JPH02190815A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH02190815A
JPH02190815A JP1129389A JP1129389A JPH02190815A JP H02190815 A JPH02190815 A JP H02190815A JP 1129389 A JP1129389 A JP 1129389A JP 1129389 A JP1129389 A JP 1129389A JP H02190815 A JPH02190815 A JP H02190815A
Authority
JP
Japan
Prior art keywords
flux
polygon mirror
photosensitive drum
laser light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1129389A
Other languages
Japanese (ja)
Inventor
Masaharu Okubo
大久保 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1129389A priority Critical patent/JPH02190815A/en
Publication of JPH02190815A publication Critical patent/JPH02190815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate adjustment in assembly and constitution and to miniaturize the device by turning the flux of laser light into nearly collimated flux of light by a collimator lens, making it incident on an optical scanning means, reflecting it in a direction opposite to the arranged direction of an image carrier and then conducting it to the image carrier by a reflecting mirror. CONSTITUTION:The optically modulated flux of laser light from a laser light source 2 is made nearly collimated flux of light by the collimator lens 3 and made incident on a rotary polygon mirror 4. Respective elements are set so that the flux of laser light deflected with the rotation of the polygon mirror 4 may be reflected in the direction opposite to the direction of the photosensitive drum 1. After the flux of the laser light 9 from the polygon mirror 4 is reflected by the reflecting mirror 6, it is conducted to the surface of the photosensitive drum 1 by optical lenses 7 and 8 so as to perform scanning with light on the surface of the photosensitive drum 1. Thus, floor space for an optical scanning device is made about half at the time of arranging the device on one plane. Since the collimated flux of light is made incident on the rotary polygon mirror, the adjustment in assembly is facilitated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は画像形成装置に関し、特にコンピュータ、ファ
クシミリ、原稿読取装置、ワードプロセッサ等の画像情
報出力部からの画像情報に基づいた信号により変調され
た光束を光走査手段、例えば回転多面鏡に導光し、該回
転多面鏡を回転させることにより、感光ドラム等の像担
持体面上を走査し、該画像情報を形成するようにした画
像形成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an image forming apparatus, and in particular to an image forming apparatus that is modulated by a signal based on image information from an image information output unit of a computer, facsimile, document reading device, word processor, etc. An image forming apparatus that guides a light beam to a light scanning means, such as a rotating polygon mirror, and rotates the rotating polygon mirror to scan the surface of an image carrier such as a photosensitive drum and form image information. It is something.

(従来の技術) 従来より画像tn報に基づいて光変調された、例えば半
導体レーザからの光束を利用した画像形成装置が特開昭
52−48331号公報、特開昭61−13759号公
報や特開昭57−102609号公報そして特開昭62
−49316号公報等で提案されている。
(Prior Art) Image forming apparatuses that utilize light beams from, for example, semiconductor lasers that are optically modulated based on image information have been disclosed in Japanese Patent Laid-Open No. 52-48331, Japanese Patent Laid-Open No. 61-13759, and Publication No. 57-102609 and JP-A No. 62
It has been proposed in Publication No.-49316 and the like.

これらの画像形成装置では画像情報を電流パルスに変換
して半導体レーザから光変調したレーザ光束を出射させ
、該レーザ光束を光走査手段である回転多面鏡を介して
偏向させて感光ドラム等の感光体面上を光走査している
。そして感光体を連続的に副走査方向に回転させながら
感光体面上に画像情報を形成している。
In these image forming devices, image information is converted into current pulses, a semiconductor laser emits a modulated laser beam, and the laser beam is deflected through a rotating polygon mirror serving as an optical scanning means to transfer the photosensitive drum to a photosensitive drum or the like. It scans the surface of the body with light. Image information is formed on the surface of the photoreceptor while continuously rotating the photoreceptor in the sub-scanning direction.

(発明が解決しようとする問題点) このような従来のレーザ光束を利用した多くの画像形成
装置はレーザユニット、回転多面鏡、光走査用光学系等
の各要素を平面的に配置している。この為光走査装置全
体が横方向に広がった状態となり、画像形成装置内の大
きな空間を占めるようになると共に他の諸要素の配置も
種々と制約されてくるといった間濁点があった。
(Problems to be Solved by the Invention) In many conventional image forming apparatuses that utilize laser beams, each element such as a laser unit, a rotating polygon mirror, and an optical scanning system is arranged in a flat manner. . As a result, the entire optical scanning device is expanded in the horizontal direction, occupying a large space within the image forming device, and the arrangement of other elements is also subject to various restrictions.

