JPH02189607A - Voltage regulator - Google Patents

Voltage regulator

Info

Publication number
JPH02189607A
JPH02189607A JP1009557A JP955789A JPH02189607A JP H02189607 A JPH02189607 A JP H02189607A JP 1009557 A JP1009557 A JP 1009557A JP 955789 A JP955789 A JP 955789A JP H02189607 A JPH02189607 A JP H02189607A
Authority
JP
Japan
Prior art keywords
resistor
value
link members
resistance
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009557A
Other languages
Japanese (ja)
Inventor
Minoru Sudo
稔 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1009557A priority Critical patent/JPH02189607A/en
Priority to KR1019900000431A priority patent/KR0148689B1/en
Priority to GB9000917A priority patent/GB2230625B/en
Publication of JPH02189607A publication Critical patent/JPH02189607A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/625Regulating voltage or current wherein it is irrelevant whether the variable actually regulated is ac or dc
    • G05F1/63Regulating voltage or current wherein it is irrelevant whether the variable actually regulated is ac or dc using variable impedances in series with the load as final control devices
    • G05F1/648Regulating voltage or current wherein it is irrelevant whether the variable actually regulated is ac or dc using variable impedances in series with the load as final control devices being plural resistors among which a selection is made

Abstract

PURPOSE:To improve yield by adding link members formed by a polysilicone resistor or an aluminium wiring to a resistor for determining an output voltage, and cutting off the link members by a laser beam. CONSTITUTION:When resistance Re+Rf is required as the value of a resistor R1 e.g. the link members 10, 11 are cut off by the laser beam. When respective link members 6 to 11 are formed by polysilicone resistors or aluminum wirings and respective resistance values are set up to values smaller than the resistance values of resistors Ra to Rf, the value of a resistor R1 is almost close to the value of the resistors Re+Rf. Practically, the values of the resistors Ra to Rf are several +kOMEGA to several MOMEGA and the resistance values of the link members 6 to 11 are the order of several +OMEGA. When said adjusting method is executed in each chip of an IC wafer, the value of the R1 even if it varies, matched with the variation of a reference voltage Vref in the wafer can be obtained by cutting off the link members based upon the laser beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CMOSモノリシックIC化された歩留りの
高いボルテージ・レギュレーターに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-yield voltage regulator that is made into a CMOS monolithic IC.

〔発明の概要〕[Summary of the invention]

本発明は、ボルテージ・レギュレーターの出力電圧を決
める抵抗にポリシリコン抵抗もしくは、アルミ配線によ
って形成されたリンク部材を付加し、そのリンク部材を
レーザー光線によって、切断することで、歩留りの高い
ボルテージ・レギュレーターを提供するものである。
The present invention provides a high-yield voltage regulator by adding a link member made of polysilicon resistor or aluminum wiring to the resistor that determines the output voltage of the voltage regulator, and cutting the link member with a laser beam. This is what we provide.

〔従来の技術〕[Conventional technology]

従来のボルテージ・レギュレーターの回路図を第2図に
示す、基準電圧回路1と抵抗R1とhから成る抵抗群2
から取り出された電圧は、誤差増幅器3で比較され出力
トランジスタ4を制御する。
The circuit diagram of a conventional voltage regulator is shown in Fig. 2, which includes a reference voltage circuit 1 and a resistor group 2 consisting of resistors R1 and h.
The voltages taken out from the circuit are compared in an error amplifier 3 to control an output transistor 4.

つまり、抵抗群2から取り出された電圧が、基準電圧よ
り小さければ、誤差増幅器3の出力は低くなり、出力ト
ランジスタ4を強くバイアスし、逆に抵抗群2から取り
出された電圧が基準電圧より高ければトランジスタ4を
弱くバイアスして、出力端子5には一定の電圧が得られ
る。
In other words, if the voltage extracted from resistor group 2 is lower than the reference voltage, the output of error amplifier 3 becomes low, strongly biasing output transistor 4, and conversely, if the voltage extracted from resistor group 2 is higher than the reference voltage, the output of error amplifier 3 becomes low, strongly biasing output transistor 4. For example, by biasing the transistor 4 weakly, a constant voltage can be obtained at the output terminal 5.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図のボルテージ・レギュレーターを、集積回路(以
下、ICと呼ぶ)化した場合、次のような問題点が生じ
る。
When the voltage regulator shown in FIG. 2 is implemented as an integrated circuit (hereinafter referred to as an IC), the following problems arise.

