JPH02190826A - Two-terminal element for driving liquid crystal - Google Patents

Two-terminal element for driving liquid crystal

Info

Publication number
JPH02190826A
JPH02190826A JP1011595A JP1159589A JPH02190826A JP H02190826 A JPH02190826 A JP H02190826A JP 1011595 A JP1011595 A JP 1011595A JP 1159589 A JP1159589 A JP 1159589A JP H02190826 A JPH02190826 A JP H02190826A
Authority
JP
Japan
Prior art keywords
film
thin film
liquid crystal
insulating thin
mim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1011595A
Other languages
Japanese (ja)
Inventor
Wasaburo Ota
太田 和三郎
Takamichi Enomoto
孝道 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1011595A priority Critical patent/JPH02190826A/en
Publication of JPH02190826A publication Critical patent/JPH02190826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a low temperature formed film and to obtain excellent physical and electrical characteristics by constituting an insulating thin film by a film having specific visible light transmittivity and volume resistivity, which is formed by vapor-deposition. CONSTITUTION:An insulating thin film of a liquid crystal driving two-terminal element of an MIM constitution is constituted of a film of >=90% visible light transmittivity and >=10<13> volume resistivity, which is formed by vapor-deposition. In such a way, a breakdown strength characteristic and an I-V characteristic are improved, and also, since transparency of the insulating thin film in high, the insulating thin film can be formed on the whole surface of a picture element electrode, an MIM element is formed easily, and also, since a low temperature film formation can be executed, a plastic substrate can be used, and an active driving type liquid crystal display device being small in size, light in weight and thin is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶表示装置に用いて好適なMIM構成の駆動
素子に関し、特にプラスチック基板を用いた液晶表示装
置にも適用可能な駆動素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a driving element with an MIM configuration suitable for use in a liquid crystal display device, and particularly to a driving element applicable to a liquid crystal display device using a plastic substrate. It is.

[従来の技術及び発明が解決しようとする課1M]従来
液晶表示装置に用いられる透明電極を用いた駆動マトリ
ックス素子にはにIM素子がその製作上の簡便性により
使用されている。このMIに素子の絶縁膜には、CVD
法によって成膜された窒化珪素やスパッタリング法によ
って成膜された酸化アルミニウム、陽極酸化で形成され
る五酸化タンタルが使用され、一方、透明電極には、ス
パッタリング法によりて成膜された錫ドープされた酸化
インジウム等が用いられている。しかし、これらの成膜
方法は何れも基板温度を300°C以上の高温にしなけ
ればならず、耐熱性の低い基板1例えばプラスチック基
板等には成膜が極めて困難であり、また、成膜された薄
゛膜も緻密性に欠は膜中に微細な空乏が発生し、膜構成
物質本来の物理的特性すなわち、光透過率、電気抵抗、
誘電率の良好な膜が得られなかった。特に絶縁膜は透明
度が低°いため、画素部全面に形成することはできず、
MIM素子部のみに形成しなければならず、作製に困難
が伴っていた。
[Prior Art and Problems to be Solved by the Invention 1M] IM elements have been used as driving matrix elements using transparent electrodes in conventional liquid crystal display devices due to their ease of manufacture. The insulating film of this MI element is CVD
Silicon nitride formed by a method, aluminum oxide formed by a sputtering method, and tantalum pentoxide formed by anodizing are used for the transparent electrode. Indium oxide, etc., is used. However, all of these film forming methods require the substrate temperature to be raised to a high temperature of 300°C or higher, making it extremely difficult to form a film on substrates with low heat resistance, such as plastic substrates. Even thin films lack density, and fine depletion occurs in the film, which deteriorates the inherent physical properties of the film's constituent materials, such as light transmittance, electrical resistance,
A film with good dielectric constant could not be obtained. In particular, the insulating film has low transparency, so it cannot be formed over the entire pixel area.
It had to be formed only in the MIM element portion, which was accompanied by difficulties in manufacturing.

一方、従来の液晶表示装置はガラス基板を使用して構成
されるのが一般的であったが、加工性。
On the other hand, conventional liquid crystal display devices have generally been constructed using glass substrates, but there are problems with machinability.

