JPH02188473A - Production of ceramic composite material - Google Patents

Production of ceramic composite material

Info

Publication number
JPH02188473A
JPH02188473A JP1007328A JP732889A JPH02188473A JP H02188473 A JPH02188473 A JP H02188473A JP 1007328 A JP1007328 A JP 1007328A JP 732889 A JP732889 A JP 732889A JP H02188473 A JPH02188473 A JP H02188473A
Authority
JP
Japan
Prior art keywords
ceramic
composite material
compd
fibers
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007328A
Other languages
Japanese (ja)
Inventor
Yukio Shimokawa
下川 行夫
Hiroshi Nomura
浩 野村
Hirohiko Nakada
博彦 仲田
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Sumitomo Electric Industries Ltd
Original Assignee
FINE CERAMICS CENTER
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Sumitomo Electric Industries Ltd filed Critical FINE CERAMICS CENTER
Priority to JP1007328A priority Critical patent/JPH02188473A/en
Publication of JPH02188473A publication Critical patent/JPH02188473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the damage and embrittlement of a ceramic composite material due to the reaction of the reinforcing fibers with the matrix, to render superior strength and toughness and to utilize the material for automotive engine parts, etc., by impregnating ceramic fibers preheated to a specified temp. with an oxidized compd. of Ti and Cu melted by heating and by rapidly cooling them. CONSTITUTION:An oxidized compd. of Ti and Cu is melted by heating and ceramic fibers or whiskers are preheated to >=800 deg.C, preferably to the m.p. of the compd. or above and impregnated with the molten compd. in several sec to several min by pouring, dipping or other method. They are rapidly cooled to <=900 deg.C and slowly cooled to obtain a ceramic composite material using the oxidized compd. of Ti and Cu as the matrix.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス繊維で強化したセラミックス複
合材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a ceramic composite material reinforced with ceramic fibers.

〔従来の技術〕[Conventional technology]

チタンと銅の酸化化合物をマトリックスとする複合材料
に関しては、特開昭59−156972号公報にチタン
酸鋼のマトリックスにアルミナ繊維のような補強繊維を
一体的に埋設したセラミックス複合材料が提案されてい
るのみである。
Regarding composite materials with a matrix of titanium and copper oxide compounds, Japanese Patent Laid-Open No. 156972/1983 proposed a ceramic composite material in which reinforcing fibers such as alumina fibers were integrally embedded in a titanate steel matrix. There is only one.

このセラミックス複合材料は、上記公報によればCuO
とTiOとの混合物を1000〜1050Cに加熱して
チタン酸鋼を得た後、このチタン酸鋼に水と分散剤を加
えてスラリーとし、このスラリーをアルミナ(A/ O
) tlA維のような補強繊維に含浸させ、大気中で加
熱してチタン酸鋼を溶融含浸させることにより製造され
る。
According to the above publication, this ceramic composite material is CuO
After heating a mixture of and TiO to 1000-1050C to obtain titanate steel, water and a dispersant are added to this titanate steel to form a slurry, and this slurry is mixed with alumina (A/O
) It is manufactured by impregnating reinforcing fibers such as tlA fibers and heating them in the atmosphere to melt and impregnate titanate steel.

しかしながら、チタン酸鋼のようなチタンと銅の酸化化
合物は著しく反応性に富むため、例えばAIO繊維と加
熱して複合化しようとすると直ちに反応が進行してA/
 O繊維が消失又は損傷したす、脆性化してしまうので
、構造用セラミックス材料として適するような高強度で
高靭性のセラミックス複合体を得ることが出来なかった
However, titanium and copper oxide compounds such as titanate steel are extremely reactive, so if you try to heat them to form a composite with, for example, AIO fibers, the reaction will proceed immediately.
Since the O fibers are lost or damaged and become brittle, it has not been possible to obtain a ceramic composite with high strength and high toughness suitable as a structural ceramic material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

チタン酸鋼などのチタンと銅の酸化化合物はセラミック
スに対して濡れ性が良く、セラミックス繊維と容易に複
合化できる可能性を有している。
Oxidized compounds of titanium and copper, such as titanate steel, have good wettability with ceramics and have the potential to be easily composited with ceramic fibers.

