JPH02190404A - Production of aluminum molded product - Google Patents

Production of aluminum molded product

Info

Publication number
JPH02190404A
JPH02190404A JP1172189A JP1172189A JPH02190404A JP H02190404 A JPH02190404 A JP H02190404A JP 1172189 A JP1172189 A JP 1172189A JP 1172189 A JP1172189 A JP 1172189A JP H02190404 A JPH02190404 A JP H02190404A
Authority
JP
Japan
Prior art keywords
molded product
shot peening
powder
aluminum
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172189A
Other languages
Japanese (ja)
Inventor
Akira Manabe
明 真鍋
Shuntaro Sudo
俊太郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1172189A priority Critical patent/JPH02190404A/en
Publication of JPH02190404A publication Critical patent/JPH02190404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a molded product maintaining high fatigue strength even after heating by molding Al-based metal powder solidified by rapid cooling, caking the resulting molded product by sintering and carrying out shot peening. CONSTITUTION:Al-based metal powder solidified from a molten state by rapid cooling at >=10<3> deg.C/sec cooling rate is molded. The resulting molded product is caked by sintering by hot working and shot peening is carried out to increase the compressive residual stress. High fatigue strength is obtd., stress corrosion cracking is prevented and the weight of parts can be reduced.

Description

【発明の詳細な説明】 I産業−!―の利用分野] 本発明は急冷凝固粉末冶金法とショットピーニング法を
用いたアルミニウム成形品の製造方法に関する。
[Detailed description of the invention] I industry-! Field of Application] The present invention relates to a method for manufacturing aluminum molded products using a rapid solidification powder metallurgy method and a shot peening method.

[従来の技術] 無数の鉄あるいはその他の材質の粒子を高速度で被加工
物に表面に衝突させて加工する作1を一般にプラスチン
グと言うが、特にシロットと呼ばれる比較的球形に近い
鉄の粒子を使用するときは、ショットプラスチングと呼
ばれる。金属面にこの加工を行うと表面硬化作用が著し
く、また被加工金属部品の疲れ強さが増加するので、こ
のような効果を[]的と一4゛る場合はショットピーニ
ングと呼ばれている。
[Prior Art] Plasting is a process in which countless particles of iron or other materials collide with the surface of a workpiece at high speed. When particles are used, it is called shot plasting. When this process is applied to metal surfaces, the surface hardens significantly and the fatigue strength of the metal parts being processed increases, so when this effect is targeted, it is called shot peening. .

ショットピーニングの最も著しい効果は疲れ強さの向上
である。ショットピーニングを施すと、表面層に圧縮残
留応力が発生し、冷間加工による表面硬化と相まって、
疲れ強さを向トさせる。
The most remarkable effect of shot peening is improvement in fatigue strength. When shot peening is applied, compressive residual stress is generated in the surface layer, which, combined with surface hardening due to cold working,
Reduces fatigue and strength.

溶融金属を急冷凝固して粉末を製造すると、合金元素の
固溶限の拡大、非平衡結晶相の出現、結晶粒の微細化等
の特性が得られる。この急冷凝固粉末を用いた急冷凝固
粉末冶金により、種々の優れた材料の得られることは良
く知られている。
When powder is produced by rapidly solidifying molten metal, properties such as expansion of the solid solubility limit of alloying elements, appearance of non-equilibrium crystal phases, and refinement of crystal grains are obtained. It is well known that various excellent materials can be obtained by rapid solidification powder metallurgy using this rapidly solidified powder.

溶融金属の冷却速度は粉末の結晶粒径、合金元素の固溶
の程度に影響を及ぼし、その結果材料の特性を支配する
。A1合金の結晶粒度の関係では、ガスアトマイズ粉を
用いた場合は、通常の溶解・鋳造の場合の1/100の
微細結晶が得られることが知られており、またAI−F
e−V系では冷却速度が速くなると強度が向上すること
が知られている。
The cooling rate of molten metal affects the grain size of the powder, the degree of solid solution of alloying elements, and thus governs the properties of the material. Regarding the crystal grain size of A1 alloy, it is known that when gas atomized powder is used, fine crystals that are 1/100 of that obtained using normal melting and casting are obtained;
It is known that in the e-V system, the strength improves as the cooling rate increases.