軽量化、薄型化等の観点からプラスチック基板の利用が
要請されており、スタティック邸動タイプのものでは既
に商品化が行われ実用に供されているが、アクティブ駆
動タイプでは未だ十分ではない、これは上述のように耐
熱性の低いプラスチック基板上に薄膜を形成することが
極めて困難だからである。
There is a demand for the use of plastic substrates from the viewpoint of weight reduction and thinning, etc., and static drive types have already been commercialized and put into practical use, but active drive types are still insufficient. This is because, as mentioned above, it is extremely difficult to form a thin film on a plastic substrate with low heat resistance.

本発明は、以上のような従来技術の問題点を解決するた
めになされたもので、低温成膜で作製することが可能で
、しかも物理的、電気的特性の優れた液晶駆動用二端子
素子を提供することを目的とする。
The present invention was made in order to solve the problems of the conventional technology as described above, and provides a two-terminal element for driving a liquid crystal that can be produced by low-temperature film formation and has excellent physical and electrical characteristics. The purpose is to provide

[課題を解決するための手段] 上記目的を達成するため、本発明によれば、基板上に薄
膜透明電極、絶縁性薄膜及び薄膜電極を順次積層してな
るに工に構成の液晶駆動用二端子素子において、前記絶
縁性薄膜が、蒸着により形成された可視光透過率90%
以上、体積比抵抗1013以上の膜より構成されている
ことを特徴とする液晶駆動用二端子素子が提供される。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a liquid crystal driving secondary structure in which a thin film transparent electrode, an insulating thin film, and a thin film electrode are sequentially laminated on a substrate. In the terminal element, the insulating thin film is formed by vapor deposition and has a visible light transmittance of 90%.
As described above, there is provided a two-terminal element for driving a liquid crystal, which is characterized by being composed of a film having a volume specific resistance of 1013 or more.

[実施例コ 以下本発明を実施例により詳細に説明する。[Example code] The present invention will be explained in detail below using examples.

(実施例1) 第2図に示すようにPET基板20上に通常の真空蒸着
により膜厚約1000人のA1薄膜電極21を形成し。
(Example 1) As shown in FIG. 2, an A1 thin film electrode 21 having a thickness of about 1000 wafers was formed on a PET substrate 20 by ordinary vacuum deposition.

さらにその上に下記に述べる方法で膜厚約500人の酸
化アルミニウム膜22を形成し、さらにその上に膜厚約
850人の酸化インジウム薄膜電極23を形成し、 M
I阿素子とした。
Furthermore, an aluminum oxide film 22 with a thickness of approximately 500 densities is formed thereon by the method described below, and an indium oxide thin film electrode 23 with a thickness of approximately 850 densities is further formed thereon.
I named it Asoko.

上記酸化アルミニウム膜22の形成は特開昭59−89
763号公報に記載の薄膜蒸着装置を用いて行う。
The above aluminum oxide film 22 was formed in Japanese Patent Application Laid-Open No. 59-89.
The thin film deposition apparatus described in Japanese Patent No. 763 is used.

ここで第1図を参照して該薄膜蒸着装置の概要について
説明する。
Here, the outline of the thin film deposition apparatus will be explained with reference to FIG.

