JP2005116634A - Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same - Google Patents

Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same Download PDF

Info

Publication number
JP2005116634A
JP2005116634A JP2003345963A JP2003345963A JP2005116634A JP 2005116634 A JP2005116634 A JP 2005116634A JP 2003345963 A JP2003345963 A JP 2003345963A JP 2003345963 A JP2003345963 A JP 2003345963A JP 2005116634 A JP2005116634 A JP 2005116634A
Authority
JP
Japan
Prior art keywords
reference voltage
semiconductor device
circuit
generation circuit
voltage generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003345963A
Other languages
Japanese (ja)
Inventor
Tadayoshi Ueda
忠義 植田
Michihiro Tanaka
満弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003345963A priority Critical patent/JP2005116634A/en
Publication of JP2005116634A publication Critical patent/JP2005116634A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which enables the remarkable reduction of time required for a wafer test process 1 to realize the cost reduction of semiconductor device and includes a plurality of reference voltage generating circuits, and also to provide a method of manufacturing the same. <P>SOLUTION: The semiconductor device including a plurality of constant voltage circuits within a chip has a monitor reference voltage generating circuit in the same structure and in the equal characteristic as the reference voltage generating circuit used in the constant voltage circuit. The monitor reference voltage generating circuit has exclusive pads (T1) to (T3) for contact of a test probe in order to measure the current consumption (I) and reference voltage (Vref) of only the monitor reference voltage generating circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体装置のウエハテストに関する。詳しくは、1チップに複数の基準電圧発生回路と、該基準電圧発生回路の特性に影響を受ける回路を含む半導体装置において、ウエハテストの工程を簡略化するための半導体装置及びその製造方法に関するものである。   The present invention relates to a wafer test of a semiconductor device. More particularly, the present invention relates to a semiconductor device for simplifying a wafer test process and a method of manufacturing the same in a semiconductor device including a plurality of reference voltage generation circuits on one chip and a circuit affected by the characteristics of the reference voltage generation circuit. It is.

図5に従来の半導体装置を製造する概略の工程例を示す。ウエハ上に回路が形成された段階で、ウエハテスト1が行われる。半導体装置は、ウエハに回路を形成するまでの工程において、プロセスの変動により、あるいは、ウエハ上の位置の違いにより内蔵する回路の特性が異なってしまう。そのため、この工程ではウエハ上に形成された多数のチップに形成されたパッドに、順番にテストプローブを当てて、各チップの動作や特性の良否をテストする。また、特性が所定の範囲にない場合は、回路の所定部分のトリミング量を決定し、次工程のレーザトリミングでトリミングを施し、特性を所定の範囲に収めるようにする。トリミングを行ったウエハはウエハテスト2で再度チップごとの検査を行い、良品チップのみをアッセンブリし、最後に出荷検査を行う。   FIG. 5 shows an example of a schematic process for manufacturing a conventional semiconductor device. A wafer test 1 is performed when a circuit is formed on the wafer. In a semiconductor device, the characteristics of a built-in circuit are different due to process variations or differences in position on the wafer in a process until a circuit is formed on a wafer. Therefore, in this step, test probes are sequentially applied to pads formed on a large number of chips formed on the wafer to test the operation and characteristics of each chip. If the characteristic is not within the predetermined range, the trimming amount of the predetermined part of the circuit is determined, and trimming is performed by laser trimming in the next process so that the characteristic falls within the predetermined range. The wafer that has been trimmed is inspected for each chip again in wafer test 2, only non-defective chips are assembled, and finally a shipping inspection is performed.

従来、1チップの中に図1に示すような定電圧回路が複数個入っている場合のウエハテスト1工程は、各定電圧回路の電源(Vdd)と負側の電源(Vss)及び出力電圧(Vout)が出力される出力パッドにプローブを当て、定電圧回路の消費電流と出力電圧(Vout)を測定し、消費電流が所定の範囲にない場合は、誤差増幅回路のバイアス電流を生成しているNchMOSFET(M7)と(M9)のトリミングを行って所定の消費電流に収まるようにしていた。また、出力電圧(Vout)が所定の範囲にない場合は、出力電圧検出抵抗(R1)と(R2)のどちらか一方、もしくは両方のトリミングを行い、出力電圧(Vout)が所定の電圧範囲に収まるようにしていた。   Conventionally, the wafer test 1 process in which a plurality of constant voltage circuits as shown in FIG. 1 are included in one chip includes the power supply (Vdd), the negative power supply (Vss) and the output voltage of each constant voltage circuit. A probe is applied to the output pad from which (Vout) is output, and the current consumption and output voltage (Vout) of the constant voltage circuit are measured. If the current consumption is not within the specified range, a bias current of the error amplification circuit is generated. Trimming of the Nch MOSFETs (M7) and (M9) is performed so as to be within a predetermined current consumption. If the output voltage (Vout) is not within the predetermined range, trimming of one or both of the output voltage detection resistors (R1) and (R2) is performed, and the output voltage (Vout) is within the predetermined voltage range. I was trying to fit.

また、基準電圧発生回路のフィードバック回路にあるヒューズ素子と直列にMOSトランジスタ等のスイッチング素子を配置し、該スイッチング素子をオン/オフをテストモード信号により制御することにより、実際にヒューズを切断しなくてもフィードバック率が変わりヒューズを切断した時と同じ状態で基準電圧の調整を可能とし、内部基準電圧発生回路を有する半導体装置のトリミング工程を大幅に縮減することができるトリミング方法及び回路があった(例えば、特許文献1参照。)。   In addition, a switching element such as a MOS transistor is arranged in series with the fuse element in the feedback circuit of the reference voltage generation circuit, and the switching element is controlled by a test mode signal so that the fuse is not actually cut. However, there has been a trimming method and circuit that allows the reference voltage to be adjusted in the same state as when the fuse is blown by changing the feedback rate, and can greatly reduce the trimming process of the semiconductor device having the internal reference voltage generation circuit. (For example, refer to Patent Document 1).

更に、プロセス変動が生じても製品の入力バッファの入力しきい値を常に最適な値に調整し、入力レベルに対する動作マージンの大きい製品を実現することが可能な半導体装置の製造方法があった(例えば、特許文献2参照。)。
特開平7−141041号公報 特開平8−316327号公報
Furthermore, there has been a method for manufacturing a semiconductor device capable of realizing a product having a large operation margin with respect to an input level by always adjusting an input threshold value of an input buffer of the product to an optimum value even when process variations occur ( For example, see Patent Document 2.)
JP-A-7-144101 JP-A-8-316327

最近では、機器の機能が豊富になり、しかも各機能に必要な電源の特性も異なるため、多くの種類の電源が必要となってきた。そのため、多くの定電圧回路を1チップに収納し、それらの定電圧回路をトータル的に制御するいわゆるシステム電源が用いられるようになってきた。
しかし、1チップ内に多い場合は20個以上の定電圧回路が収納されているため、ウエハテスト1の工程で、1チップに入っているすべての定電圧回路について、従来技術で述べたように一つ一つの定電圧回路にプローブを当てて消費電流と出力電圧の測定を行っていたのでは、テストに多大な時間を必要とするので、コスト増大の要因にもなっていた。
Recently, many types of power supplies have been required because the functions of the devices have become abundant and the characteristics of the power supplies required for each function are different. Therefore, a so-called system power source has been used in which many constant voltage circuits are housed in one chip and the constant voltage circuits are totally controlled.
However, when there are many constant voltage circuits in one chip, 20 or more constant voltage circuits are accommodated. Therefore, as described in the prior art, all constant voltage circuits included in one chip in the wafer test 1 process. If the current consumption and output voltage are measured by applying a probe to each constant voltage circuit, a large amount of time is required for the test, which causes an increase in cost.