又、出力手段として、例えば出力紙の寸法がへ4サイズ
からA3サイズへと大型化していくと、レーザ光束の走
査幅が広くなり、その分だけ回転多面鏡から感光体まで
の距離を離さねばならなくなり、装置全体が大型化して
くる。
In addition, as the size of the output paper increases from F4 size to A3 size, the scanning width of the laser beam becomes wider, and the distance from the rotating polygon mirror to the photoreceptor must be increased accordingly. As a result, the entire device becomes larger.

又、感光体面上における走査密度が細かくなってくると
、それに伴い回転量面鏡の回転数が増大し、走査駆動手
段としてのモーターの軸受けにかかる負債が天きくなっ
てくる。又、回転多面鏡の回転数を増加させる代わりに
回転多面鏡の反射面数を増加させると1つの反射面で走
査できる角度が小さくなり1回転量面蹟から感光体まで
の距離を更に増大させなければならな(なり装置全体が
大型化してくる等の問題点があった。
Furthermore, as the scanning density on the photoreceptor surface becomes finer, the number of rotations of the rotation amount surface mirror increases accordingly, and the load placed on the bearing of the motor serving as the scanning drive means increases. Furthermore, if the number of reflective surfaces of the rotating polygon mirror is increased instead of increasing the number of rotations of the rotating polygon mirror, the angle that can be scanned by one reflective surface becomes smaller, and the distance from the surface to the photoconductor is further increased by the amount of one rotation. There were problems such as the overall size of the device had to be increased.

これに対して特開昭52−48331号公報では装置全
体を立体的に構成しているがレーザ光源からのレーザ光
束を回転多面鏡に絞って入射させている為に回転量面鏡
の組立調整が複兼化し、特に往復の光路の7A整が難し
くなる等の問題点があった。
On the other hand, in JP-A-52-48331, the entire device is constructed three-dimensionally, but since the laser beam from the laser light source is focused and incident on the rotating polygon mirror, the assembly and adjustment of the rotating polygon mirror is difficult. There was a problem that the optical path became complicated, and it became difficult to adjust the 7A optical path in particular.

本発明はレーザユニット、回転多面鏡、光走査光学系等
の各要素を適切に配置することにより像担持体面上にお
いて所定の大きさの走査範囲を確保しつつ、組立構成上
の調整を容易にし、かつ装置全体の小型化を図った画像
形成装置の提供を目的とする。
The present invention secures a scanning range of a predetermined size on the image carrier surface by appropriately arranging each element such as a laser unit, a rotating polygon mirror, and an optical scanning optical system, while making it easy to adjust the assembly configuration. It is an object of the present invention to provide an image forming apparatus which is capable of reducing the size of the entire apparatus.

(問題点を解決する為の手段) 本発明においては画像↑4報に基づいて光変調されたレ
ーザ光源からのレーザ光束を光走査手段を介して像担持
体上に導光し、該像担持体上を光走査し、該画像情報を
形成する際、該レーザ光源からのレーザ光束をコリメー
タレンズにより略平行光束とし、該光走査手段に入射さ
せ4該光走査手段からのレーザ光束を該像担持体が配置
されている方向と逆方向に反射させた後、折り返しミラ
ーで該像担持体上に導光するようにしたことを特徴とし
ている。
(Means for Solving the Problems) In the present invention, a laser beam from a laser light source that has been optically modulated based on the image↑4 report is guided onto an image carrier via a light scanning means, and the image carrier is When optically scanning the body and forming the image information, the laser beam from the laser light source is made into a substantially parallel beam by a collimator lens, and is incident on the optical scanning means.4 The laser beam from the optical scanning means is converted into the image. It is characterized in that the light is reflected in a direction opposite to the direction in which the image carrier is arranged, and then guided onto the image carrier by a folding mirror.

(実施例) 第1図は本発明の第1実施例の要部概略図である。(Example) FIG. 1 is a schematic diagram of main parts of a first embodiment of the present invention.

図中1は像担持体としての感光ドラムであり。In the figure, 1 is a photosensitive drum as an image carrier.