現在、開発もしくは製品化されている急速凝固粉末冶金
による合金は、常温強度合金、耐熱合金、耐摩耗合金の
3種類に分類される。例えば、我が国の場合、自動車の
エンジンや油圧・空圧機器の部品に用いられるため、高
耐摩耗性を主とし、かつ耐熱性にも優れた合金の開発が
行なわれているが、5i15〜20%の過共晶組成を基
本とし、耐熱性改善のため、必要に応じてFe、 Mn
s Niなどを合計で5〜10%添加している。
Alloys produced by rapid solidification powder metallurgy that are currently being developed or commercialized are classified into three types: room-temperature strength alloys, heat-resistant alloys, and wear-resistant alloys. For example, in Japan, alloys with high wear resistance and excellent heat resistance are being developed to be used in parts of automobile engines and hydraulic/pneumatic equipment. % hypereutectic composition, Fe, Mn is added as necessary to improve heat resistance.
A total of 5 to 10% of Ni, etc. is added.

[発明が解決しようとする課′&] しかしながら、前記ショットピーニング法による硬化法
は、熱処理によるものと異なり、冷間加工硬化と考えら
れており、組織りの変化を伴わず、硬化の深さも浅いの
で、加熱などにより表層部の圧縮残留応力などのピーニ
ング効果が失われる。
[Problems to be Solved by the Invention] However, the hardening method using the shot peening method is considered to be cold work hardening, unlike the method using heat treatment, and does not involve changes in the structure and does not have a hardening depth. Because it is shallow, peening effects such as compressive residual stress in the surface layer are lost due to heating.

特に、通常のアルミニウム合金においては、100℃を
越える温度において、ショットピーニングにより付与し
た圧縮残留応力が、回復・再結晶現象により減少し、1
50℃において殆ど消失してしまうため、エンジン等の
高温部材の強化方法としては有効でない。
In particular, in ordinary aluminum alloys, at temperatures exceeding 100°C, the compressive residual stress imparted by shot peening is reduced due to recovery and recrystallization phenomena, and 1
Since it almost disappears at 50°C, it is not effective as a method for strengthening high-temperature parts such as engines.

一方、急冷凝固アルミニウム粉末合金はSiCウィスカ
強化アルミニウム合金に比べて低コストであるいとうメ
リットを持つものの、特性的に今−歩の状況にあり、さ
らなる強化方法が切望されている。
On the other hand, although rapidly solidified aluminum powder alloys have the advantage of being lower in cost than SiC whisker-strengthened aluminum alloys, their properties are still at a cutting edge, and further strengthening methods are desperately needed.

本発明はアルミニウム合金の前記のごとき問題点に鑑み
てなされたもので、ショットピーニング後に加熱されて
も疲労強度向上の効果が消失しない優れた特性のアルミ
ニウム成形品の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems with aluminum alloys, and an object of the present invention is to provide a method for manufacturing aluminum molded products with excellent characteristics that do not lose the effect of improving fatigue strength even when heated after shot peening. shall be.

[課題を解決するための手段] 本発明のアルミニウム成形品の製造方法は、溶融状態か
ら10”C7秒以上の冷却速度で急冷して製造した急冷
凝固アルミニウム系金属粉末を成形し焼結することによ
り固化し、ショットピーニング処理することを要旨とす
る。
[Means for Solving the Problems] The method for manufacturing an aluminum molded product of the present invention involves molding and sintering rapidly solidified aluminum metal powder produced by rapidly cooling from a molten state at a cooling rate of 10"C7 seconds or more. The gist is to solidify the material and subject it to shot peening treatment.

溶融金属を急冷凝固して粉末にする方法は、公知の方法
を用いることができる。急冷の基本的な手段は、溶湯を
細かな液滴にアトマイズし、その顕熱を周囲の媒体に奪
わせるらのと、ロールなどで溶湯をできるだけ薄くして
冷却するものである。
A known method can be used to rapidly solidify the molten metal into powder. The basic means of rapid cooling are to atomize the molten metal into fine droplets and allow the surrounding medium to absorb the sensible heat, and to cool the molten metal by using rolls to make it as thin as possible.

アルミニウム合金の場合、冷却媒体として空気を用いる
ガスアトマイジングが適当である。液滴の冷却速度を1
03℃/秒以tとしたのは、これ以上の急冷でないと、
超微細組織が形成されないためである。
In the case of aluminum alloys, gas atomizing using air as the cooling medium is suitable. The cooling rate of the droplet is set to 1
The reason why the temperature was set at 03°C/sec or more is that unless the cooling is more rapid than this,
This is because no ultrafine structure is formed.