更に、誤差増幅回路では、バイアス電流が大きくバラツクと、半導体装置の消費電流が規格を超えてしまうという問題があった。また、バイアス電流の値によって誤差増幅回路の位相補償の量が変化するので、従来のように定電圧回路全体の消費電流からバイアス電流を換算する方法では、正確なバイアス電流が把握できず、トリミング後のバイアス電流の偏差が大きくなり、最適な位相補償がなされない場合があるなどの課題があった。   Furthermore, the error amplifier circuit has a problem that the bias current is greatly varied and the consumption current of the semiconductor device exceeds the standard. In addition, since the amount of phase compensation of the error amplifier circuit changes depending on the value of the bias current, the conventional method of converting the bias current from the current consumption of the entire constant voltage circuit cannot grasp the accurate bias current and trimming. There was a problem that the deviation of the bias current later became large and optimal phase compensation might not be performed.

本発明は、上記のような問題を解決するためになされたものであり、ウエハテスト1の工程の大幅な時間短縮が可能となり、半導体装置のコストダウンにも貢献できる複数の基準電圧発生回路を含む半導体装置及びその製造方法を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. A plurality of reference voltage generation circuits that can significantly reduce the time of the wafer test 1 process and contribute to cost reduction of a semiconductor device are provided. It is an object to obtain a semiconductor device including the same and a manufacturing method thereof.

この発明では、ウエハ上に多数形成された半導体装置の1チップ上に、複数の基準電圧発生回路を備え、該基準電圧発生回路の出力電圧及び/又は消費電流を、前記チップ内の回路で利用する半導体装置において、前記基準電圧発生回路と同一の回路構成及び同一の特性を備えたモニタ基準電圧発生回路を前記チップ上に作成したので、基準電圧発生回路の特性の測定が可能となった。   According to the present invention, a plurality of reference voltage generation circuits are provided on one chip of a semiconductor device formed in large numbers on a wafer, and the output voltage and / or current consumption of the reference voltage generation circuit is used in the circuits in the chip. In the semiconductor device, the monitor reference voltage generation circuit having the same circuit configuration and the same characteristics as the reference voltage generation circuit is formed on the chip, so that the characteristics of the reference voltage generation circuit can be measured.

また、前記モニタ基準電圧発生回路は、
ディプレッション型NchMOSFETと、
エンハンスメント型NchMOSFETと、
を備え、
前記ディプレッション型NchMOSFETのソースを前記エンハンスメント型NchMOSFETのドレインに接続し、更に、両FETのゲートを該接続点に接続し、
前記エンハンスメント型NchMOSFETのソース−ドレイン間の電圧を基準電圧出力として用いたことから、モニタ基準電圧発生回路の消費電流とエンハンスメント型NchMOSFETのドレイン電流が同じにでき、更に、前記ディプレッション型NchMOSFETのドレインと、前記エンハンスメント型NchMOSFETのソースと、前記基準電圧出力にプローブ接触用のパッドを設けたので、モニタ基準電圧発生回路単独の測定が可能となった。
The monitor reference voltage generating circuit is
A depletion type Nch MOSFET,
Enhancement type NchMOSFET,
With
The source of the depletion type NchMOSFET is connected to the drain of the enhancement type NchMOSFET, and the gates of both FETs are connected to the connection point.
Since the voltage between the source and drain of the enhancement type NchMOSFET is used as a reference voltage output, the consumption current of the monitor reference voltage generation circuit and the drain current of the enhancement type NchMOSFET can be made the same, and the drain of the depletion type NchMOSFET Since the enhancement-type Nch MOSFET source and the probe contact pad are provided on the reference voltage output, the monitor reference voltage generation circuit alone can be measured.

また、測定用パッドを減らすため、前記エンハンスメント型NchMOSFETのソースを前記半導体装置の負側の電源(Vss)に接続し、前記エンハンスメント型NchMOSFETのソースに設けたパッドを省略した。   Further, in order to reduce the number of measurement pads, the source of the enhancement type NchMOSFET is connected to the negative power supply (Vss) of the semiconductor device, and the pad provided on the source of the enhancement type NchMOSFET is omitted.

一方、前記半導体装置はウエハテスト1工程で前記チップ内の回路検査を行い、次工程で、少なくとも、前記基準電圧発生回路の出力電圧及び/又は消費電流の製造上のバラツキに起因する前記回路の特性を補正するためのレーザトリミング工程を備えた半導体装置の製造方法において、
前記ウエハテスト1工程で、前記モニタ基準電圧発生回路の出力電圧及び/又は消費電流を測定し、
該測定結果に基づいて、次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記回路のトリミングを行うようにしたので、ウエハテスト1工程の時間短縮が可能となった。
On the other hand, the semiconductor device performs a circuit inspection in the chip in one wafer test process, and in the next process, at least the output of the reference voltage generation circuit and / or the current consumption due to the manufacturing variation of the circuit. In a method for manufacturing a semiconductor device including a laser trimming process for correcting characteristics,
In the wafer test 1 step, the output voltage and / or current consumption of the monitor reference voltage generation circuit is measured,
Based on the measurement result, in the next laser trimming process, the circuit is trimmed on the same chip as the monitor reference voltage generating circuit, so that the time required for one wafer test process can be shortened. .

また、少なくとも、基準電圧発生回路と、誤差増幅回路と、出力電圧検出抵抗を備えた定電圧回路を、1チップ上に複数内蔵し、前記複数の定電圧回路の出力電圧を調整するため、前記出力電圧検出抵抗のトリミングを行い、前記定電圧回路の出力電圧を所定の電圧範囲に収めるようにした半導体装置において、
前記基準電圧発生回路と同一の回路構成及び同一の特性を備えたモニタ基準電圧発生回路を前記チップ上に作成したので、基準電圧発生回路の特性の測定が可能となった。
Further, a plurality of constant voltage circuits each including at least a reference voltage generation circuit, an error amplification circuit, and an output voltage detection resistor are built on one chip, and the output voltages of the plurality of constant voltage circuits are adjusted. In the semiconductor device in which the output voltage detection resistor is trimmed so that the output voltage of the constant voltage circuit falls within a predetermined voltage range.
Since the monitor reference voltage generation circuit having the same circuit configuration and the same characteristics as the reference voltage generation circuit is created on the chip, the characteristics of the reference voltage generation circuit can be measured.