この薄膜蒸着装置は、真空槽2と対電極10とグリッド
8と熱電子発生用のフィラメント6と蒸発源4とを有し
、真空槽2内に酸素ガスあるいは酸素とアルゴンなどの
不活性ガスの混合ガスを導入して膜を形成するものであ
る。蒸発源4としては、タングステン、モリブデンなど
のボートやコイル状に形成した抵抗加熱方式のものでも
、あるいはビーム蒸着方式のものでも良い。対電極10
を真空槽2内に配備し、基板11を保持し、かつ上記基
板11を蒸発源4と対向させている。グリッド8は蒸着
物質を通過させうるものであって、蒸発源4と対電極1
0間に配備し、対電極lO及びフィラメント6の電位に
対し、正電位におく、従って、真空槽2内にグリッド8
から基板11に向かう電界が形成される。熱電子発生用
のフィラメント6は真空槽2内の上記グリッド8に関し
、蒸発源4側に配備し、このフィラメント6により発生
する熱電子は、導入ガス及び蒸発物質の一部をイオン化
するのに供される。
This thin film deposition apparatus has a vacuum chamber 2, a counter electrode 10, a grid 8, a filament 6 for generating thermionic electrons, and an evaporation source 4. A film is formed by introducing a mixed gas. The evaporation source 4 may be a resistance heating type made of tungsten, molybdenum, etc. formed into a boat or coil shape, or a beam evaporation type. Counter electrode 10
is placed in a vacuum chamber 2 to hold a substrate 11, and the substrate 11 is opposed to the evaporation source 4. The grid 8 allows the vapor deposition material to pass through, and connects the evaporation source 4 and the counter electrode 1.
0 and placed at a positive potential with respect to the potential of the counter electrode lO and the filament 6, so that the grid 8 is placed in the vacuum chamber 2.
An electric field is formed from the substrate 11 toward the substrate 11 . A filament 6 for generating thermionic electrons is arranged on the evaporation source 4 side with respect to the grid 8 in the vacuum chamber 2, and the thermionic electrons generated by the filament 6 are used to ionize a part of the introduced gas and the evaporated substance. be done.

次に、上記薄膜蒸着装置による酸化アルミニウム膜22
の形成方法について説明する。
Next, the aluminum oxide film 22 is formed using the thin film deposition apparatus described above.
The formation method will be explained.

蒸発物質として金属A1を蒸発源4に保持し、真空槽2
内の真空度をあらかじめ10−’Paのオーダーにし、
酸素ガスを真空槽2内に導入し、その圧力をたとえば0
.IPa程度に保つ。この状態において、たとえば対電
極10をゼロ電位にし、グリッド8に100vの電位を
印加し、フィラメント6に400Vの電力を与える。そ
して希望する成膜速度に応じ蒸発源4に電力を印加する
と、蒸発したA1の一部がイオン化され、酸素と強く化
合し、酸化アルミニウム膜が基板11上に形成される。
Metal A1 is held as an evaporation substance in an evaporation source 4, and a vacuum chamber 2
The degree of vacuum inside is set in advance to the order of 10-'Pa,
Oxygen gas is introduced into the vacuum chamber 2, and its pressure is set to 0, for example.
.. Maintain around IPa. In this state, for example, the counter electrode 10 is set to zero potential, a potential of 100 V is applied to the grid 8, and a power of 400 V is applied to the filament 6. Then, when power is applied to the evaporation source 4 according to a desired film formation rate, a part of the evaporated A1 is ionized and strongly combined with oxygen, and an aluminum oxide film is formed on the substrate 11.

この方法により酸化ガスを1000Mで真空槽2内に導
入し成膜速度5人/ seeで形成した酸化アルミニウ
ム膜22は可視光透過率が95%以上の緻密な膜であり
(第6図参照)、体積比抵抗は1013以上を示した。
The aluminum oxide film 22 formed by this method by introducing oxidizing gas at 1000M into the vacuum chamber 2 at a film formation rate of 5 persons/see is a dense film with a visible light transmittance of 95% or more (see Fig. 6). , the volume resistivity was 1013 or more.