金属粉末を成形するのは公知の方法により行なわれる。The metal powder is shaped by a known method.

成形品は必要に応じて脱ガスか行なわれるが、脱ガス工
程においては、合金粉末に吸着された水分、水素ガス等
を脱ガスする。完全な脱ガスを行うには500℃付近ま
での加熱が必要である。続く熱間加工工程では、粉末表
面の皮膜を破壊し合金を焼結することにより、はぼ真密
度に近い材料とする。熱間加工の方法はHIP、熱間鍛
造、熱間圧延、熱間押出等いずれの方法をも用いること
ができる。
The molded product is degassed as necessary, and in the degassing step, moisture, hydrogen gas, etc. adsorbed by the alloy powder are degassed. Heating to around 500° C. is required for complete degassing. In the subsequent hot working step, the film on the powder surface is destroyed and the alloy is sintered, resulting in a material close to true density. Any method such as HIP, hot forging, hot rolling, hot extrusion, etc. can be used for hot working.

ショットピーニングを行う装置は従来のものを用いるこ
とができる。ショットの投射装置とじては、回転する翼
車の羽根によ−)で加速する遠心式投射装置、あるいは
圧縮空気がノズルから噴出するときの空気速度を利用す
る空気式吹付投射装置のいずれをも使用することができ
る。
Conventional equipment can be used for shot peening. The shot projection device can be either a centrifugal projection device that is accelerated by the blades of a rotating impeller, or a pneumatic spray projection device that uses the air velocity when compressed air is ejected from a nozzle. can be used.

ショットは、砂、鋳鉄ショット、鋳鋼ショット、鋼線シ
ョット等のいずれを用いても良い。ショット径、投射速
度、投射時間等のショットピーニングの条件は、部品の
材質、部品の大きさ等により適宜選択される。
The shot may be sand, cast iron shot, cast steel shot, steel wire shot, or the like. Shot peening conditions such as shot diameter, projection speed, and projection time are appropriately selected depending on the material of the part, the size of the part, and the like.

1作用] 本発明のアルミニラ12成形品は、急冷凝固により超微
細晶出相が析出し、粉末粒界の回復現象が遅延するので
、ショットピーニング処理により付与された圧縮残留応
力が、通常のアルミニウム合金では完全に消失する15
0℃においても約50%以、Eを残すことができる。こ
の効果は、急冷凝固粉末合金において耐熱性向上作用が
あることが知られているFe、Cr、Zr、Mn、Mo
、V等の高融点遷移金属元素を添加したアルミニウム粉
末合金を使用するとさらに向上する。
1 Effect] In the Aluminum 12 molded product of the present invention, ultrafine crystallized phases are precipitated by rapid solidification, and the recovery phenomenon of powder grain boundaries is delayed, so that the compressive residual stress imparted by shot peening treatment is completely disappears in alloys15
Approximately 50% or more of E can remain even at 0°C. This effect is due to Fe, Cr, Zr, Mn, and Mo, which are known to have an effect of improving heat resistance in rapidly solidified powder alloys.
Further improvement can be achieved by using an aluminum powder alloy to which a high melting point transition metal element such as , V or the like is added.

また、急冷凝固により微細組織が形成されるので、弾性
限が高められると共に、圧縮残留応力が著しく高められ
る。さらに、急冷凝固粉末合金の1)を2高融点遷移金
属元素の固溶限の拡大と超微細晶出相の析出により強度
が向上する。
Furthermore, since a fine structure is formed by rapid solidification, the elastic limit is increased and the compressive residual stress is significantly increased. Furthermore, the strength of the rapidly solidified powder alloy is improved due to the expansion of the solid solubility limit of the two high melting point transition metal elements and the precipitation of ultrafine crystallized phases.

[実施例] 本発明の実施例を比較例と共に説明し、本発明の効果を
明らかにする。
[Example] Examples of the present invention will be explained together with comparative examples to clarify the effects of the present invention.

(実施例1) エアアトマイソング法により粉化した一100メツシュ
のアルミニウム合金粉末(組成:Δl−20%5i−5
%Fe−2%Cu  1%Mg−1%Cr0.2%1゛
i)を通常の条件でctp成杉し、500℃で脱ガスし
た後、400℃において押出比IOで熱間押出した棒材
より、外径30am、高さ20m5のディスク状試験片
および・ド行部直径8111+1X25a騰、全長11
0mmの疲労試験片を作成した。
(Example 1) 1100 mesh aluminum alloy powder (composition: Δl-20%5i-5) powdered by air atomization method
%Fe-2%Cu 1%Mg-1%Cr0.2%1゛i) was subjected to CTP under normal conditions, degassed at 500°C, and then hot extruded at 400°C at an extrusion ratio of IO. A disk-shaped test piece with an outer diameter of 30 am and a height of 20 m5 was prepared from the material.
A fatigue test piece of 0 mm was prepared.