また、前記モニタ基準電圧発生回路の出力電圧をウエハテスト1工程で測定し、該測定結果に基づいて、次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている各々の前記出力電圧検出抵抗のトリミングを行うようにしたので、ウエハテスト1工程の時間短縮が可能となった。   Further, the output voltage of the monitor reference voltage generation circuit is measured in one wafer test process, and based on the measurement result, in the next laser trimming process, the plurality of monitor reference voltage generation circuits on the same chip as the monitor reference voltage generation circuit Since the output voltage detection resistors included in the constant voltage circuit are trimmed, the time required for one wafer test process can be shortened.

また、基準電圧発生回路と、誤差増幅回路と、出力電圧検出抵抗を備えた定電圧回路を1チップ上に複数の内蔵し、前記複数の定電圧回路に含まれる前記誤差増幅回路のバイアス電流のトリミングを行い、前記誤差増幅回路のバイアス電流を所定の電流範囲に収めるようにした半導体装置において、
前記誤差増幅回路のバイアス電流は、前記基準電圧発生回路の消費電流に比例する構成とし、
前記基準電圧発生回路と同一の回路構成及び同一の特性を備えたモニタ基準電圧発生回路を前記チップ上に作成したので、基準電圧発生回路の特性の測定が可能となった。
In addition, a plurality of constant voltage circuits each including a reference voltage generation circuit, an error amplification circuit, and an output voltage detection resistor are provided on one chip, and the bias current of the error amplification circuit included in the plurality of constant voltage circuits is adjusted. In the semiconductor device in which trimming is performed so that the bias current of the error amplifier circuit falls within a predetermined current range,
The bias current of the error amplifier circuit is proportional to the current consumption of the reference voltage generation circuit,
Since the monitor reference voltage generation circuit having the same circuit configuration and the same characteristics as the reference voltage generation circuit is created on the chip, the characteristics of the reference voltage generation circuit can be measured.

また、前記モニタ基準電圧発生回路の消費電流をウエハテスト1工程で測定し、該測定結果に基づいて行われる次工程のレーザトリミング工程において、
前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている前記誤差増幅回路のバイアス電流のトリミングを行うようにしたので、ウエハテスト1工程の時間短縮が可能となった。
Further, the current consumption of the monitor reference voltage generation circuit is measured in one wafer test process, and in the next laser trimming process performed based on the measurement result,
Trimming of the bias current of the error amplification circuit included in the plurality of constant voltage circuits on the same chip as the monitor reference voltage generation circuit is performed, so that the time required for one wafer test process can be shortened. It was.

また、前記モニタ基準電圧発生回路は、
ディプレッション型NchMOSFETと、
エンハンスメント型NchMOSFETと、
を備え、
前記ディプレッション型NchMOSFETのソースを前記エンハンスメント型NchMOSFETのドレインに接続し、更に、両FETのゲートを該接続点に接続し、
該エンハンスメント型NchMOSFETのソース−ドレイン間の電圧を基準電圧出力として用い、
前記ディプレッション型NchMOSFETのドレインと、前記エンハンスメント型NchMOSFETのソースと、前記基準電圧出力にプローブ接触用のパッドを設けたので、モニタ基準電圧発生回路単独の測定が可能となった。
The monitor reference voltage generating circuit is
A depletion type Nch MOSFET,
Enhancement type NchMOSFET,
With
The source of the depletion type NchMOSFET is connected to the drain of the enhancement type NchMOSFET, and the gates of both FETs are connected to the connection point.
Using the voltage between the source and drain of the enhancement type Nch MOSFET as a reference voltage output,
Since the drain of the depletion type Nch MOSFET, the source of the enhancement type Nch MOSFET, and the probe contact pad are provided on the reference voltage output, the monitor reference voltage generation circuit alone can be measured.

また、測定用パッドを減らすため、前記エンハンスメント型NchMOSFETのソースを前記負側の電源(Vss)に接続し、前記エンハンスメント型NchMOSFETのソースに設けたパッドを省略するようにした。   Further, in order to reduce the number of measurement pads, the source of the enhancement type NchMOSFET is connected to the negative power supply (Vss), and the pad provided on the source of the enhancement type NchMOSFET is omitted.

また、前記モニタ基準電圧発生回路の任意のパッドに一端を接続し、他端を独立パッドに接続したモニタ抵抗を備えたので、1パッド追加するだけでモニタ抵抗が作成可能となった。   Further, since the monitor resistor having one end connected to an arbitrary pad of the monitor reference voltage generating circuit and the other end connected to an independent pad is provided, the monitor resistor can be created only by adding one pad.

また、前記モニタ抵抗の抵抗値をウエハテスト1工程で測定し、該測定結果に基づいて次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている抵抗値の絶対値が必要な固定抵抗のトリミングを行うようにしたので、ウエハテスト1工程の時間短縮が可能となった。   In addition, the resistance value of the monitor resistor is measured in one wafer test process, and in the next laser trimming process based on the measurement result, the plurality of constant voltage circuits on the same chip as the monitor reference voltage generating circuit are measured. Trimming of a fixed resistor that requires the absolute value of the included resistance value is performed, so that the time required for one wafer test process can be shortened.

また、前記誤差増幅回路のバイアス電流生成回路は、基準電圧を構成しているエンハンスメント型NchMOSFETとカレントミラー回路を構成する複数のNchMOSFETで構成し、該複数のNchMOSFETのドレイン又はソースにトリミング用ヒューズを接続したので、簡単な回路構成で、バイアス電流のトリミングが可能となった。   The bias current generation circuit of the error amplifying circuit includes an enhancement type NchMOSFET constituting a reference voltage and a plurality of NchMOSFETs constituting a current mirror circuit, and a trimming fuse is provided at the drain or source of the plurality of NchMOSFETs. Since it is connected, trimming of the bias current is possible with a simple circuit configuration.

本発明によれば、モニタ基準電圧発生回路を各チップ内に設け、モニタ基準電圧発生回路の特性を測定するだけで、基準電圧発生回路の特性に左右される回路の特性を予測し、回路のトリミング量を決定するようにしたので、ウエハテスト1の工程の大幅な時間短縮が可能となり、半導体装置のコストダウンにも貢献できるようになった。   According to the present invention, a monitor reference voltage generating circuit is provided in each chip, and by simply measuring the characteristics of the monitor reference voltage generating circuit, the circuit characteristics that are influenced by the characteristics of the reference voltage generating circuit are predicted, Since the trimming amount is determined, the time required for the wafer test 1 can be greatly reduced, and the cost of the semiconductor device can be reduced.

