補を設定し、それ
らの積が要求を満たすかどうかを調べる選出方法、 あるいは、 (2)(1)において、新たに設定する候補をその直前
の大きくない方の数より大きく設定する選出方法、 あるいは、 (3)(1)において新たに設定する候補をその直前の
小さくない方の数より大きく設定する選出方法、あるい
は、 (4)積が一定奇数ビット長になるほぼ同長の2数を選
出したい場合、積の長さに1足した半分のビット長の2
数を候補とし、それらの積が求める長さにならない場合
、大きくない方の数を残し、新たに一つだけ候補を設定
し、それらの積が要求を満たすかどうかを調べる選出方
法、 あるいは、 (5)(4)において、新たに設定する候補をその直前
の小さくない方の数より小さく設定する選出方法、 あるいは、 (6)(4)において、新たに設定する候補をその直前
の大きくない方の数より小さく設定する選出方法、 である。
(作用) 第1図は本第−発明並びに第四発明の動作原理を示すた
めのフローチャートである。
必要な積の長さが偶数の場合、まず、必要な積の長さの
半分のビット長の2数を設定する。この2数の積が所定
の長さに達しなければ、この2数を比較して小さい数を
捨てる。次に、この捨てた数のかわりに、もう一つ候補
を設定する。新たな2数の積が所定の長さに達しなけれ
ば、同様にこの2つの数の内、小さい方を捨て、新たな
候補を設定するという手順を繰り返すのが本発明の主張
点である。これは、必要なビット長のちょうど半分の長
さの2数の積は必要ビット長を越えるはずはなく、した
がって、必要ビット長でなければそれより短い長さにな
っているのである。よって、2数の内、大きい方の数を
再び候補にあげれば、次に発生させた数との積が必要ビ
ット長に達する可能性が高い。
必要な積の長さが奇数の場合、まず、必要な積の長さに
1足したビット長の半分の2数を設定する。この2数の
積か所定の長さに達しなければ、この2数を比較して大
きい数を捨てる。次に、この捨てた数のかわりに、もう
一つ候補を設定側る。あらたな2数の積が所定の長さに
達しなければ、同様にこの2つの数の内、大きい方を捨
て、新たな候補を設定するという手順を繰り返すのが本
発明の主張点である。これは、必要な長さに1加えたビ
ット長の半分の長さの2数の積は必要ビット長を満たさ
ないはずはなく、したがって、必要ビット長でなければ
それより長い長さになっているのである。
よって、2数の内、小さい方の数を再び候補にあげれば
、次に発生させた数との積が必要ビット長に留まる可能
性が高い。
また、必要な積の長さが偶数の場合、2度目以降に設定
する数を、前回の1組の数の内、小さい方より大きくな
るように取ればさらに確率が高くなる。なぜならば、前
回の組の小さい数より小さい数を次に設定しても積が所
定のビット長に達し得ないからである。この動作原理は
第2図のフローチャートに図に示されている。
あるいは、必要な積の長さが奇数の場合、2度目以降に
設定する数を、前回の1組の数の内、大きい方より小さ
くなるように取ればさらに確率が高くなる。なぜならば
、前回の組の大きい数より大きい数を次に設定しても積
が所定のビット長に留まり得ないからである。この動作
原理は第3図のフローチャートに示されている。
さらに、必要な積の長さが偶数の場合、2度目以降に設
定する数を、前回の1組の数の内、大きい方より大きく
なるように取ればさらに確率が高くなる。この動作原理
は第4図のフローチャートに示されている。
同様に、必要な積の長さが奇数の場合、2度目以降に設
定する数を、前回の1組の数の内、小さい方より小さく
なるように取ればさらに確率が高くなる。この動作原理
は第5図のフローチャートに示されている。
このようにして、効率よく2数を設定することができる
(実施例) 本発明をR8A暗号の鍵生成に適用した例についてのべ
る。前述のとおり、例として512ビツトちょうどのパ
ラメータNとして2つの素数の積としたいとする。以下
の手順は第6図に示しである。まず、256ビツトの2
つの素数を発生させる。これらの積が512ピツトに満
たない場合、2つの素数の内、大きい方を残し、新たな
素数候補を探索するのが本第−発明の例である。もし、
記憶領域が十分にあれば、本第二発明が適用する。この
手順を第7図に示す。すなわち、新たな素数候補を探索
するときに直前の組の内、小さい方も残しておき、次に
発生させる素数候補をあらかじめこの数より大きい数に
設定しておいてから、素数判定を施す。あるいは、繰り
返し回数をなるべく少なくして求めたい場合、本第三発
明が適用できる。第8図に示されているように、残した
大きい数より大きい数を選んでから素数判定を施す方法
である。
以下に積が奇数ビット長である場合の実施例について述
べる。例えば、R8A暗号変換を施すプロセッサとして
、ディジタルシグナルプロセッサを用いたとする。NE
C製pPD77230(製品名)を用いると、一つのレ
ジスタ長が23ビツトなので、23レジスタを用い、ち
ょうど、529(= 23 X 23)ビットのパラメ
ータNを求めたい場合を考える。以下の手順は第9図に
示しである。まず、256ビツトの2つの素数を発生さ
せる。これらの積が529ビツトを越える場合、2つの
素数の内、小さい方を残し、新たな素数候補を探索する
のが本第4発明の例である。もし、記憶領域が十分にあ
れば、本第5発明が適用できる。この手順を第10図に
示す。すなわち、新たな素数候補を探索するときに直前
の素数の組の内、大きい方も残しておき、次に発生させ
る素数候補をあらかじめこの数より小さい数に設定して
おいてから、素数判定を施す。あるいは、繰り返し回数
をなるべく少なくして求めたい場合、本第6発明が適用
できる。第11図に示されているように、残した小さい
数より小さい数を選んでから素数判定を施す方法である
(発明の効果) 以上詳細に説明したように、本発明方法を用いれば、一
定長の積になる2つの数を効率よく選出することができ
、この方法は暗号における鍵生成に利用できる。
【図面の簡単な説明】
第1図は本第1発明ならびに本第4発明の動作原理を示
したフローチャートであり、第2図、第3図、第4図、
第5図は本第2発明、本第3発明、本第5発明、本第6
発明の動作原理を示したフローチャートである。また、
第6図、第7図、第8図、第9図、第10図、第11図
はそれぞれ本第1発明、本第2発明、本第3発明、本第
4発明、本第5発明、本第6発明の実施例を示した図で
ある。