次に各試験片について44μ−アンダーのステンレス球
のショットを用い、投射圧力3kgr/as”、投射時
間15秒、エアーブラスト直圧力式にてショットピーニ
ング処理を施した。この時のアークハイト値は0.03
smAであった。
Next, each test piece was subjected to shot peening treatment using a 44 μ-under stainless steel ball shot with a blast pressure of 3 kgr/as'' and a blast time of 15 seconds using an air blast direct pressure method.The arc height value at this time was 0.03
It was smA.

(実施例2) 実施倒像でショットピーニング処理後の各試験片を、恒
温炉にて150℃で100時間の熱履歴を加えた。
(Example 2) Each test piece after shot peening treatment was subjected to a thermal history of 100 hours at 150° C. in a thermostatic oven.

(比較例I) 4常に溶解、圧延したJIS6063BE−’r5丸棒
より実施例1と同じ寸法の試験片を作成し、実施例■と
同じ条件でショットピーニング処理を施した。
(Comparative Example I) 4 A test piece having the same dimensions as in Example 1 was prepared from a constantly melted and rolled JIS6063BE-'r5 round bar, and subjected to shot peening treatment under the same conditions as in Example 2.

(比較例2) 比較例!でショットピーニング処理後の各試験片を、恒
温炉にて150℃で100時間の熱履歴を加えた。
(Comparative example 2) Comparative example! After the shot peening treatment, each test piece was subjected to a thermal history of 100 hours at 150° C. in a constant temperature furnace.

これら試験片について、X線残留応力測定および150
℃でのクラウゼ式回転曲げ疲労試験を行った。X線残留
応力測定の結果を第1図に、クラウゼ式回転曲げ試験の
結果を第2図に示した。
For these test pieces, X-ray residual stress measurement and 150
A Krause rotary bending fatigue test at ℃ was conducted. The results of the X-ray residual stress measurement are shown in Figure 1, and the results of the Krause rotary bending test are shown in Figure 2.

第1図の結果より明らかなように、本発明の実施例は比
較例に比べて同一7ヨツトピ一ニング処理条件で高い残
留応力を付与できること、および150℃での熱履歴後
においても高い圧縮残留応力が残っていることが確認さ
れた。
As is clear from the results shown in Figure 1, the example of the present invention was able to provide higher residual stress than the comparative example under the same 7-yotsu piping treatment conditions, and the compressive residual stress remained high even after thermal history at 150°C. It was confirmed that stress remained.

また、第2図より知られるように、本発明の実施例2は
比較例2と比べて、回転曲げ疲労強度が苦しく向1して
いることが明らかとなった。なお、ンヨットビーニング
を施さなかった実施例2および比較例2を第2図に併せ
て示したが、その結果よりショットピーニング処理によ
り、疲れ強さが約2 kgf/―鴎2の向」二が見られ
、これにより10%の部品型へ1の軽jft化を可能に
することが判明した。
Furthermore, as can be seen from FIG. 2, it was revealed that Example 2 of the present invention had a lower rotational bending fatigue strength than Comparative Example 2. In addition, Example 2 and Comparative Example 2, which were not subjected to shot peening, are also shown in Figure 2, and the results show that shot peening treatment resulted in a fatigue strength of approximately 2 kgf/-- of Ume 2. 2 was observed, and it was found that this enabled a reduction in JFT of 1 to 10% of the component type.