しかし、反面チタンと鋼の酸化化合物は反応性が高く、
アルミナ系繊維などのセラミックス繊維に接すると反応
するため、両者を複合化させるとセラミックス繊維が短
時間で反応して消失又は損傷したり、脆性化していた。
However, on the other hand, the oxidized compounds of titanium and steel are highly reactive;
Since it reacts when it comes into contact with ceramic fibers such as alumina fibers, when the two are combined, the ceramic fibers react in a short period of time, causing them to disappear, be damaged, or become brittle.

従って、上記した従来の技術では、複合化の際にチタン
酸銀とセラミックス繊維を混合した試料を1100 C
程度に加熱して試料内部まで均熱化するためには通常数
時間を要し、その間にセラミックス繊維がチタン酸銀と
反応して損傷又は脆性化することが避けられず、そのた
めセラミックス繊維が強化繊維として十分に機能せず、
強度及び靭性の低いセラミックス複合体しか得られなか
った。
Therefore, in the above-mentioned conventional technology, a sample of silver titanate and ceramic fibers is heated at 1100 C during compositing.
It usually takes several hours to heat the sample to a certain degree and soak it up to the inside of the sample, and during this time it is inevitable that the ceramic fibers will react with the silver titanate and become damaged or brittle, so the ceramic fibers will be strengthened. It does not function well as a fiber,
Only ceramic composites with low strength and toughness were obtained.

本発明はかかる従来の事情に鑑み、チタンと銅の酸化化
合物とセラミックス繊維との反応を抑制し、強度及び靭
性に優れたセラミックス複合体を製造する方法を提供す
ることを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a method for suppressing the reaction between a titanium and copper oxide compound and ceramic fibers and manufacturing a ceramic composite having excellent strength and toughness.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明におけるセラミック
ス複合材料の製造方法では、800C以上に予熱したセ
ラミックス繊維又はウィスカーに、加熱溶融させたチタ
ンと銅の酸化化合物を数秒から数分間で含浸させ、その
後直ちに900C以下の温度まで急冷することを特徴と
する。
In order to achieve the above object, in the method for manufacturing a ceramic composite material of the present invention, ceramic fibers or whiskers preheated to 800C or higher are impregnated with a heat-molten titanium and copper oxide compound for several seconds to several minutes, and then It is characterized by immediate rapid cooling to a temperature of 900C or less.

本発明においてチタンと鋼の酸化化合物とは、TiG 
 とCuOの化合物であるチタン酸銀など、T1o2と
OuO及び/又はCuOを1000 tZ’以上に加熱
して得られる化合物を云う。
In the present invention, the titanium and steel oxide compound refers to TiG
It refers to a compound obtained by heating T1o2 and OuO and/or CuO to 1000 tZ' or more, such as silver titanate, which is a compound of OuO and CuO.

又、セラミックス繊維又はウィスカーの組成は限定され
ず、これらは繊維やウィスカーのま\用いても良いが、
織布や加圧成形体などに予備成形したものを使用するこ
とも出来る。
Furthermore, the composition of the ceramic fibers or whiskers is not limited, and these may be used as fibers or whiskers, but
It is also possible to use a preformed product such as a woven fabric or a pressure molded product.

〔作用〕[Effect]

チタンと銅の酸化化合物とセラミックス繊維又はウィス
カーとの反応を抑制するため、本発明方法では複合化の
ための熱処理時間を短くする解決策を採ったものである
In order to suppress the reaction between the titanium and copper oxide compound and the ceramic fibers or whiskers, the method of the invention takes a solution to shorten the heat treatment time for composite formation.

即ち、従来の如くチタン酸銀とセラミックス繊維を混合
した試料を1100 r程度に加熱して複合化するため
には、試料内部まで均熱化するのに通常数時間を要する
ので、その間に反応が進行してしまう。そこで、本発明
方法ではセラミックス繊維又はウィスカーにチタンと銅
の酸化化合物を溶融状態で直接含浸させ複合化すること
とした。
In other words, in order to compound a sample of silver titanate and ceramic fibers by heating them to about 1100 r as in the past, it usually takes several hours to soak the inside of the sample, so there is no reaction during that time. It progresses. Therefore, in the method of the present invention, ceramic fibers or whiskers are directly impregnated with an oxidized compound of titanium and copper in a molten state to form a composite.