その表面には有機光導電体、アモルファスシリコン、セ
レン系の材料が設けられている。2はレーザ光源で例え
ば半導体レーザや気体レーザ簿から成り、画像情報出力
部21からの画像情報信号に基づいて光変調されたレー
ザ光束を放射している。同図においては半導体レーザを
用いた場合を示している。3は球面系又はシリンドリカ
ル系のコリメータレンズでありレーザ光源2からのレー
ザ光束を1次元又は2次元の平行光束としている。3a
はコリメータレンズ3の光軸である、4は光走査手段で
あり4〜20個の反射面を有する回転量面鏡より成り、
モータ専の駆動手段5により回転軸5aを中心に一定速
度で回転している3回転量面l114の反射面には半導
体レーザ2からの発振波長760nm〜800nmの光
束に対し高い反射率を示すような材料、例えば銅、アル
ミニウムの上に多層コートが施されている。
Its surface is provided with organic photoconductor, amorphous silicon, and selenium-based materials. Reference numeral 2 denotes a laser light source, which is composed of, for example, a semiconductor laser or a gas laser, and emits a laser beam that is optically modulated based on an image information signal from an image information output section 21. The figure shows a case where a semiconductor laser is used. Reference numeral 3 denotes a spherical or cylindrical collimator lens, which converts the laser beam from the laser light source 2 into a one-dimensional or two-dimensional parallel beam. 3a
is the optical axis of the collimator lens 3; 4 is the optical scanning means, which is composed of a rotating mirror having 4 to 20 reflective surfaces;
The reflective surface of the three-rotation surface l114, which is rotated at a constant speed around the rotating shaft 5a by the motor-dedicated driving means 5, has a high reflectance for the light beam with an oscillation wavelength of 760 nm to 800 nm from the semiconductor laser 2. A multilayer coating is applied on a material such as copper or aluminum.

そしてコリメータレンズ3からのレーザ光束を回転多面
jJ14で反射させたときに感光ドラムlが配置されて
いる方向と逆方向に反射するように各71:素を設定し
ている。又、モーター5の回転数は例えばホール素子に
よって回転数を検知して、定速度の回転数となるように
駆動制御されている。
Each element 71 is set so that when the laser beam from the collimator lens 3 is reflected by the rotating polygon jJ14, it is reflected in a direction opposite to the direction in which the photosensitive drum 1 is arranged. Further, the rotation speed of the motor 5 is detected by, for example, a Hall element, and is controlled to maintain a constant rotation speed.

6は折り返しミラーであり、その表面には半導体レーザ
2からのレーザ光束が高い反射率で反射するように基板
上に銅、又は多層コートが施されている。そして回転多
面Ill 4で反射したレーザ光束9を感光ドラム1方
向に反射させている。7.8は各々光学レンズであり、
f−θ特性を有しており、折り返しミラー6で反射され
たレーザ光束10を感光ドラム1面上に導光し、回転多
面鏡4を回転させることにより、感光ドラム1面上を光
走査している。
Reference numeral 6 denotes a folding mirror, and its surface is coated with copper or a multilayer coating on a substrate so that the laser beam from the semiconductor laser 2 is reflected with a high reflectance. The laser beam 9 reflected by the rotating polygon Ill 4 is reflected in the direction of the photosensitive drum 1. 7.8 are each optical lenses,
It has an f-θ characteristic, and by guiding the laser beam 10 reflected by the folding mirror 6 onto the surface of the photosensitive drum and rotating the rotating polygon mirror 4, the surface of the photosensitive drum is scanned with light. ing.

同図においては感光ドラム1へのレーザ光束を直角から
若干傾けた角度で入射させている。
In the figure, the laser beam is incident on the photosensitive drum 1 at an angle slightly inclined from a right angle.

これにより感光とラムlの表面でのレーザ光束の反射に
よる悪影響を回避している。又、光学レンズ7.8と回
転多面jJ!4の中心が略一致するように構成している
This avoids the adverse effects of exposure to light and reflection of the laser beam on the surface of the ram l. Also, optical lens 7.8 and rotating polygon jJ! 4 so that their centers substantially coincide with each other.

本実施例ではコリメータレンズ3と光学レンズ7.8と
により所謂光走査による倒れ補正系を構成している。即
ち回転多面鏡4の反射面の倒れが大きくなってレーザ光
束が多少動いた場合でも、感光ドラム1面へのレーザ光
束の入射結像位置が全んど変化しないように構成してい
る。
In this embodiment, the collimator lens 3 and the optical lens 7.8 constitute a tilt correction system using so-called optical scanning. That is, even if the reflective surface of the rotating polygon mirror 4 is tilted significantly and the laser beam moves somewhat, the configuration is such that the incident imaging position of the laser beam on the surface of the photosensitive drum 1 does not change at all.

