JPH02188918A - Processing of compound semiconductor - Google Patents

Processing of compound semiconductor

Info

Publication number
JPH02188918A
JPH02188918A JP593589A JP593589A JPH02188918A JP H02188918 A JPH02188918 A JP H02188918A JP 593589 A JP593589 A JP 593589A JP 593589 A JP593589 A JP 593589A JP H02188918 A JPH02188918 A JP H02188918A
Authority
JP
Japan
Prior art keywords
compound semiconductor
irradiated
processing
electron
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP593589A
Other languages
Japanese (ja)
Other versions
JPH0793285B2 (en
Inventor
Hiromi Hidaka
日高 啓視
Mototaka Tanetani
元隆 種谷
Yoshimasa Sugimoto
喜正 杉本
Kenzo Akita
秋田 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP593589A priority Critical patent/JPH0793285B2/en
Publication of JPH02188918A publication Critical patent/JPH02188918A/en
Publication of JPH0793285B2 publication Critical patent/JPH0793285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To process a compound semiconductor with little damage in a comparatively short time and to directly draw a pattern by using focused accelerating electrons by a method wherein the surface of the compound semiconductor is irradiated with a hydrocarbon gas as a reactive gas and is irradiated with accelerating electrons. CONSTITUTION:The surface of a compound semiconductor 4 is irradiated with a hydrocarbon gas as a reactive gas and is irradiated with accelerating electrons 11; and thereby, a region, irradiated with the accelerating electrons, of the compound semiconductor 4 is processed. For example, a deflector used to scan an electron beam 11 and its control apparatus are added to a processing apparatus, as shown in the figure, composed of the following: an electron-beam generation part 1 with which a compound semiconductor 4 is irradiated with the electron beam 11 through an electron lens for electron-beam focusing use; a nozzle 2 with which a compound semiconductor 4 is irradiated with a hydrocarbon compound; a vacuum container 10; a stage 5; and an evacuation part 7. GaAs is used as the compound semiconductor 4; CH4 is used as a reactive gas; and a prescribed region is removed from the surface of the compound semiconductor 4 by using the electron beam accelerated at an accelerating voltage of 10kV.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化合物半導体の加工方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a compound semiconductor processing method.

(従来の技術) 加速された荷電粒子を用いた化合物半導体の加工方法と
して、あらしめパターニングされたレジスト等のマスク
を化合物半導体の表面に形成し、加速されたイオンをレ
ジスト上部より照射して露出した化合物半導体の領域を
表層あるいは数層にわたって除去する方法がある。
(Prior art) As a compound semiconductor processing method using accelerated charged particles, a patterned mask such as a resist is formed on the surface of a compound semiconductor, and accelerated ions are irradiated from above the resist to expose it. There is a method of removing the surface layer or several layers of the compound semiconductor.

第3図は、基板104上にGaAsを活性層101とし
て形成し、活性層101上にはGaA47Asをクラッ
ド層102として形成したGaAj7A s / G 
a A sレーザ素子のクラッド層102に、A「イオ
ンを用いて回折格子を作製する工程を示す。
FIG. 3 shows a GaAj7A s/G structure in which GaAs is formed as an active layer 101 on a substrate 104, and GaA47As is formed as a cladding layer 102 on the active layer 101.
A process of fabricating a diffraction grating using A' ions in the cladding layer 102 of the a As laser device is shown.

まず6格子パターンを形成されるべきクラッド層102
上にマスク103を形成する(第3図a)。続いて、加
速イオンを照射して露出したクラッド層102をエツチ
ングしく第3図b)、マスク103を除去することによ
りクラッド層103に回折格子を形成する(第3図C)
。このようにして、鋭いピーク波長を有する半導体レー
ザ素子を作製することが出来る。
First, a cladding layer 102 on which a 6-lattice pattern is to be formed.
A mask 103 is formed on top (FIG. 3a). Subsequently, the exposed cladding layer 102 is etched by irradiation with accelerated ions (FIG. 3b), and the mask 103 is removed to form a diffraction grating in the cladding layer 103 (FIG. 3C).
. In this way, a semiconductor laser device having a sharp peak wavelength can be manufactured.

また、加速されたイオンを反応性ガスと共に半導体上に
照射して加工速度をはやめたり、反応の選択性を利用し
て、選択加工を行うことが出来る。
Further, it is possible to reduce the processing speed by irradiating the semiconductor with accelerated ions together with a reactive gas, or to perform selective processing by utilizing the selectivity of the reaction.

たとえば、CCl2F2ガスを用いたGaAs/GaA
ΩAsへテロ構造デバイスに於けるGaASの選択加工
は、FETのゲート部分の加工にも用いられている。
For example, GaAs/GaA using CCl2F2 gas
Selective processing of GaAS in ΩAs heterostructure devices is also used for processing the gate portion of FETs.