更に、本発明を複数の定電圧回路を搭載した半導体装置に応用した場合は、従来ウエハテスト1で行っていた、定電圧回路ごとに測定していた消費電流や出力電圧の代わりに、モニタ基準電圧発生回路の消費電流と出力電圧だけを測定することでチップ内に含まれる定電圧回路のバイアス電流と出力電圧が予測でき、予測結果に基づいて次工程のレーザトリミングを行うようにしたので、ウエハテスト1の工程の大幅な時間短縮が可能となり、半導体装置のコストダウンにも貢献できるようになった。   Further, when the present invention is applied to a semiconductor device equipped with a plurality of constant voltage circuits, a monitor reference is used in place of the current consumption and output voltage measured for each constant voltage circuit, which is conventionally performed in the wafer test 1. By measuring only the current consumption and output voltage of the voltage generation circuit, the bias current and output voltage of the constant voltage circuit included in the chip can be predicted, and the next process laser trimming is performed based on the prediction result. The time required for the wafer test 1 can be greatly reduced, and the cost of the semiconductor device can be reduced.

次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明に用いられている定電圧回路の例を示す。
図1の定電圧回路は、基準電圧発生回路、誤差増幅回路、出力電圧検出抵抗(R1),(R2)、及び電流検出抵抗(R3)で構成されている。
Next, the present invention will be described in detail based on the embodiments shown in the drawings.
First embodiment.
FIG. 1 shows an example of a constant voltage circuit used in the present invention.
The constant voltage circuit of FIG. 1 includes a reference voltage generation circuit, an error amplification circuit, output voltage detection resistors (R1) and (R2), and a current detection resistor (R3).

基準電圧発生回路は、ディプレッション型NchMOSFET(M1)とエンハンスメント型NchMOSFET(M2)(以下エンハンスメント表記は行わない)で構成されている。ディプレッション型NchMOSFET(M1)のドレインは電源(Vdd)に接続され、更にゲートとソースを接続し、ゲートを0バイアスにしているため、ディプレッション型NchMOSFET(M1)のドレイン電流は定電流となる。
ディプレッション型NchMOSFET(M1)のソースにはNchMOSFET(M2)のドレインが接続されている。また、NchMOSFET(M2)のソースは負側の電源(Vss)に接続され、更にゲートはドレインに接続されている。
The reference voltage generation circuit is composed of a depletion type Nch MOSFET (M1) and an enhancement type Nch MOSFET (M2) (hereinafter, enhancement notation is not performed). Since the drain of the depletion type Nch MOSFET (M1) is connected to the power supply (Vdd), the gate and the source are further connected, and the gate is set to 0 bias, the drain current of the depletion type Nch MOSFET (M1) becomes a constant current.
The source of the depletion type Nch MOSFET (M1) is connected to the drain of the Nch MOSFET (M2). The source of the Nch MOSFET (M2) is connected to the negative power supply (Vss), and the gate is connected to the drain.

この結果、NchMOSFET(M2)のドレイン電流はディプレッション型NchMOSFET(M1)のドレイン電流と等しくなるので、NchMOSFET(M2)のゲート電圧は、ディプレッション型NchMOSFET(M1)のドレイン電流によって決定される電圧に設定される。この電圧が基準電圧発生回路から出力される基準電圧(Vref)となる。   As a result, since the drain current of the Nch MOSFET (M2) becomes equal to the drain current of the depletion type Nch MOSFET (M1), the gate voltage of the Nch MOSFET (M2) is set to a voltage determined by the drain current of the depletion type Nch MOSFET (M1). Is done. This voltage becomes the reference voltage (Vref) output from the reference voltage generation circuit.

誤差増幅回路は、MOSFET(M3)〜(M10)で構成されている。MOSFET(M3)〜(M7)が差動増幅回路を構成し、MOSFET(M8)〜(M10)が出力増幅回路を構成している。なお、抵抗(R4)とコンデンサ(C1)は誤差増幅回路の位相補償を行っている。
MOSFET(M7)のドレイン電流は差動増幅回路のバイアス電流となる。MOSFET(M7)のゲートは基準電圧(Vref)に接続されている。
The error amplifying circuit includes MOSFETs (M3) to (M10). MOSFETs (M3) to (M7) constitute a differential amplifier circuit, and MOSFETs (M8) to (M10) constitute an output amplifier circuit. The resistor (R4) and the capacitor (C1) perform phase compensation of the error amplifier circuit.
The drain current of the MOSFET (M7) becomes a bias current of the differential amplifier circuit. The gate of the MOSFET (M7) is connected to the reference voltage (Vref).

MOSFET(M2)とMOSFET(M7)はカレントミラー回路を構成しているので、MOSFET(M7)のドレイン電流(差動増幅回路のバイアス電流)はMOSFET(M2)のドレイン電流すなわち基準電圧発生回路の消費電流と比例する。
MOSFET(M9)は出力増幅回路の負荷であり、前記MOSFET(M7)と同様MOSFET(M2)とカレントミラー回路を構成しているので、MOSFET(M9)のドレイン電流も基準電圧発生回路の消費電流と比例する。
Since the MOSFET (M2) and the MOSFET (M7) constitute a current mirror circuit, the drain current of the MOSFET (M7) (the bias current of the differential amplifier circuit) is the drain current of the MOSFET (M2), that is, the reference voltage generating circuit. Proportional to current consumption.
Since the MOSFET (M9) is a load of the output amplifier circuit and forms a current mirror circuit with the MOSFET (M2) like the MOSFET (M7), the drain current of the MOSFET (M9) is also consumed by the reference voltage generating circuit. Is proportional to

すなわち、半導体装置の製造工程おいて、プロセス変動が生じ基準電圧発生回路の消費電流(0バイアス時のディプレッション型NchMOSFET(M1)のドレイン電流)が変動すると、基準電圧発生回路から出力される基準電圧(Vref)が変化すると共に、誤差増幅回路のバイアス電流も変化してしまう。
バイアス電流が変わると半導体装置の消費電流が変化し、消費電流の規格を逸脱する可能性がある。更に、誤差増幅回路の位相補償に必要な値も変化するため、半導体装置内に作り込まれた抵抗(R4)とコンデンサ(C1)で行っている位相補償回路では補償しきれない場合が発生し、誤差増幅回路の動作が不安定になることもある。このため、バイアス電流は所定の範囲内に収める必要がある。
That is, in the manufacturing process of the semiconductor device, when the process variation occurs and the consumption current of the reference voltage generation circuit (the drain current of the depletion type NchMOSFET (M1) at 0 bias) varies, the reference voltage output from the reference voltage generation circuit As (Vref) changes, the bias current of the error amplifier circuit also changes.
When the bias current changes, the current consumption of the semiconductor device changes, which may deviate from the current consumption standard. Further, since the value necessary for phase compensation of the error amplifier circuit also changes, there may occur a case where the phase compensation circuit formed by the resistor (R4) and the capacitor (C1) built in the semiconductor device cannot be compensated. The operation of the error amplification circuit may become unstable. For this reason, it is necessary to keep the bias current within a predetermined range.