出力端子5からの出力電圧をVou tと呼ぶと、Yo
u tは、式(1+のように表わされる。
If the output voltage from output terminal 5 is called Vout, Yo
u t is expressed as the formula (1+).

Vout= (R+ +Ih)/RtXνref   
 −−−−−(11ここでR1は、第2図の抵抗R,で
あり、R8は第2図の抵抗R2であり、Vrefは、基
準電圧回路1の出力電圧(以下、基準電圧と呼ぶ)であ
る。
Vout= (R+ +Ih)/RtXνref
--------(11 Here, R1 is the resistor R in FIG. 2, R8 is the resistor R2 in FIG. 2, and Vref is the output voltage of the reference voltage circuit 1 (hereinafter referred to as reference voltage). ).

式(1)から明らかなように、ある所望の出力電圧Vo
u tを得るためには、抵抗R,,11,および基準電
圧νrefを適当な値に設定すれば良い、しかし、IC
化した場合には、抵抗R1+ Rz及び基準電圧Vre
fの絶対値は、プロセスが変動することにより、ねらい
値から大きくずれてしまう、とりわけ第2図に示すボル
テージ・レギュレーターをIC化した場合には、式(1
)中の基準電圧Vrefが太き(変動してしまい、所望
の基準電圧Vrefが得られない、そこで、式(1)中
の抵抗R8の値を調整することにより、所望の出力電圧
Vou tを得ている。
As is clear from equation (1), a certain desired output voltage Vo
In order to obtain u t, it is sufficient to set the resistance R,,11 and the reference voltage νref to appropriate values.
, the resistance R1+ Rz and the reference voltage Vre
The absolute value of f deviates greatly from the target value due to process fluctuations. Especially when the voltage regulator shown in Figure 2 is integrated into an IC, the absolute value of
) is large (varies), making it impossible to obtain the desired reference voltage Vref. Therefore, by adjusting the value of resistor R8 in equation (1), the desired output voltage Vout can be obtained. It has gained.

以下、前記抵抗R2の従来の調整法を説明する。Hereinafter, a conventional method for adjusting the resistor R2 will be explained.

第3図に、従来の抵抗R1だけを抜き出した回路図を示
す、抵抗Ra、 Rb、 Re、 Rd+ Re、 R
fは直列に接続され、かつ、それぞれの抵抗に並列にア
ルミ配線が施されている。IC化プロセスによって基準
電圧回路が形成された後、基準電圧Vrefを測定し、
その値を式+11に代入し、所望の出力電圧Voutが
得られる抵抗比(R++Rz) /Rtの値を求める。
Figure 3 shows a circuit diagram in which only the conventional resistor R1 is extracted, and the resistors Ra, Rb, Re, Rd+ Re, R
f are connected in series, and aluminum wiring is provided in parallel to each resistor. After the reference voltage circuit is formed by the IC process, the reference voltage Vref is measured,
Substituting this value into equation +11, the value of the resistance ratio (R++Rz)/Rt that provides the desired output voltage Vout is determined.

この抵抗比の値から、抵抗R1の値を換算し、切断すべ
きアルミ配線の箇所を決める0例えば、fit 抗Rl
 t:v値が、Re+Rfの値が必要だとすると、エツ
チング処理により抵抗ReとRfに並列に接続されたア
ルミ配線部分を切断する。これにより、抵抗R1の値は
抵抗Re+Rfの値となる。
From this resistance ratio value, convert the value of resistor R1 and decide the location of the aluminum wiring to be cut.0For example, fit resistance Rl
If the t:v value requires a value of Re+Rf, the aluminum wiring portion connected in parallel to the resistors Re and Rf is cut by etching. As a result, the value of the resistor R1 becomes the value of the resistor Re+Rf.