にIM素子の絶縁膜として、通常、酸化アルミニウム、
五酸化タンタル等の酸化物が良く用いられている。これ
らの膜は従来ではA1又はTa膜を作製後、陽極酸化し
て形成されるが、陽極酸化では膜内部が多孔状になる場
合もあり、緻密な膜となることが困難である。特に酸化
アルミニウムはこの傾向が著しい、ところが本実施例の
絶縁膜(酸化アルミニウム膜22)は光透過率が上述の
ように95%以上で緻密性も非常に優れているため、M
IM素子の電極として透過率の良い材料を用いるとMI
M素子自体透明となり、液晶表示素子とする場合、表示
の開口率を大きくすることができ、明るい液晶表示装置
が実現できる。透明な電極としてはたとえば酸化インジ
ウム、酸化亜鉛等を用いることができる。特に酸化イン
ジウムも上記方法により作製すると光透過率95%以上
、表面抵抗100Ω/口以下の均一な膜となる。
Aluminum oxide,
Oxides such as tantalum pentoxide are often used. Conventionally, these films are formed by anodic oxidation after fabricating an A1 or Ta film, but anodic oxidation may make the inside of the film porous, making it difficult to form a dense film. This tendency is particularly remarkable with aluminum oxide. However, the insulating film of this example (aluminum oxide film 22) has a light transmittance of 95% or more and excellent density as described above, so M
If a material with good transmittance is used as the electrode of the IM element, MI
The M element itself becomes transparent, and when used as a liquid crystal display element, the display aperture ratio can be increased and a bright liquid crystal display device can be realized. For example, indium oxide, zinc oxide, etc. can be used as the transparent electrode. In particular, when indium oxide is also produced by the above method, it becomes a uniform film with a light transmittance of 95% or more and a surface resistance of 100 Ω/hole or less.

本実施例で作成したMIM素子のI−V特性を第3図に
実線で示す、なお1図中細線は陽極酸化による酸化アル
ミニウムを用いた場合(比較例)、破線は後述の実施例
2に対応する。第3図から明らかなように、本実施例の
MIM素子は耐電圧特性に優れ、しかもI−V特性の立
上りがシャープで対称性が良い優れたものであった。
The IV characteristics of the MIM element created in this example are shown in Figure 3 as solid lines. In Figure 1, the thin line shows the case where aluminum oxide by anodization was used (comparative example), and the broken line shows the case where aluminum oxide was used by anodizing (comparative example), and the broken line shows the case in Example 2 described later. handle. As is clear from FIG. 3, the MIM device of this example had excellent withstand voltage characteristics, and the I-V characteristics had a sharp rise and good symmetry.

(実施例2) 第4図及び第5図に示すように、ガラス基板30上に第
1図の装置を用いる方法により膜厚約800人の酸化イ
ンジウムの透明画素電極31を形成し、この電極31上
に実施例1と同様な方法により光透過率94%以上、体
積比抵抗1014以上の酸化アルミニウムの絶縁膜32
(膜厚約500人)を形成した。さらに、透明画素電極
31端面部に金属Alの薄膜電極(膜厚約800人)3
3を成膜し、各薄膜の積層部でMIに素子を形成した。
(Example 2) As shown in FIGS. 4 and 5, a transparent pixel electrode 31 of indium oxide with a film thickness of approximately 800 mm is formed on a glass substrate 30 by a method using the apparatus shown in FIG. 31, an aluminum oxide insulating film 32 having a light transmittance of 94% or more and a volume resistivity of 1014 or more is formed by the same method as in Example 1.
(film thickness approximately 500 people). Furthermore, a thin film electrode (film thickness of about 800) 3 of metal Al is provided on the end surface of the transparent pixel electrode 31.
3 was formed into a film, and an element was formed in MI using the laminated portion of each thin film.

このMIM素子において薄膜電極331よ外部駆動回路
との接続電極も兼ねることができる。
In this MIM element, the thin film electrode 331 can also serve as a connecting electrode with an external drive circuit.

この様にして構成されたMIM素子は、絶縁膜32の透
明度が高いため、絶縁膜32をMIM素子部のみに形成
する必要がなく、画素部全面に形成でき、素子作製が容
易である。
In the MIM element configured in this manner, since the insulating film 32 has high transparency, it is not necessary to form the insulating film 32 only on the MIM element portion, and it can be formed over the entire pixel portion, making the device easy to manufacture.

以上本発明の実施例を例示したが、本発明はこれら実施
例に限定されるものではなく、種々の変形、変更が可能
である。
Although the embodiments of the present invention have been illustrated above, the present invention is not limited to these embodiments, and various modifications and changes are possible.