また、基準電圧(Vref)が変動すると、出力電圧(Vout)も変動するので、出力電圧(Vout)が所定の範囲を超えた場合は、出力電圧検出抵抗(R1)と(R2)の比を変えて、所定の電圧範囲に収める必要がある。
出力電圧検出抵抗(R1),(R2)は、半導体装置内に作り込まれた抵抗であり、抵抗(R1)と抵抗(R2)の比は比較的正確に作られるが、抵抗値はプロセス変動によって大きく変化する。
電流検出抵抗(R3)も、半導体装置内に作り込まれた抵抗であり、MOSFET(M10)に流れる電流を検出する。抵抗(R3)の電圧降下は、図示しない電流検出回路を経て、過電流保護回路に入力され、定電圧回路を過電流から保護する。電流検出抵抗(R3)の抵抗値は電流検出のため抵抗値の精度を確保する必要があるが製造時のプロセス変動によって大きく変化する。
When the reference voltage (Vref) varies, the output voltage (Vout) also varies. Therefore, when the output voltage (Vout) exceeds a predetermined range, the ratio between the output voltage detection resistors (R1) and (R2) is set. It is necessary to change to be within a predetermined voltage range.
The output voltage detection resistors (R1) and (R2) are resistors built in the semiconductor device, and the ratio of the resistor (R1) and the resistor (R2) is made relatively accurately, but the resistance value varies depending on the process. It varies greatly depending on.
The current detection resistor (R3) is also a resistor built in the semiconductor device, and detects a current flowing through the MOSFET (M10). The voltage drop of the resistor (R3) passes through a current detection circuit (not shown) and is input to the overcurrent protection circuit to protect the constant voltage circuit from overcurrent. The resistance value of the current detection resistor (R3) needs to ensure the accuracy of the resistance value for current detection, but greatly changes due to process variations during manufacturing.

本発明では、図1に示すような定電圧回路を1チップ内に複数含んだ半導体装置に、図2に示すような、定電圧回路で使用されている基準電圧発生回路と同じ構成でかつ同一特性のモニタ基準電圧発生回路を備えている。このモニタ基準電圧発生回路は、テストプローブ接触用の専用パッド(T1)〜(T3)を備えており、モニタ基準電圧発生回路だけの消費電流(I)と基準電圧(Vref)が測定可能になっている。ただし、パッド(T2)はチップの負側の電源(Vss)と共用しても構わない。   In the present invention, a semiconductor device including a plurality of constant voltage circuits as shown in FIG. 1 in a chip has the same configuration and the same configuration as the reference voltage generation circuit used in the constant voltage circuit as shown in FIG. A characteristic monitor reference voltage generation circuit is provided. The monitor reference voltage generation circuit includes dedicated pads (T1) to (T3) for contacting the test probe, and the current consumption (I) and the reference voltage (Vref) of only the monitor reference voltage generation circuit can be measured. ing. However, the pad (T2) may be shared with the power source (Vss) on the negative side of the chip.

ウエハテスト1の工程で、モニタ基準電圧発生回路の消費電流(I)と基準電圧(Vref)を測定する。図4に示すように、ウエハ上のチップAと離れたところにあるチップBでは半導体装置の特性がかなり異なる場合があるが、同一チップ上であれば、非常に狭い範囲にあるので、半導体装置の特性はほぼ同じとみなすことができる。そのため、モニタ基準電圧発生回路の特性と、同一チップ内の他の定電圧回路に含まれている基準電圧発生回路の特性はほぼ同一とみなせる。   In the wafer test 1, the current consumption (I) and the reference voltage (Vref) of the monitor reference voltage generation circuit are measured. As shown in FIG. 4, the characteristics of the semiconductor device may be quite different in the chip B that is far from the chip A on the wafer. However, the semiconductor device is in a very narrow range if it is on the same chip. These characteristics can be regarded as almost the same. Therefore, the characteristics of the monitor reference voltage generation circuit and the characteristics of the reference voltage generation circuit included in another constant voltage circuit in the same chip can be regarded as substantially the same.

このため、前記したように、モニタ基準電圧発生回路の特性を測定することで、同一チップ内にある定電圧回路を構成している誤差増幅回路のバイアス電流と出力電圧(Vout)は実際に測定しなくても想定できるので、バイアス電流と、出力電圧検出抵抗(R1),(R2)のトリミングに必要な補正値を求めることができる。このように、従来、チップ内に含まれている定電圧回路の数だけ測定を繰り返していた工程を、一つのモニタ基準電圧発生回路の特性を測定するだけで、次工程に移ることができるようになり、工程の時間短縮に多大な効果を上げることができるようになった。   For this reason, as described above, by measuring the characteristics of the monitor reference voltage generation circuit, the bias current and output voltage (Vout) of the error amplification circuit constituting the constant voltage circuit in the same chip are actually measured. Therefore, the correction value necessary for trimming the bias current and the output voltage detection resistors (R1) and (R2) can be obtained. As described above, it is possible to move from the process in which the measurement is conventionally repeated by the number of constant voltage circuits included in the chip to the next process only by measuring the characteristic of one monitor reference voltage generation circuit. As a result, it has become possible to greatly improve the process time.

図6は、差動増幅回路のバイアス電流発生用のNchMOSFET(M7)をトリミング可能な構成とした例である。図6ではNchMOSFET(M7)をNchMOSFET(M7A)〜(M7C)の3つの素子で構成し、各素子のドレインにヒューズ(F1)〜(F3)を接続している。モニタ基準電圧発生回路の消費電流(I)と、バイアス電流は比例関係にあるので、ウエハテスト1工程ではモニタ基準電圧発生回路の消費電流(I)を測定し、基準値との差を調べ、バイアス電流のトリミング方法を決める。図6のようにバイアス電流をNchMOSFET(M7A)〜(M7C)の3つの素子で構成した場合は、トリミングの仕方により7種のバイアス電流値を設定することができる。もちろん4つ以上にすれば更にトリミングで設定可能な電流値の種類を増やすことが可能である。   FIG. 6 shows an example in which the Nch MOSFET (M7) for generating the bias current of the differential amplifier circuit can be trimmed. In FIG. 6, the Nch MOSFET (M7) is composed of three elements NchMOSFETs (M7A) to (M7C), and fuses (F1) to (F3) are connected to the drains of the elements. Since the consumption current (I) of the monitor reference voltage generation circuit and the bias current are in a proportional relationship, the consumption current (I) of the monitor reference voltage generation circuit is measured in the wafer test step 1, and the difference from the reference value is examined. Decide how to trim the bias current. When the bias current is configured by three elements NchMOSFETs (M7A) to (M7C) as shown in FIG. 6, seven types of bias current values can be set according to the trimming method. Of course, if the number is four or more, it is possible to further increase the types of current values that can be set by trimming.