しかし、上記のようなアルミ配線のエツチングによる調
整方法をとると、ICウェハ上の全てのチップの抵抗R
8の値が、抵抗Re + RfO値になってしまう、こ
れは歩留りを悪(するという問題を引き起こす、この理
由は前記プロセスの変動がICウェハ内でも発生するた
めである0例えば、ウェハ内の左側と右側のチップでは
、前記基準電圧Vrefの値が異なってしまうため、左
側のチップから決めた抵抗値R8の値が、右側のチップ
では適用できないためである。
However, if the adjustment method using aluminum wiring etching as described above is used, the resistance R of all chips on the IC wafer will be reduced.
The value of 8 becomes the resistance Re + RfO value, which causes a problem of poor yield, because the process variation occurs even within the IC wafer. This is because the value of the reference voltage Vref differs between the chips on the left and the right, so the value of the resistance value R8 determined from the chip on the left cannot be applied to the chip on the right.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来の技術の課題を解決することを目的とし
、とりわけ、歩留りの高いボルテージ・レギュレーター
を提供できた。
The present invention aims to solve the problems of the conventional technology, and is particularly able to provide a high-yield voltage regulator.

具体的には、従来のアルミ配線のエツチングによる調整
法の換わりに、抵抗りに付加されたポリシリコン抵抗も
しくはアルミ配線によって形成されたリンク部材をレー
ザー光線(例えば、アトパンテスト社の78000 G
レーザリペア装置)によって、所望の箇所だけ切断する
ことにより、抵抗R9の値を調整し、所望の出力電圧V
ou tを得るものである。
Specifically, instead of the conventional adjustment method by etching aluminum wiring, a link member formed by a polysilicon resistor added to a resistor or aluminum wiring is irradiated with a laser beam (for example, 78000 G from Atopan Test Co., Ltd.).
By cutting only the desired portion using a laser repair device), the value of the resistor R9 is adjusted, and the desired output voltage V is adjusted.
out.

〔実施例〕〔Example〕

以下、図面に従って本発明の一実施例を詳細に説明する
。第1図は、第3図の抵抗R3を改良したもので、ポリ
シリコン抵抗または、アルミ配線によって形成されたリ
ンク部材6〜11を付加した回路図である。抵抗Ra−
Rfは第3図と同様である。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an improved version of the resistor R3 shown in FIG. 3, in which link members 6 to 11 formed of polysilicon resistors or aluminum wiring are added. Resistance Ra-
Rf is the same as in FIG.

さらに各抵抗Ra=Rfのそれぞれの接続点と抵抗Ra
の一端がレーザー光線によって切断できるリンク部材6
〜11で接続されている。
Furthermore, each connection point of each resistor Ra=Rf and the resistor Ra
A link member 6 whose one end can be cut by a laser beam
~11 are connected.

以下、調整法について説明する。形成された基準電圧回
路lの基準電圧Vrefを測定し、式(11から所望の
出力電圧Voutが得られる抵抗比(RI+l!2)/
R,を求め、その抵抗比から抵抗it、の値を計算する
までは従来と同様である0例えば、抵抗R2の値として
、前記の例のように抵抗Re + Rfが必要になった
とすると、レーザー光線によってリンク部材1o、 i
iを切断する。ここで、各リンク部材6〜11の抵抗値
は抵抗Ra=Rfの抵抗値より小さい値にしておけば、
抵抗R1の値はほとんど抵抗Re + Flfの値にな
る。実際には抵抗Ra−Rfの値は、数十にΩ〜数MΩ
の値であり、一方、リンク部材6〜11の抵抗値は数十
Ωのオーダーである。上記説明ではリンク部材としてポ
リシリコン抵抗を用いた場合を想定したが、リンク部材
にアルミを用いれば、抵抗R9の値はより抵抗Re +
 Rfの値に近づくことは明らかである。
The adjustment method will be explained below. The reference voltage Vref of the formed reference voltage circuit l is measured, and the resistance ratio (RI+l!2)/ which provides the desired output voltage Vout from equation (11) is calculated.
The process of finding R, and calculating the value of resistance it from its resistance ratio is the same as before. Link members 1o, i by laser beam
Cut i. Here, if the resistance value of each link member 6 to 11 is set to a value smaller than the resistance value of resistance Ra=Rf,
The value of the resistor R1 is almost the value of the resistor Re + Flf. In reality, the value of resistance Ra-Rf ranges from several tens of Ω to several MΩ.
On the other hand, the resistance values of the link members 6 to 11 are on the order of several tens of ohms. In the above explanation, it is assumed that a polysilicon resistor is used as the link member, but if aluminum is used as the link member, the value of the resistance R9 will be higher than the resistance Re +
It is clear that it approaches the value of Rf.