(発明が解決しようとする課題) 前記のような従来の加工方法では、アンダーカットされ
ることなく、マスクパターンに忠実な加工ができる。し
かし、加速されたイオンを用いるために、イオンのもつ
運動エネルギーにより半導体表面に損傷がはいり、これ
をとりのぞくためにさらに硫酸や塩酸などの腐食液をも
ちいて損傷層の除去を行うか、熱処理を施す必要がある
(Problems to be Solved by the Invention) With the conventional processing method as described above, processing can be performed faithfully to the mask pattern without undercutting. However, since accelerated ions are used, the kinetic energy of the ions causes damage to the semiconductor surface. It is necessary to apply

(課題を解決するための手段) 本発明は、上記問題点を解決するために、加速イオンの
代わりにこの加速イオンに比べて運動エネルギーが小さ
く、半導体への損傷の小さい加速電子を用い、反応性ガ
スも通常では腐食性の乏しい炭化水素を用いる点に特徴
がある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention uses accelerated electrons, which have lower kinetic energy and cause less damage to semiconductors than accelerated ions, instead of accelerated ions, and It is also characterized by the fact that hydrocarbons, which are generally less corrosive, are used as the corrosive gases.

(作用) 本発明は上記の方法により、加速電子自身のもつエネル
ギーにより炭化水素化合物と半導体表面との反応が促進
されると、半導体構成原子と炭化水素構成原子あるいは
原子団からなる揮発性化合物として半導体表面から離脱
する現象を利用する。
(Function) According to the above method, when the reaction between a hydrocarbon compound and a semiconductor surface is promoted by the energy of the accelerated electrons themselves, a volatile compound consisting of semiconductor constituent atoms and hydrocarbon constituent atoms or atomic groups is formed. Utilizes the phenomenon of detachment from the semiconductor surface.

(実施例) 第1図は本発明を実施する加工装置の構成を示す模式図
である。第1図において、1は電子ビーム発生部で、図
示されない電子ビーム集中用の電子レンズを通した電子
ビーム11を化合物半導体に照射する。2は炭化水素化
合物を化合物半導体面に照射するためのノズルでガス導
入部3を通して真空容器10内に導入される。4は加工
を行おうとする化合物半導体で、ステージ5に搭載され
ている。ステージ5は位置調整部6により真空容器10
内における位置が調整可能である。
(Example) FIG. 1 is a schematic diagram showing the configuration of a processing apparatus for implementing the present invention. In FIG. 1, reference numeral 1 denotes an electron beam generating section, which irradiates a compound semiconductor with an electron beam 11 passed through an electron lens (not shown) for concentrating the electron beam. Reference numeral 2 denotes a nozzle for irradiating the compound semiconductor surface with a hydrocarbon compound, which is introduced into the vacuum container 10 through the gas introduction part 3. 4 is a compound semiconductor to be processed, which is mounted on stage 5. The stage 5 is moved to the vacuum container 10 by the position adjustment unit 6.
The position within is adjustable.

本装置では、排気部7により反応系を低圧(10−5T
orr以下)に保ったまま化合物半導体を加工できる。
In this apparatus, the reaction system is kept under low pressure (10-5T) by the exhaust part 7.
compound semiconductors can be processed while maintaining the

この点は本発明における重要な特徴であり、半導体表面
を種々の汚染物質から保護することが出来る。
This point is an important feature of the present invention, and can protect the semiconductor surface from various contaminants.

なお、第1図は、本発明を実施するための基本的な構成
であり、電子ビーム集束性能の改善に伴う装置の付加、
パターン描画のための偏向器等やその制御装置等を制限
するものではない。また、化合物半導体表面に反応活性
な物質を均一に照射する特性を有するようなノズル形状
を制限するものではない。
Note that FIG. 1 shows the basic configuration for implementing the present invention, and the addition of devices to improve the electron beam focusing performance,
This does not limit the deflector or the like for pattern drawing or the control device thereof. Furthermore, the shape of the nozzle is not limited to a shape that has the characteristic of uniformly irradiating the surface of a compound semiconductor with a reactive substance.