尚、本実施例では回転多面鏡4の回転軸5aが光軸3a
に対して傾くように各要素を配置している。
In this embodiment, the rotation axis 5a of the rotating polygon mirror 4 is the optical axis 3a.
Each element is arranged so that it is tilted against the

本実施例では以上のような構成においてレーザ光源2か
ら光変調されたレーザ光束をコリメータレンズ3で略平
行光束とし、回転多面鏡4に入射させている6回転多面
鏡4の回転に伴い偏向されたレーザ光束が感光ドラムl
の方向と逆方向に反射するように各要素を設定している
。そして回転多面@4からのレーザ光束9を折り返しミ
ラー6で反射させた後、光学レンズ7.8により感光ド
ラム1面上に導光し、誤感光ドラム1面上を光走査して
いる。又、感光ドラム近傍に配置した不図示のビームデ
ィテクターにより画像情報の主走査方向の書き出し位置
を検出し、主走査方向の画像情報の頭出しの同期を行っ
ている。このようにして画像情報出力部から出力された
画像情報を感光ドラム1面上に形成している。
In this embodiment, in the above-described configuration, the laser beam modulated from the laser light source 2 is made into a substantially parallel beam by the collimator lens 3, and is deflected as the six-rotation polygon mirror 4 rotates, which is incident on the rotation polygon mirror 4. The laser beam is applied to the photosensitive drum.
Each element is set to reflect in the opposite direction. After the laser beam 9 from the rotating polygon @4 is reflected by the folding mirror 6, it is guided onto the surface of the photosensitive drum 1 by the optical lens 7.8, and the surface of the photosensitive drum 1 is erroneously scanned with light. Further, a beam detector (not shown) placed near the photosensitive drum detects the writing start position of the image information in the main scanning direction, and synchronizes the cueing of the image information in the main scanning direction. In this way, the image information output from the image information output section is formed on one surface of the photosensitive drum.

第2、第3.第4図は各々本発明の第2、第3、第4実
施例の要部概略図である。
2nd, 3rd. FIG. 4 is a schematic diagram of the main parts of the second, third, and fourth embodiments of the present invention, respectively.

図中第1図に示した要素と同一要素には回符番な付して
いる。
In the figure, elements that are the same as those shown in FIG. 1 are numbered.

第2図に示す第2′X施例では回転多面鏡11の反射面
が光軸3aに対して傾くように構成し、回転多面all
の回転軸5aが光軸3aと直交するようにしている。こ
れにより回転多面jJl11の回転軸5aの倒れ及び回
転ムラに対する精度を緩和している。
In the 2'X embodiment shown in FIG.
The rotation axis 5a is perpendicular to the optical axis 3a. This reduces the accuracy with respect to inclination and uneven rotation of the rotating shaft 5a of the rotating polygon jJl11.

第3図に示す第3実施例ではr−θ特性を有する光学レ
ンズ7.8を回転多面鏡4と折り返しミラー6との間に
配置している。このようにして光字レンズ7.8を感光
ドラムlから離れた回転多面鏡4に近い、レーザ光束の
走査幅の狭い領域に配置し、これにより光学レンズ7.
8の小型化を図っている。
In the third embodiment shown in FIG. 3, an optical lens 7.8 having r-.theta. characteristics is arranged between the rotating polygon mirror 4 and the folding mirror 6. In this way, the optical lens 7.8 is placed in an area where the scanning width of the laser beam is narrow, which is close to the rotating polygon mirror 4 and away from the photosensitive drum l.
We are trying to downsize the 8.

第4図に示す第4実施例では回転多面鏡4の回転軸5a
が装置の基板面に対して略垂直となるようにし、かつ2
枚の折り返しミラー6.19を用いてレーザ光束を2回
反射させている。又、光学レンズ7.8を回転多面鏡4
と折り返しミラー6との間に配置し、光学レンズ7.8
の小型化を図っている。
In the fourth embodiment shown in FIG. 4, the rotation axis 5a of the rotating polygon mirror 4 is
is substantially perpendicular to the substrate surface of the device, and 2
The laser beam is reflected twice using a folding mirror 6.19. In addition, the optical lens 7.8 is replaced by a rotating polygon mirror 4.
and the folding mirror 6, and the optical lens 7.8
We are trying to make it more compact.

尚以上の各実施例において光学レンズ7.8にf−θ特
性を持たせる代わりに、レーザ光束が感光ドラム上の走
査幅の中央と端部で一定速度となるように電気信号を段
階的かつ連続的に変化させるように電気回路を構成する
ようにしても良い。
In each of the above embodiments, instead of providing the optical lens 7.8 with f-θ characteristics, the electric signal is applied in stages so that the laser beam has a constant speed at the center and ends of the scanning width on the photosensitive drum. The electric circuit may be configured to change continuously.

又、光源として1個の゛ト導体レーザな用いた場合を示
したがmuの半導体レーザが集積されたレーザ素子を光
源として用いても良い。
Further, although the case where a single conductor laser is used as the light source is shown, a laser element in which mu semiconductor lasers are integrated may be used as the light source.