以上の調整法をICウェハの各チップ毎に実行すれば、
ウェハ内で基準電圧Vrefが変動しても、それに合っ
たR1の値をレーザー光線によるリンク部材の切断で得
ることができる。
If the above adjustment method is executed for each chip of the IC wafer,
Even if the reference voltage Vref varies within the wafer, an appropriate value of R1 can be obtained by cutting the link member with a laser beam.

本発明の他の実施例を第4図に示す、抵抗Ra〜Rfと
並列に、リンク部材15〜20が接続されている。
Another embodiment of the present invention is shown in FIG. 4, in which link members 15 to 20 are connected in parallel to resistors Ra to Rf.

調整法については、前述の実施例と同様に所望の抵抗値
を持つ抵抗と並列に接続されているリンク部材をレーザ
ー光線によって切断する。
As for the adjustment method, a link member connected in parallel with a resistor having a desired resistance value is cut with a laser beam, as in the previous embodiment.

なお、第2図では正の出力電圧を持つボルテージ・レギ
ュレーターについて示しているが、第5図のような負の
出力電圧を持つボルテージ・レギュレーターの抵抗R1
に、第1図、第4図に示すような抵抗を用いることで、
同等の効果があることは明らかである。
Although Fig. 2 shows a voltage regulator with a positive output voltage, the resistor R1 of a voltage regulator with a negative output voltage as shown in Fig. 5
By using resistors as shown in Figures 1 and 4,
It is clear that they are equally effective.

(発明の効果) 以上述べたように本発明によれば、抵抗に付加されたリ
ンク部材を基準電圧Vrefから算出された箇所だけ、
レーザー光線によって切断することによって、所望の出
力電圧νouLを得ることができる。
(Effects of the Invention) As described above, according to the present invention, the link members added to the resistor are connected only at the locations calculated from the reference voltage Vref.
By cutting with a laser beam, the desired output voltage νouL can be obtained.

これを1チツプ毎に行うことによって、歩留りの高いボ
ルテージ・レギュレーターを提供できるという効果があ
る。
By performing this for each chip, it is possible to provide a voltage regulator with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のボルテージ・レギュレーターの抵抗部
の回路図、第2図は従来のボルテージ・レギュレーター
の回路図、第3図は第2図の抵抗部の詳細図、第4図は
本発明のボルテージ・レギュレーターの抵抗部の他の回
路図、第5図は従来の負の出力電圧を持つボルテージ・
レギュレーターの回路図である。 1・・・・基準電圧回路 2・・・・抵抗群 3・・・・誤差増幅器 6〜11・・リンク部材 4・・・・出力トランジスタ 5・・・・出力端子 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 抵4えR1バー入力仁りlの回路図 第1図 促東の抵抗R+戸口路図 第3図 抵抗R1の1での実た例の回路図 第4図 従来の正の出〃電圧E将つポル子−ブ・LA“ユし−7
−カ回路口第2図 負の出V電圧と、1今ηホ゛ルテー・ヅル■ユL−9−
ハ回yb図第5図
Fig. 1 is a circuit diagram of the resistor section of the voltage regulator of the present invention, Fig. 2 is a circuit diagram of a conventional voltage regulator, Fig. 3 is a detailed diagram of the resistor section of Fig. 2, and Fig. 4 is a circuit diagram of the resistor section of the present invention. Another circuit diagram of the resistor section of the voltage regulator, Figure 5, shows a conventional voltage regulator with a negative output voltage.
It is a circuit diagram of a regulator. 1... Reference voltage circuit 2... Resistor group 3... Error amplifiers 6 to 11... Link member 4... Output transistor 5... Output terminal and above Applicant: Seiko Electronics Co., Ltd. Company agent Patent attorney Keiyuki Hayashi Circuit diagram of auxiliary resistor 4e R1 bar input input Figure 1 Resistor R + doorway diagram of promotion east Figure 3 Circuit diagram of an example of resistor R1 at 1 Figure 4 Conventional positive output voltage E
-Circuit port Figure 2 Negative output V voltage and current
Figure 5