第2図は本発明により加工された化合物半導体のホトル
ミネッセンス強度のallll定結水す。ここでは、電
子ビームを走査するための偏向器およびその制御装置を
付加して、化合物半導体面の任意の領域の除去加工(エ
ツチング)を可能にしている。また、化合物半導体とし
てガリウムヒ素(GaAs)を、反応性ガスとしてはメ
タン(C)14)をそれぞれ用い、加速電圧10kVに
て加速した電子線により、 500μm X500μ■
の領域を化合物半導体表面より除去した時の除去部位に
おけるホトルミネッセンス強度を除去層厚に対して測定
したものである。なお、電子ビームの照射と反応性ガス
の照射とは同時でも良いし、交互に行なっても良い。
FIG. 2 shows the photoluminescence intensity of the compound semiconductor processed according to the present invention. Here, a deflector for scanning the electron beam and its control device are added to enable removal processing (etching) of an arbitrary region of the compound semiconductor surface. In addition, using gallium arsenide (GaAs) as a compound semiconductor and methane (C)14) as a reactive gas, an electron beam accelerated at an acceleration voltage of 10 kV was used to form a 500 μm x 500 μ■
The photoluminescence intensity at the removed region when the region is removed from the compound semiconductor surface is measured with respect to the removed layer thickness. Note that the electron beam irradiation and the reactive gas irradiation may be performed simultaneously or alternately.

ホトルミネッセンスの強度変化は、結晶に対する1員傷
程度に非常に敏感であり、ti傷の程度の小さいものほ
どホトルミネッセンスの強度減少は少ない。なお、第2
図にはAr+イオンビームを用いてGaAs表面の除去
を行なった時のホトルミネッセンス強度の変化を比較す
るために示した。
Changes in the intensity of photoluminescence are very sensitive to single-member scratches on the crystal, and the smaller the degree of the scratch, the less the decrease in the intensity of photoluminescence. In addition, the second
The figure is shown for comparison of changes in photoluminescence intensity when the GaAs surface is removed using an Ar+ ion beam.

図から明らかなように、本発明による加工方法では、イ
オンビーム利用の場合に比べて損傷の程度が大幅に小さ
いことがわかる。Ar+イオンのようにイオンを集束ビ
ーム源とする加工法では、半導体損傷はおもにイオンの
運動エネルギによるものと考えられる。一方、電子線の
持つ運動エネルギーは僅かであるため、本質的に半導体
に与える損傷は小さい。
As is clear from the figure, the degree of damage is significantly smaller in the processing method according to the present invention than in the case of using an ion beam. In processing methods that use ions as a focused beam source, such as Ar+ ions, semiconductor damage is thought to be mainly due to the kinetic energy of the ions. On the other hand, since the kinetic energy of the electron beam is small, essentially the damage caused to the semiconductor is small.

本実施例で用いた化合物半導体はガリウムヒ素であり、
反応活性な物質としてメタンを用いているが、被加工化
合物半導体および反応活性な物質である炭化水素を限定
するものではない。たとえば、炭化水素としては、エタ
ン(C2H6) 、プロパン(C3H8)、ブタン(C
4H1o)等の飽和炭化水素、エチレン(C2H2) 
、プロピレン(C3H7)等の非飽和炭化水素、メタノ
ール(CHOH) 、エタノール(C2H50H)等の
アルコール系なども通常では腐食性の乏しい物質である
が、電子エネルギーを供与した状態では化合物半導体に
対し反応活性な物質である。また。
The compound semiconductor used in this example is gallium arsenide,
Although methane is used as a reactive substance, the compound semiconductor to be processed and hydrocarbons as a reactive substance are not limited. For example, hydrocarbons include ethane (C2H6), propane (C3H8), and butane (C3H8).
Saturated hydrocarbons such as 4H1o), ethylene (C2H2)
, unsaturated hydrocarbons such as propylene (C3H7), alcohols such as methanol (CHOH) and ethanol (C2H50H), etc., are normally less corrosive substances, but they react with compound semiconductors when provided with electronic energy. It is an active substance. Also.

反応性ガスと電子ビームの照射は同時、交互のいずれで
も良い。
The reactive gas and electron beam irradiation may be performed simultaneously or alternately.

(発明の効果) 以上述べてきたように、本発明によれば、電子線照射に
よる化学反応を用いているため、損傷の小さい化合物半
導体の加工を比較的短時間に行うことができる。また、
集束した加速電子を用いることによりパターンの直接描
画が可能で、マスク形成の必要がなくプロセスが簡略化
され、極めて高精度な加工が可能である。さらに、反応
活性な物質として腐食性に乏しい炭化水素を用いている
ため、装置の保守が簡便であるなど、実用的に非常に有
用である。
(Effects of the Invention) As described above, according to the present invention, since a chemical reaction by electron beam irradiation is used, a compound semiconductor with little damage can be processed in a relatively short time. Also,
By using focused accelerated electrons, it is possible to directly draw a pattern, there is no need to form a mask, the process is simplified, and extremely high-precision processing is possible. Furthermore, since a hydrocarbon with poor corrosiveness is used as a reactive substance, maintenance of the apparatus is simple, and it is very useful from a practical point of view.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する加工装置の概略構成を示した
図、第2図は本発明の一実施例により得られた被加工化
合物半導体のホトルミネッセンス強度の測定結果を示し
た図、第3図は従来のイオンビームによる゛エツチング
加工を説明するための図である。 101−G a A s活性層、102−G a Aρ
ASクラッド層、103・・・レジストマスク、104
・・・GaAs基板、1・・・電子ビーム発生部、2・
・・ノズル、3・・・ガス導入部、4・・・化合物半導
体、5・・・ステージ、6・・・位置調整部、7・・・
排気部、10・・・真空容器。 第1図 第2図 除去層厚(戸)″
FIG. 1 is a diagram showing a schematic configuration of a processing apparatus for carrying out the present invention, FIG. FIG. 3 is a diagram for explaining conventional etching processing using an ion beam. 101-G a As active layer, 102- G a Aρ
AS cladding layer, 103... resist mask, 104
...GaAs substrate, 1...electron beam generation section, 2.
... Nozzle, 3... Gas introduction section, 4... Compound semiconductor, 5... Stage, 6... Position adjustment section, 7...
Exhaust section, 10... vacuum container. Figure 1 Figure 2 Removal layer thickness (door)''