たとえば、上記ではMIM素子を形成するプラスチック
基板としてPETを用いたが、ポリエステル、ポリエー
テルスルホン、ポリスルホン、ポリカーボネート等のポ
リマーフィルム、あるいはガラス板を用いることもでき
る。また、絶縁膜としては上記の他にチタン、ケイ素、
インジウム等の酸化物、ケイ素、チタン等の窒化物、チ
タン酸バリウム等を用いることができる。また、金属電
極としては上記の他にAu、 Cr、 NiCr、 T
a等の材料を用いることができる。
For example, although PET is used as the plastic substrate for forming the MIM element in the above example, a polymer film of polyester, polyethersulfone, polysulfone, polycarbonate, etc., or a glass plate may also be used. In addition to the above, the insulating film can also be made of titanium, silicon,
Oxides such as indium, nitrides such as silicon and titanium, barium titanate, etc. can be used. In addition to the above, metal electrodes include Au, Cr, NiCr, and T.
Materials such as a can be used.

[発明の効果コ 以上詳細に説明したように、本発明では、MIM構成の
液晶暉動用二端子素子の絶縁性薄膜を、蒸着により形成
した可視光透過率90%以上1体積比抵抗1013以上
の膜で構成したので、以下のような効果が得られる。
[Effects of the Invention] As explained in detail above, in the present invention, the insulating thin film of the two-terminal element for liquid crystal movement having an MIM configuration is formed by vapor deposition and has a visible light transmittance of 90% or more and a volume specific resistance of 1013 or more. Since it is composed of a membrane, the following effects can be obtained.

■耐電圧特性及びI−V特性が向上する。(2) The withstand voltage characteristics and IV characteristics are improved.

■絶縁性薄膜の透明度が高いため、画素電極全面に絶縁
性薄膜を形成することができ、 MIM素子の作製が容
易である。
■Since the insulating thin film has high transparency, it is possible to form the insulating thin film on the entire surface of the pixel electrode, making it easy to manufacture MIM elements.

■低温成膜が可能なため、プラスチック基板が使用でき
、小型で軽景、薄型のアクティブ駆動タイプ液晶表示装
置が実現できる。
■Since low-temperature film formation is possible, plastic substrates can be used, making it possible to create small, light-looking, and thin active drive type liquid crystal display devices.

■絶縁性薄膜の透明度が高いため、液晶表示装置の開口
率を大きく設計でき、表示特性が良好となる。
■Since the insulating thin film has high transparency, the aperture ratio of the liquid crystal display device can be designed to be large, resulting in good display characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のに工に素子の絶縁膜形成に使用される
薄膜蒸着装置の構成を示す断面図、第2図は本発明によ
る実施例1のにIM素子の構成を示す断面図、第3図は
第2図のMIM素子のI−V特性を示すグラフ、第4図
及び第5図はそれぞれ本発明による実施例2のMIM素
子の構成を示す一面図及び平面図、第6図は絶縁膜の可
視光透過率の測定例を示すグラフである。 21・・・A1薄膜電極 22・・・酸化アルミニウム膜 23・・・酸化インジウム薄膜電極 31・・・透明画素電極 32・・・絶縁膜 33・・・薄膜電極
FIG. 1 is a sectional view showing the structure of a thin film deposition apparatus used for forming an insulating film of an element according to the present invention, and FIG. 2 is a sectional view showing the structure of an IM element according to Example 1 of the present invention. FIG. 3 is a graph showing the IV characteristics of the MIM device shown in FIG. is a graph showing an example of measurement of visible light transmittance of an insulating film. 21... A1 thin film electrode 22... Aluminum oxide film 23... Indium oxide thin film electrode 31... Transparent pixel electrode 32... Insulating film 33... Thin film electrode

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に薄膜透明電極、絶縁性薄膜及び薄膜電極
を順次積層してなるMIM構成の液晶駆動用二端子素子
において、前記絶縁性薄膜が、蒸着により形成された可
視光透過率90%以上、体積比抵抗10^1^3以上の
膜より構成されていることを特徴とする液晶駆動用二端
子素子。
(1) In a two-terminal element for driving a liquid crystal with an MIM configuration in which a thin film transparent electrode, an insulating thin film, and a thin film electrode are sequentially laminated on a substrate, the insulating thin film has a visible light transmittance of 90% formed by vapor deposition. As described above, a two-terminal element for driving a liquid crystal is comprised of a film having a volume specific resistance of 10^1^3 or more.
JP1011595A 1989-01-20 1989-01-20 Two-terminal element for driving liquid crystal Pending JPH02190826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011595A JPH02190826A (en) 1989-01-20 1989-01-20 Two-terminal element for driving liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011595A JPH02190826A (en) 1989-01-20 1989-01-20 Two-terminal element for driving liquid crystal