出力増幅回路のバイアス電流を発生しているNchMOSFET(M9)についても、上述したNchMOSFET(M7)と全く同様である。
図7は出力電圧検出抵抗(R1),(R2)をトリミングするための実施例である。抵抗(R1)は抵抗(R1A)〜(R1C)の3つの抵抗で構成され、抵抗(R1B)と抵抗(R1C)にはヒューズ(F4)及び(F5)がそれぞれ直列に接続され、更に、その直列接続が並列に接続され、更に抵抗(R1A)と直列に接続されている。抵抗(R2)も抵抗(R2A)〜(R2C)とヒューズ(F6)及びヒューズ(F7)で構成され、接続は抵抗(R1)と同様である。
The Nch MOSFET (M9) generating the bias current of the output amplifier circuit is exactly the same as the Nch MOSFET (M7) described above.
FIG. 7 shows an embodiment for trimming the output voltage detection resistors (R1) and (R2). The resistor (R1) is composed of three resistors (R1A) to (R1C), and fuses (F4) and (F5) are connected in series to the resistor (R1B) and the resistor (R1C) respectively. A series connection is connected in parallel, and is further connected in series with a resistor (R1A). The resistor (R2) also includes resistors (R2A) to (R2C), a fuse (F6), and a fuse (F7), and the connection is the same as that of the resistor (R1).

定電圧回路の出力電圧(Vout)は基準電圧(Vref)に出力電圧検出抵抗(R1)と(R2)の比を乗じた値である。半導体製造途中のプロセス変動では、抵抗の絶対値は大きく変化しても、変化の方向は同じなので、抵抗間の比の変化は少なく、比の精度は極めて高いので、モニタ基準電圧発生回路の出力電圧(Vref)を測定するだけで、定電圧回路の出力電圧(Vout)は予測ができる。そのため、定電圧回路の出力電圧(Vout)を測定しなくても抵抗(R1)と抵抗(R2)の比をどのように設定すればよいかが分かるので、その設定に基づいて、レーザトリミング工程では、前記ヒューズ(F4)〜(F7)のトリミングを行う。図7の実施例では抵抗(R1)と抵抗(R2)の比は、9つの組み合わせが可能であるが、ヒューズを直列に接続した抵抗の数を更に追加すれば、更に細かいトリミングの設定が可能である。   The output voltage (Vout) of the constant voltage circuit is a value obtained by multiplying the reference voltage (Vref) by the ratio of the output voltage detection resistors (R1) and (R2). In process fluctuations during semiconductor manufacturing, even if the absolute value of the resistance changes greatly, the direction of change is the same, so the change in the ratio between the resistors is small, and the accuracy of the ratio is extremely high. The output voltage (Vout) of the constant voltage circuit can be predicted only by measuring the voltage (Vref). Therefore, it is possible to know how to set the ratio of the resistor (R1) and the resistor (R2) without measuring the output voltage (Vout) of the constant voltage circuit. Based on the setting, in the laser trimming process, The fuses (F4) to (F7) are trimmed. In the embodiment of FIG. 7, the ratio of the resistor (R1) to the resistor (R2) can be nine combinations, but if the number of resistors connected in series with a fuse is further added, finer trimming can be set. It is.

図3に示すように、図2に示すモニタ基準電圧発生回路の任意のパッド(T1)〜(T3)、例えば図3ではパッド(T2)と新たに追加したパッド(T4)にモニタ用抵抗素子を作成しておき、ウエハテスト1において、この抵抗の抵抗値を測定することで、プロセス変動が抵抗値に及ぼす影響を測定することができる。図1の電流検出抵抗(R3)の抵抗値は、図3の抵抗(R0)の抵抗値と比例するので、図3のパッド(T2)とパッド(T4)間に接続されている抵抗(R0)の抵抗値を測定し、基準抵抗値との偏差から抵抗(R3)のトリミング量を推測することができる。
抵抗(R3)のトリミング構成は、前記した抵抗(R1)のような構成など、従来一般に行われている方法が使用可能である。
As shown in FIG. 3, a monitoring resistive element is added to arbitrary pads (T1) to (T3) of the monitor reference voltage generating circuit shown in FIG. 2, for example, pad (T2) and newly added pad (T4) in FIG. By measuring the resistance value of this resistor in the wafer test 1, it is possible to measure the effect of process variations on the resistance value. Since the resistance value of the current detection resistor (R3) in FIG. 1 is proportional to the resistance value of the resistor (R0) in FIG. 3, the resistor (R0) connected between the pad (T2) and the pad (T4) in FIG. ) Is measured, and the trimming amount of the resistor (R3) can be estimated from the deviation from the reference resistance value.
For the trimming configuration of the resistor (R3), a method generally used conventionally such as the configuration of the resistor (R1) can be used.

本発明に用いられている定電圧回路の例を示す。The example of the constant voltage circuit used for this invention is shown. 図1の定電圧回路で使用されている基準電圧発生回路と同じ構成でかつ同一特性のモニタ基準電圧発生回路の例を示した図である。FIG. 2 is a diagram illustrating an example of a monitor reference voltage generation circuit having the same configuration and the same characteristics as the reference voltage generation circuit used in the constant voltage circuit of FIG. 1. モニタ基準電圧発生回路の他の例を示した図である。It is the figure which showed the other example of the monitor reference voltage generation circuit. ウエハの例を示した図である。It is the figure which showed the example of the wafer. 従来の半導体装置を製造する概略の工程例を示す。An example of a schematic process for manufacturing a conventional semiconductor device will be described. 図1のNchMOSFET(M7)をトリミング可能な構成とした例である。This is an example in which the Nch MOSFET (M7) of FIG. 図1の出力電圧検出抵抗(R1),(R2)の構成例を示した図である。It is the figure which showed the structural example of the output voltage detection resistance (R1) of FIG. 1, (R2).