Claims (1)

【特許請求の範囲】 1)化合物半導体の表面に、反応性ガスとして炭化水素
ガスを照射すると共に、加速電子を照射することにより
、該化合物半導体の加速電子照射領域を加工することを
特徴とする化合物半導体の加工方法。 2)請求項1記載の化合物半導体の加工方法において、
前記加速電子を集束し、前記炭化水素が照射された化合
物半導体の表面を走査して加工パターンを直接描画する
ことを特徴とする化合物半導体の加工方法。
[Claims] 1) Processing the accelerated electron irradiation region of the compound semiconductor by irradiating the surface of the compound semiconductor with a hydrocarbon gas as a reactive gas and irradiating accelerated electrons. Compound semiconductor processing method. 2) In the compound semiconductor processing method according to claim 1,
A method for processing a compound semiconductor, characterized in that the accelerated electrons are focused and the surface of the compound semiconductor irradiated with the hydrocarbon is scanned to directly draw a processing pattern.
JP593589A 1989-01-17 1989-01-17 Compound semiconductor processing method Expired - Lifetime JPH0793285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP593589A JPH0793285B2 (en) 1989-01-17 1989-01-17 Compound semiconductor processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP593589A JPH0793285B2 (en) 1989-01-17 1989-01-17 Compound semiconductor processing method

Publications (2)

Publication Number Publication Date
JPH02188918A true JPH02188918A (en) 1990-07-25
JPH0793285B2 JPH0793285B2 (en) 1995-10-09

Family

ID=11624757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP593589A Expired - Lifetime JPH0793285B2 (en) 1989-01-17 1989-01-17 Compound semiconductor processing method

Country Status (1)

Country Link
JP (1) JPH0793285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process

Also Published As

Publication number Publication date
JPH0793285B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
EP1843972B1 (en) Patterning by energetically-stimulated local removal of solid-condensed-gas layers and solid state chemical reactions produced with such layers
EP1829088B1 (en) Lift-off patterning processes employing energetically-stimulated local removal of solid-condensed-gas layers
US20100159370A1 (en) Method for forming microscopic structures on a substrate
CN108133879B (en) Near-field ion source for simultaneous in-situ acquisition of micro-nano scale morphology and chemical information
JPH02188918A (en) Processing of compound semiconductor
JPH05190517A (en) Microscopic pattern forming method
Temkin et al. Ultrathin semiconductor layer masks for high vacuum focused Ga ion beam lithography
US4680087A (en) Etching of dielectric layers with electrons in the presence of sulfur hexafluoride
JP3198302B2 (en) Method of forming fine structure pattern
JP2500443B2 (en) Compound semiconductor dry etching method
Watanabe et al. Low‐damage electron‐beam‐assisted dry etching of GaAs and AlGaAs using electron cyclotron resonance plasma electron source
JP2600243B2 (en) High purity metal deposition method
Eddy Jr et al. Deep submicron pattern transfer using high density plasma etching and nanochannel glass replica technology
JP2785190B2 (en) Pattern forming equipment
JPS614224A (en) Patterned film forming apparatus
JPH0831775A (en) Fine processing method for compound semiconductor
RU2135633C1 (en) Method of vacuum deposition of thin films
JP2920922B2 (en) Pattern formation method
JPS63199429A (en) Finely working method for semiconductor and forming method for semiconductor fine buried structure
JPS61152018A (en) Ashing method for organic substance
JPH06291095A (en) Pattern forming method
JP2647056B2 (en) Semiconductor pattern formation method
JPH01278027A (en) Processing method for semiconductor substrate
JPH0320897B2 (en)
JPH02183530A (en) Manufacture of semiconductor element