(発明の効果) 本発明によれば以上のように各要素を構成し。(Effect of the invention) According to the present invention, each element is configured as described above.

光走査装置の各要素が複数平面内に積層して配置するよ
うにし、光走査装置の床面積が一車面上に配置したとき
に比べて、約1/2程度にすることができ、装置全体の
縮少化を効果的に図り、しかも回転多面鏡に平行光束を
入射させるようにして、組立調整の容易な画像形成装置
を達成することができる。
By arranging each element of the optical scanning device in a stacked manner within multiple planes, the floor area of the optical scanning device can be reduced to approximately 1/2 compared to when the optical scanning device is arranged on one vehicle surface. It is possible to achieve an image forming apparatus that can be easily assembled and adjusted by effectively reducing the size of the entire image forming apparatus and by allowing parallel light beams to enter the rotating polygon mirror.

【図面の簡単な説明】[Brief explanation of the drawing]

第1、第2.第3、第4図は順に本発明の第1、第2、
第3、第4実施例の光学系の要部概略図である。 図中1は感光ドラム、2はレーザ光源、3はコリメータ
レンズ、4は回転多面鏡、5は駆動手段、6.19は折
り返しミラー、7,8は光学レンズ、 9、 0は各々光軸、 である。
1st, 2nd. Figures 3 and 4 show the first, second, and
FIG. 7 is a schematic diagram of the main parts of the optical system of the third and fourth embodiments. In the figure, 1 is a photosensitive drum, 2 is a laser light source, 3 is a collimator lens, 4 is a rotating polygon mirror, 5 is a driving means, 6.19 is a folding mirror, 7 and 8 are optical lenses, 9 and 0 are optical axes, respectively. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)画像情報に基づいて光変調されたレーザ光源から
のレーザ光束を光走査手段を介して像担持体上に導光し
、該像担持体上を光走査し、該画像情報を形成する際、
該レーザ光源からのレーザ光束をコリメータレンズによ
り略平行光束とし該光走査手段に入射させ、該光走査手
段からのレーザ光束を該像担持体が配置されている方向
と逆方向に反射させた後、折り返しミラーで該像担持体
上に導光するようにしたことを特徴とする画像形成装置
(1) A laser beam from a laser light source that is optically modulated based on image information is guided onto an image carrier through an optical scanning means, and the image carrier is optically scanned to form the image information. edge,
After the laser beam from the laser light source is made into a substantially parallel beam by a collimator lens and is incident on the optical scanning means, the laser beam from the optical scanning means is reflected in a direction opposite to the direction in which the image carrier is arranged. An image forming apparatus characterized in that light is guided onto the image carrier by a folding mirror.
JP1129389A 1989-01-20 1989-01-20 Image forming device Pending JPH02190815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129389A JPH02190815A (en) 1989-01-20 1989-01-20 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129389A JPH02190815A (en) 1989-01-20 1989-01-20 Image forming device

Publications (1)

Publication Number Publication Date
JPH02190815A true JPH02190815A (en) 1990-07-26

Family

ID=11773950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129389A Pending JPH02190815A (en) 1989-01-20 1989-01-20 Image forming device

Country Status (1)

Country Link
JP (1) JPH02190815A (en)

Similar Documents

Publication Publication Date Title
US20060108508A1 (en) Method and apparatus for high speed imaging
JPS63136017A (en) Light beam scanning device
AU7234287A (en) Scanning apparatus
US5550668A (en) Multispot polygon ROS with maximized line separation depth of focus
JPH0582905A (en) Light source unit
EP0843192B1 (en) Scanning optical device
JPH10133135A (en) Light beam deflecting device
JPH08110488A (en) Optical scanning device
JPH02190815A (en) Image forming device
JPH10177147A (en) Optical device, and method for scanning optical device
US4886963A (en) Laser beam scanning apparatus with compact SOS sensor
JP2002350763A (en) Laser scanner and image forming device provided with the same
JPH09211366A (en) Optical scanner
JPH07174996A (en) Raster-output-scanner image system
JPS61156217A (en) Optical-beam scanning device
JPH1164759A (en) Light scanning optical device
US6052212A (en) Method and apparatus for correcting coma in a high resolution scanner
JPH0619494B2 (en) Optical scanning device
JP3498512B2 (en) Optical scanning device
JP2749850B2 (en) Optical deflection device
US6101019A (en) Optical scanner using multiple half mirrors to combine multiple optical beams
JPH0651223A (en) Deflection scanning device
JP2000241727A (en) Optical scanner
JP4194315B2 (en) Laser exposure equipment
JPH0643369A (en) Two-dimensional scanner in laser scan microscope