Publications (1)

Publication Number Publication Date
JPH02190826A true JPH02190826A (en) 1990-07-26

Family

ID=11782262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011595A Pending JPH02190826A (en) 1989-01-20 1989-01-20 Two-terminal element for driving liquid crystal

Country Status (1)

Country Link
JP (1) JPH02190826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859683A (en) * 1995-09-29 1999-01-12 Sharp Kabushiki Kaisha Transmissive liquid crystal display apparatus and method for producing the same
US5953084A (en) * 1995-08-11 1999-09-14 Sharp Kabushiki Kaisha Transmission type liquid crystal display device having capacitance ratio of 10% or less and charging rate difference of 0.6% or less
KR20010043956A (en) * 1998-09-21 2001-05-25 모리시타 요이찌 Reflection liquid crystal display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646584A (en) * 1979-09-26 1981-04-27 Hitachi Ltd Multilayer thin film functional element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646584A (en) * 1979-09-26 1981-04-27 Hitachi Ltd Multilayer thin film functional element and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953084A (en) * 1995-08-11 1999-09-14 Sharp Kabushiki Kaisha Transmission type liquid crystal display device having capacitance ratio of 10% or less and charging rate difference of 0.6% or less
US6097452A (en) * 1995-08-11 2000-08-01 Sharp Kabushiki Kaishi Transmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6195138B1 (en) 1995-08-11 2001-02-27 Sharp Kabushiki Kaisha Transmission type liquid crystal display having an organic interlayer elements film between pixel electrodes and switching
US6433851B2 (en) 1995-08-11 2002-08-13 Sharp Kabushiki Kaisha Transmission type liquid crystal display having a transparent colorless organic interlayer insulating film between pixel electrodes and switching
US5859683A (en) * 1995-09-29 1999-01-12 Sharp Kabushiki Kaisha Transmissive liquid crystal display apparatus and method for producing the same
KR20010043956A (en) * 1998-09-21 2001-05-25 모리시타 요이찌 Reflection liquid crystal display

Similar Documents

Publication Publication Date Title
GB2091468A (en) Matrix liquid crystal display device and method of manufacturing the same
US5442224A (en) Two-terminal mim device having stable non-linearity characteristics and a lower electrode of thin TA film doped with nitrogen
US5274485A (en) Liquid crystal display
EP0440144B1 (en) Substrate for liquid crystal display device
JPH02190826A (en) Two-terminal element for driving liquid crystal
KR930011475B1 (en) Metal insulator metal type diode
US5654207A (en) Method of making two-terminal nonlinear device and liquid crystal apparatus including the same
KR100364650B1 (en) Thin-film two-terminal elements, method of production thereof, and liquid crystal display
JPH0547708A (en) Manufacture of semiconductor device
JPS5874079A (en) Thin film transistor
JP3078890B2 (en) Nonlinear resistance element and method of forming the same
JPS62183579A (en) Mim switching element
JPS63216378A (en) Thin film transistor
JPH06308539A (en) Production of matrix array substrate
JPH0458225A (en) Transparent conductive film and production thereof
JP3049085B2 (en) Thin-film two-terminal element and liquid crystal display device using the same
JPH01272006A (en) Transparent conductive film
JP3186285B2 (en) Thin-film two-terminal element
JPH05134274A (en) Active matrix type liquid crystal display device
JPH06196700A (en) Electronic device
JPH07270828A (en) Liquid crystal display device
JPS61182024A (en) Preparation of electrochromic element
JPH01272755A (en) Electrically conductive transparent film and production thereof
JPS6042738A (en) Preparation of electrochromic element
JPH04166817A (en) Liquid crystal display device