符号の説明Explanation of symbols

M1 ディプレッション型NchMOSFET
M2,M5〜M10,M7A〜M7C NchMOSFET
M3,M4 PchMOSFET
R0〜R4,R1A〜R1C,R2A〜R2C 抵抗
C1 コンデンサ
T1〜T4 パッド
F1〜F7 ヒューズ
M1 Depletion type NchMOSFET
M2, M5 to M10, M7A to M7C NchMOSFET
M3, M4 PchMOSFET
R0-R4, R1A-R1C, R2A-R2C Resistor C1 Capacitor T1-T4 Pad F1-F7 Fuse

Claims (13)

ウエハ上に多数形成された半導体装置の1チップ上に、複数の基準電圧発生回路を備え、該基準電圧発生回路の出力電圧及び/又は消費電流を、前記チップ内の回路で利用する半導体装置において、
前記基準電圧発生回路と同一の回路構成のモニタ基準電圧発生回路を前記チップ上に作成したことを特徴とする半導体装置。
In a semiconductor device comprising a plurality of reference voltage generation circuits on one chip of a semiconductor device formed in large numbers on a wafer, and using the output voltage and / or current consumption of the reference voltage generation circuit in a circuit in the chip ,
A semiconductor device comprising a monitor reference voltage generation circuit having the same circuit configuration as that of the reference voltage generation circuit formed on the chip.
前記モニタ基準電圧発生回路は、
ディプレッション型NchMOSFETと、
エンハンスメント型NchMOSFETと、
を備え、
前記ディプレッション型NchMOSFETのソースを前記エンハンスメント型NchMOSFETのドレインに接続し、更に、両FETのゲートを該接続点に接続し、
前記エンハンスメント型NchMOSFETのソース−ドレイン間の電圧を基準電圧出力として用い、
前記ディプレッション型NchMOSFETのドレインと、前記エンハンスメント型NchMOSFETのソースと、前記基準電圧出力にプローブ接触用のパッドを設けたことを特徴とする請求項1記載の半導体装置。
The monitor reference voltage generation circuit includes:
A depletion type Nch MOSFET,
Enhancement type NchMOSFET,
With
The source of the depletion type NchMOSFET is connected to the drain of the enhancement type NchMOSFET, and the gates of both FETs are connected to the connection point.
Using the voltage between the source and drain of the enhancement type Nch MOSFET as a reference voltage output,
2. The semiconductor device according to claim 1, wherein a probe contact pad is provided on the drain of the depletion type Nch MOSFET, the source of the enhancement type Nch MOSFET, and the reference voltage output.
前記エンハンスメント型NchMOSFETのソースを前記半導体装置の負側の電源(Vss)に接続し、前記ソースに設けたパッドを省略したことを特徴とする請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, wherein a source of the enhancement type Nch MOSFET is connected to a negative power source (Vss) of the semiconductor device, and a pad provided on the source is omitted. 請求項1から請求項3のいずれかの半導体装置であって、ウエハテスト1工程で前記チップ内の回路検査を行い、次工程で、少なくとも、前記基準電圧発生回路の出力電圧及び/又は消費電流の製造上のバラツキに起因する前記回路の特性を補正するためのレーザトリミング工程を備えた半導体装置の製造方法において、
前記ウエハテスト1工程で、前記モニタ基準電圧発生回路の出力電圧及び/又は消費電流を測定し、
該測定結果に基づいて、次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記回路のトリミングを行うようにしたことを特徴とする半導体装置の製造方法。
4. The semiconductor device according to claim 1, wherein a circuit test in the chip is performed in a wafer test step 1, and at least an output voltage and / or current consumption of the reference voltage generation circuit is performed in a next step. In a method of manufacturing a semiconductor device comprising a laser trimming step for correcting the characteristics of the circuit due to manufacturing variations of
In the wafer test 1 step, the output voltage and / or current consumption of the monitor reference voltage generation circuit is measured,
A method of manufacturing a semiconductor device, wherein the circuit is trimmed on the same chip as the monitor reference voltage generation circuit in a laser trimming step of the next step based on the measurement result.
少なくとも、基準電圧発生回路と、誤差増幅回路と、出力電圧検出抵抗を備えた定電圧回路を1チップ上に複数内蔵し、該複数の定電圧回路の出力電圧を調整するため、前記出力電圧検出抵抗のトリミングを行って、前記定電圧回路の出力電圧を所定の電圧範囲に収めるようにした半導体装置において、
前記基準電圧発生回路と同一の回路構成のモニタ基準電圧発生回路を前記チップ上に作成したことを特徴とする半導体装置。
A plurality of constant voltage circuits each including at least a reference voltage generation circuit, an error amplification circuit, and an output voltage detection resistor are built on one chip, and the output voltage detection is performed to adjust the output voltage of the plurality of constant voltage circuits. In the semiconductor device in which trimming of the resistor is performed so that the output voltage of the constant voltage circuit falls within a predetermined voltage range,
A semiconductor device comprising a monitor reference voltage generation circuit having the same circuit configuration as that of the reference voltage generation circuit formed on the chip.
請求項5の半導体装置の製造方法において、
前記モニタ基準電圧発生回路の出力電圧をウエハテスト1工程で測定し、該測定結果に基づいて、次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている各々の前記出力電圧検出抵抗のトリミングを行うようにしたことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device of Claim 5,
The output voltage of the monitor reference voltage generation circuit is measured in one wafer test process, and the plurality of constant voltages on the same chip as the monitor reference voltage generation circuit are measured in the next laser trimming process based on the measurement result. A method of manufacturing a semiconductor device, wherein trimming of each of the output voltage detection resistors included in a circuit is performed.
少なくとも、基準電圧発生回路と、誤差増幅回路と、出力電圧検出抵抗を備えた定電圧回路を1チップ上に複数の内蔵し、該複数の定電圧回路に含まれる前記誤差増幅回路のバイアス電流のトリミングを行い、前記誤差増幅回路のバイアス電流を所定の電流範囲に収めるようにした半導体装置において、
前記誤差増幅回路のバイアス電流は、前記基準電圧発生回路の消費電流に比例する構成とし、
前記基準電圧発生回路と同一の回路構成のモニタ基準電圧発生回路を前記チップ上に作成したことを特徴とする半導体装置。
A plurality of constant voltage circuits each including at least a reference voltage generation circuit, an error amplification circuit, and an output voltage detection resistor are built on one chip, and the bias current of the error amplification circuit included in the plurality of constant voltage circuits is In the semiconductor device in which trimming is performed so that the bias current of the error amplifier circuit falls within a predetermined current range,
The bias current of the error amplifier circuit is proportional to the current consumption of the reference voltage generation circuit,
A semiconductor device comprising a monitor reference voltage generation circuit having the same circuit configuration as that of the reference voltage generation circuit formed on the chip.
請求項7の半導体装置であって、前記モニタ基準電圧発生回路の消費電流をウエハテスト1工程で測定し、該測定結果に基づいて行われる次工程のレーザトリミング工程において、
前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている前記誤差増幅回路のバイアス電流のトリミングを行うようにしたことを特徴とする半導体装置の製造方法。
8. The semiconductor device according to claim 7, wherein the current consumption of the monitor reference voltage generation circuit is measured in one wafer test step, and in the next laser trimming step performed based on the measurement result,
A method of manufacturing a semiconductor device, characterized in that a bias current of the error amplification circuit included in the plurality of constant voltage circuits on the same chip as the monitor reference voltage generation circuit is trimmed.
前記モニタ基準電圧発生回路は、
ディプレッション型NchMOSFETと、
エンハンスメント型NchMOSFETと、
を備え、
前記ディプレッション型NchMOSFETのソースを前記エンハンスメント型NchMOSFETのドレインに接続し、更に、両FETのゲートを該接続点に接続し、
該エンハンスメント型NchMOSFETのソース−ドレイン間の電圧を基準電圧出力として用い、
前記ディプレッション型NchMOSFETのドレインと、前記エンハンスメント型NchMOSFETのソースと、前記基準電圧出力にプローブ接触用のパッドを設けたことを特徴とする請求項5又は7記載の半導体装置。
The monitor reference voltage generation circuit includes:
A depletion type Nch MOSFET,
Enhancement type NchMOSFET,
With
The source of the depletion type NchMOSFET is connected to the drain of the enhancement type NchMOSFET, and the gates of both FETs are connected to the connection point.
Using the voltage between the source and drain of the enhancement type Nch MOSFET as a reference voltage output,
8. The semiconductor device according to claim 5, wherein a probe contact pad is provided on the drain of the depletion type Nch MOSFET, the source of the enhancement type Nch MOSFET, and the reference voltage output.
前記エンハンスメント型NchMOSFETのソースを前記負側の電源(Vss)に接続し、前記ソースに設けたパッドを省略したことを特徴とする請求項9記載の半導体装置。   10. The semiconductor device according to claim 9, wherein a source of the enhancement type Nch MOSFET is connected to the negative power source (Vss), and a pad provided on the source is omitted. 前記モニタ基準電圧発生回路の任意のパッドに一端を接続し、他端を独立パッドに接続したモニタ抵抗を備えたことを特徴とする請求項9又は10記載の半導体装置。   11. The semiconductor device according to claim 9, further comprising a monitor resistor having one end connected to an arbitrary pad of the monitor reference voltage generating circuit and the other end connected to an independent pad. 請求項11の半導体装置の製造方法において、
前記モニタ抵抗の抵抗値をウエハテスト1工程で測定し、
該測定結果に基づいて次工程のレーザトリミング工程で、前記モニタ基準電圧発生回路と同一チップ上の、前記複数の定電圧回路に含まれている抵抗値の絶対値が必要な固定抵抗のトリミングを行うようにしたことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device of Claim 11,
The resistance value of the monitor resistor is measured in one wafer test process,
Based on the measurement result, in the next laser trimming step, trimming of the fixed resistor on the same chip as the monitor reference voltage generating circuit and requiring the absolute value of the resistance value included in the plurality of constant voltage circuits is performed. A method of manufacturing a semiconductor device, wherein the method is performed.
前記誤差増幅回路のバイアス電流生成回路は、基準電圧を構成しているエンハンスメント型NchMOSFETとカレントミラー回路を構成する複数のNchMOSFETで構成し、該複数のNchMOSFETのドレイン又はソースにトリミング用ヒューズを接続したことを特徴とする請求項7又は8記載の半導体装置。
The bias current generation circuit of the error amplifier circuit is composed of an enhancement type NchMOSFET that constitutes a reference voltage and a plurality of NchMOSFETs that constitute a current mirror circuit, and a trimming fuse is connected to the drain or source of the plurality of NchMOSFETs 9. The semiconductor device according to claim 7 or 8, wherein:
JP2003345963A 2003-10-03 2003-10-03 Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same Pending JP2005116634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345963A JP2005116634A (en) 2003-10-03 2003-10-03 Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345963A JP2005116634A (en) 2003-10-03 2003-10-03 Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2005116634A true JP2005116634A (en) 2005-04-28