[発明の効果] 本発明のアルミニウム成形品の製造方法は以上説明した
ように、急冷凝固アルミニウム系金属粉末を成彩し焼結
することにより固化したものをショットピーニング処理
することを特徴とするものであって、ショットピーニン
グ処理による圧縮残留応力を著しく向−1ニするととも
に、通常では150℃の熱履歴によって消失する圧縮残
留応力を50%以J二も残し得るものであって、アルミ
ニウム高温Fl<材に利用できなかったシジットビーニ
ングを組み合わせるごとにより、従来得られなかった晶
い疲れ強さを11能とするものであり、かつこれによっ
て応力腐食割れを防止するとともに部品重噴を軽量化で
きるという優れた効果がある。
[Effects of the Invention] As explained above, the method for manufacturing an aluminum molded product of the present invention is characterized by subjecting rapidly solidified aluminum metal powder to solidification by coloring and sintering and then subjecting it to shot peening treatment. This method significantly reduces the compressive residual stress caused by shot peening treatment, and can leave more than 50% of the compressive residual stress that normally disappears due to thermal history at 150°C. <By combining Sigit beaning, which could not be used in materials, it increases fatigue strength to 11, which was previously unobtainable.This also prevents stress corrosion cracking and makes parts with heavy injection lighter. It has the excellent effect of being able to be transformed into

【図面の簡単な説明】[Brief explanation of the drawing]

゛第1図は圧縮残留応力の測定結果を示す図、第2図は
回転曲げ疲れ強さの測定結果を示す図である。 特許出願人 トヨタ自動車株式会社
゛Figure 1 is a diagram showing the measurement results of compressive residual stress, and Figure 2 is a diagram showing the measurement results of rotational bending fatigue strength. Patent applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)溶融状態から10^3℃/秒以上の冷却速度で急
冷して製造した急冷凝固アルミニウム系金属粉末を成形
し熱間加工によって焼結することにより固化し、ショッ
トピーニング処理することを特徴とするアルミニウム成
形品の製造方法。
(1) Rapidly solidified aluminum metal powder produced by rapidly cooling from a molten state at a cooling rate of 10^3°C/second or higher is molded, solidified by sintering through hot working, and shot peened. A method for manufacturing an aluminum molded product.
JP1172189A 1989-01-19 1989-01-19 Production of aluminum molded product Pending JPH02190404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172189A JPH02190404A (en) 1989-01-19 1989-01-19 Production of aluminum molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172189A JPH02190404A (en) 1989-01-19 1989-01-19 Production of aluminum molded product

Publications (1)

Publication Number Publication Date
JPH02190404A true JPH02190404A (en) 1990-07-26

Family

ID=11785907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172189A Pending JPH02190404A (en) 1989-01-19 1989-01-19 Production of aluminum molded product

Country Status (1)

Country Link
JP (1) JPH02190404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013895A1 (en) * 1992-01-13 1993-07-22 Honda Giken Kogyo Kabushiki Kaisha Method for casting aluminum alloy casting and aluminum alloy casting
EP0556788A2 (en) * 1992-02-20 1993-08-25 Mitsubishi Materials Corporation Hard alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013895A1 (en) * 1992-01-13 1993-07-22 Honda Giken Kogyo Kabushiki Kaisha Method for casting aluminum alloy casting and aluminum alloy casting
US5394931A (en) * 1992-01-13 1995-03-07 Honda Giken Kogyo Kabushiki Kaisha Aluminum-based alloy cast product and process for producing the same
EP0556788A2 (en) * 1992-02-20 1993-08-25 Mitsubishi Materials Corporation Hard alloy

Similar Documents

Publication Publication Date Title
JPH0561321B2 (en)
JPS63140001A (en) Granular metal composite and its production
JP2007092117A (en) Aluminum alloy with high strength and low specific gravity
JP4764094B2 (en) Heat-resistant Al-based alloy
JPS5921267B2 (en) Surface hardening method for metal substrates
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
CN110396625A (en) A kind of preparation method of antiwear heat resisting aluminium alloy
JPS62142741A (en) High-strength aluminum alloy excellent in fatigue-resisting strength
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH02190404A (en) Production of aluminum molded product
KR100546537B1 (en) Metal article and method of generating a spray formed article
US4430115A (en) Boron stainless steel powder and rapid solidification method
JP2019026859A (en) Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
JPH06330214A (en) Aluminum power alloy having high hardness and wear resistnce and its production
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
KR100400989B1 (en) Method for the preparation of a sintered body of high-hardness high-chromium cast iron
USH1146H (en) Plasma spraying tungsten heavy alloys
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
CN112996614B (en) Method for forming object by spraying
KR100603882B1 (en) Heat treated, spray formed superalloy articles and method of making the same
JPH01242749A (en) Heat-resistant aluminum alloy
KR0174784B1 (en) Method of manufacturing high speed tool steels by fog casting
JPS62256902A (en) Intermetallic al3ti powder and its production
JP2844688B2 (en) Method for producing Co-based alloy