Claims (6)

    【特許請求の範囲】
  1. (1)積が一定偶数ビット長になるほぼ同長の2数を選
    出したい場合、積の長さの半分のビット長の2数を候補
    とし、それらの積が求める長さにならない場合、小さく
    ない方の数を残し、新たに一つだけ候補を設定し、それ
    らの積が要求を満たすかどうかを調べる選出方法。
  2. (2)新たに設定する候補をその直前の大きくない方の
    数より大きく設定する特許請求項1記載の選出方法。
  3. (3)新たに設定する候補をその直前の小さくない方の
    数より大きく設定する特許請求項1記載の選出方法。
  4. (4)積が一定奇数ビット長になるほぼ同長の2数を選
    出したい場合、積の長さに1足した半分のビット長の2
    数を候補とし、それらの積が求める長さにならない場合
    、大きくない方の数を残し、新たに一つだけ候補を設定
    し、それらの積が要求を満たすかどうかを調べる選出方
    法。
  5. (5)新たに設定する候補をその直前の小さくない方の
    数より小さく設定する特許請求項4記載の選出方法。
  6. (6)新たに設定する候補をその直前の大きくない方の
    数より小さく設定する特許請求項4記載の選出方法。
JP1135289A 1989-01-20 1989-01-20 積が一定長になる2数の選出方法 Pending JPH02190889A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135289A JPH02190889A (ja) 1989-01-20 1989-01-20 積が一定長になる2数の選出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135289A JPH02190889A (ja) 1989-01-20 1989-01-20 積が一定長になる2数の選出方法

Publications (1)

Publication Number Publication Date
JPH02190889A true JPH02190889A (ja) 1990-07-26

Family

ID=11775645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135289A Pending JPH02190889A (ja) 1989-01-20 1989-01-20 積が一定長になる2数の選出方法

Country Status (1)

Country Link
JP (1) JPH02190889A (ja)

Similar Documents

Publication Publication Date Title
Derbez et al. Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE
Meier et al. Analysis of pseudo random sequences generated by cellular automata
Adams et al. The structured design of cryptographically good S-boxes
JP6761934B1 (ja) 検出および補正機能を備えた真の乱数の発生方法および装置
US5566099A (en) Pseudorandom number generator
Belazzougui Linear time construction of compressed text indices in compact space
US11093635B2 (en) Apparatus and method for private information retrieval
CN107506310B (zh) 一种地址查找、关键字存储方法及设备
Desmedt et al. Dependence of output on input in DES: Small avalanche characteristics
Koblitz et al. Another look at HMAC
Ahmad et al. A new cryptographic scheme utilizing the difficulty of big Boolean satisfiability
TWI785952B (zh) 密碼加速器以及加解密運算的差分故障分析方法
Tong et al. Owner-free distributed symmetric searchable encryption supporting conjunctive queries
JPH02190889A (ja) 積が一定長になる2数の選出方法
Akoto-Adjepong et al. An enhanced non-cryptographic hash function
Rubin Decrypting a Stream Cipher Based on J? K Flip-Flops
Bennenni et al. Evaluation of iterated Ore polynomials
Nayak et al. Graph capacities and zero-error transmission over compound channels
JPS5965376A (ja) アドレス制御回路
CN101138195A (zh) 用于生成伪随机数据序列的方法、系统及设备
Hell et al. Some attacks on the bit-search generator
Halava et al. Small semi-Thue system universal with respect to the termination problem
US20250278394A1 (en) Private data set intersection with mutual device anonymity
Jutla et al. Provably good codes for hash function design
Hayes et al. An Evaluation of FNV Non-Cryptographic Hash Functions