Family

ID=34539077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345963A Pending JP2005116634A (en) 2003-10-03 2003-10-03 Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2005116634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344793A (en) * 2005-06-09 2006-12-21 Ricoh Co Ltd Semiconductor device having trimming circuit, trimming method therefor, and manufacturing method thereof
JP2007129841A (en) * 2005-11-04 2007-05-24 Toshiba Corp Power supply circuit and semiconductor integrated device
JP2007188245A (en) * 2006-01-12 2007-07-26 Toshiba Corp Reference voltage generating circuit and semiconductor integrated device
CN104181971A (en) * 2013-05-24 2014-12-03 比亚迪股份有限公司 Reference voltage source
JP2020162354A (en) * 2019-03-27 2020-10-01 富士電機株式会社 Manufacturing method for semiconductor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344793A (en) * 2005-06-09 2006-12-21 Ricoh Co Ltd Semiconductor device having trimming circuit, trimming method therefor, and manufacturing method thereof
JP2007129841A (en) * 2005-11-04 2007-05-24 Toshiba Corp Power supply circuit and semiconductor integrated device
JP2007188245A (en) * 2006-01-12 2007-07-26 Toshiba Corp Reference voltage generating circuit and semiconductor integrated device
JP4703406B2 (en) * 2006-01-12 2011-06-15 株式会社東芝 Reference voltage generation circuit and semiconductor integrated device
CN104181971A (en) * 2013-05-24 2014-12-03 比亚迪股份有限公司 Reference voltage source
CN104181971B (en) * 2013-05-24 2015-11-25 比亚迪股份有限公司 A kind of reference voltage source
JP2020162354A (en) * 2019-03-27 2020-10-01 富士電機株式会社 Manufacturing method for semiconductor module

Similar Documents

Publication Publication Date Title
US7268523B2 (en) Constant voltage power supply circuit and method of testing the same
JP4406405B2 (en) Temperature sensing system
KR101059901B1 (en) Constant voltage circuit
US7417448B2 (en) System to calibrate on-die temperature sensor
KR20060043008A (en) Voltage regulator and method of manufacturing the same
KR101944359B1 (en) Bandgap reference voltage generator
US11099081B2 (en) Current generating circuits capable of generating currents with different temperature coefficients and flexibly adjusting slope of the temperature coefficient
US8026756B2 (en) Bandgap voltage reference circuit
KR20120127275A (en) Voltage regulator
WO2010100683A1 (en) Reference current trimming circuit and a/d converter having the reference current trimming circuit
US7453311B1 (en) Method and apparatus for compensating for process variations
JP5168927B2 (en) Semiconductor device and trimming method thereof
JP2005116634A (en) Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same
JP6250418B2 (en) Voltage regulator
JP2009230421A (en) Circuit for providing load current
JP2001217692A (en) Voltage comparing circuit and substrate bias adjusting circuit using the same
JP4473627B2 (en) Constant current source, amplifier circuit and constant voltage circuit using the constant current source
JP2007040771A (en) Semiconductor device for noise measurement
JP4247973B2 (en) Current measurement circuit
JPS62274635A (en) Integrated circuit
JP4838596B2 (en) Constant current circuit
US20020017688A1 (en) Semiconductor memory circuit
JP4530878B2 (en) Voltage comparator, overcurrent detection circuit using the same, and semiconductor device
KR102409226B1 (en) Bandgap reference voltage circuit
JP2005302839A (en) Semiconductor integrated circuit