Claims (1)

【特許請求の範囲】[Claims] 基準電圧回路と、抵抗と誤差増幅器と、出力トランジス
タとからなるCMOSモノリシックIC化されたボルテ
ージ・レギュレーターにおいて、前記抵抗にレーザー光
線によって切断できる複数のリンク部材を付加し、前記
リンク部材をレーザー光線によって全部もしくは、その
一部を切断することを特徴としたボルテージ・レギュレ
ーター。
In a CMOS monolithic IC voltage regulator consisting of a reference voltage circuit, a resistor, an error amplifier, and an output transistor, a plurality of link members that can be cut by a laser beam are added to the resistor, and all or all of the link members are cut by the laser beam. , a voltage regulator characterized by cutting off a part of it.
JP1009557A 1989-01-18 1989-01-18 Voltage regulator Pending JPH02189607A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1009557A JPH02189607A (en) 1989-01-18 1989-01-18 Voltage regulator
KR1019900000431A KR0148689B1 (en) 1989-01-18 1990-01-15 A voltage regulator
GB9000917A GB2230625B (en) 1989-01-18 1990-01-16 A voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009557A JPH02189607A (en) 1989-01-18 1989-01-18 Voltage regulator

Publications (1)

Publication Number Publication Date
JPH02189607A true JPH02189607A (en) 1990-07-25

Family

ID=11723585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009557A Pending JPH02189607A (en) 1989-01-18 1989-01-18 Voltage regulator

Country Status (3)

Country Link
JP (1) JPH02189607A (en)
KR (1) KR0148689B1 (en)
GB (1) GB2230625B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476478A (en) * 1980-04-24 1984-10-09 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor read only memory and method of making the same
DE3030620A1 (en) * 1980-08-13 1982-03-11 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR CHANGING THE ELECTRICAL CIRCUIT CONFIGURATION OF INTEGRATED SEMICONDUCTOR CIRCUITS
DE3341345A1 (en) * 1983-11-15 1985-05-23 SGS-ATES Deutschland Halbleiter-Bauelemente GmbH, 8018 Grafing VOLTAGE REGULATOR
DE3341344C2 (en) * 1983-11-15 1986-10-09 SGS-ATES Deutschland Halbleiter-Bauelemente GmbH, 8018 Grafing Line voltage regulator
JPS6489338A (en) * 1987-05-19 1989-04-03 Gazelle Microcircuits Inc Semiconductor device

Also Published As

Publication number Publication date
GB2230625B (en) 1993-05-12
KR900012148A (en) 1990-08-03
GB9000917D0 (en) 1990-03-14
GB2230625A (en) 1990-10-24
KR0148689B1 (en) 1998-12-01

Similar Documents

Publication Publication Date Title
US7138868B2 (en) Method and circuit for trimming a current source in a package
US5220207A (en) Load current monitor for MOS driver
US8242770B2 (en) Voltage sensing device
JP2000092820A (en) Drive controller, modulf, and composite module
JPH079442B2 (en) Current detection circuit
US8508200B2 (en) Power supply circuit using amplifiers and current voltage converter for improving ripple removal rate and differential balance
EP0419819B1 (en) Current mirror
US6894477B1 (en) Electrical current monitor
JPH0365806A (en) Operational amplifier having null offset which is adjustable by digital processing
JPH02189607A (en) Voltage regulator
US7081775B2 (en) Bias technique for operating point control in multistage circuits
US5617056A (en) Base current compensation circuit
JP3019624B2 (en) Current detector
JP3175493B2 (en) Current detection circuit
JPH02181663A (en) Current sensing circuit
US6680651B2 (en) Current mirror and differential amplifier for providing large current ratio and high output impedence
JPH10283044A (en) Constant current power unit
JPH09312531A (en) Differential amplifier
JP2002374131A (en) Automatic correction circuit of operational amplifier offset voltage
US5973540A (en) Ladder tracking buffer amplifier
JP2005116634A (en) Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same
US6407637B1 (en) Differential current mirror and method
JPH03180915A (en) Reference voltage generating circuit
JP3123822B2 (en) Current amplification factor compensation circuit
JPH09236617A (en) Adjustment method for acceleration sensor