しかしながら、1000C以上に加熱溶融したチタンと
銅の酸化化合物を室温のセラミックス繊維又はウィスカ
ーに接触させると、チタンと銅の酸化化合物は接触と同
時にセラミックス繊、維又はウィスカーの表面部分で固
化して含浸経路を埋めてしまうので、内部への含浸が困
難になり、内部に未含浸部分が残存した低密度の複合体
しか得られないことになる。
However, when a titanium and copper oxide compound heated and melted at 1000C or higher is brought into contact with ceramic fibers or whiskers at room temperature, the titanium and copper oxide compound solidifies and impregnates the surface of the ceramic fiber, fiber, or whisker upon contact. Since the channels are buried, it becomes difficult to impregnate the inside, and only a low-density composite with unimpregnated parts remaining inside can be obtained.

この問題を解決するため、本発明方法ではセラミックス
繊維又はウィスカーを800C以上、好ましくはチタン
と銅の酸化化合物の溶融温度以上に予熱する。即ち、繊
維又はウィスカーそのものを型に入れるか、若しくはそ
の予備成形体を上記温度に予熱し、これに溶融したチタ
ンと銅の酸化化合物を流し込んだり又はディッピング等
により含浸させるのである。セラミックス繊維等が5o
or以上に予熱されていれば、溶融したチタンと銅の酸
化化合物は接触しても固化することなく内部に容易に侵
入でき、従来に比較して極めて短時間で具体的には数秒
から数分間で内部まで含浸複合化を完了させることが出
来る。その結果、チタンと銅の酸化化合物とセラミック
ス繊維又はウィスカーとの反応を有効に抑制することが
できる。又、このように短時間でセラミックス繊維又は
ウィスカーにチタンと銅の酸化化合物を含浸させた後、
室温まで長時間かけて冷却したのでは冷却中に両者の反
応が進行するので、反応が抑制される温度まで、具体的
には900C以下まで急冷する必要がある。上記温度以
下では反応によるセラミックス繊維又はウィスカーの損
傷や脆性化の心配はなくなるが、急冷を絖けると熱衝撃
によってセラミックス繊維又はウィスカーが損傷を受け
る危険があるので、好ましくは上記温度以下においては
徐冷する。
To solve this problem, in the method of the present invention, the ceramic fibers or whiskers are preheated to a temperature above 800C, preferably above the melting temperature of the titanium and copper oxide compound. That is, the fiber or whisker itself is placed in a mold, or its preform is preheated to the above temperature, and a molten titanium and copper oxide compound is poured into it or impregnated by dipping. Ceramic fiber etc. 5o
If the oxide compound of molten titanium and copper is preheated to a temperature above or above, it can easily penetrate into the interior without solidifying even if it comes into contact with it, and in an extremely short time compared to conventional methods, specifically from several seconds to several minutes. This completes the impregnation and compositing process to the inside. As a result, the reaction between the titanium and copper oxide compound and the ceramic fibers or whiskers can be effectively suppressed. In addition, after impregnating ceramic fibers or whiskers with titanium and copper oxide compounds in a short period of time,
If the mixture is cooled to room temperature over a long period of time, the reaction between the two will proceed during cooling, so it is necessary to rapidly cool the mixture to a temperature at which the reaction is suppressed, specifically to 900C or lower. If the temperature is below the above temperature, there is no risk of damage or embrittlement of the ceramic fibers or whiskers due to the reaction, but if the temperature is rapidly cooled, there is a risk that the ceramic fibers or whiskers will be damaged by thermal shock. Cool down.

〔実施例〕〔Example〕

実施例1 kl Oが80%以上からなるセラミックスの連続繊維
の織布40 gを耐熱合金製の型中に積層し、105O
rで1時間予熱した。次に、TlO2とOuOをモル比
で1:3に混合した345gを1050℃に加熱して溶
融させ、同一温度に予熱した上記型中に流し込み、織布
に含浸させた。この含浸複合化に要した時間は僅かに3
0秒であった。その後、直ちに5分間で800Cまで急
冷し、以後室温まで徐冷を行なった。
Example 1 40 g of continuous fiber woven fabric of ceramics containing 80% or more of klO was laminated in a mold made of a heat-resistant alloy.
Preheated at r for 1 hour. Next, 345 g of a mixture of TlO2 and OuO at a molar ratio of 1:3 was heated to 1050° C. to melt it, and poured into the mold preheated to the same temperature to impregnate the woven fabric. The time required for this impregnation composite was only 3.
It was 0 seconds. Thereafter, it was immediately rapidly cooled to 800C in 5 minutes, and then slowly cooled to room temperature.

得られた複合材料を電子顕微鏡にて観察したところ、セ
ラミックス連続繊維が完全な形で認められ、反応が進行
していないことが確認された。更に、複合材料を3X4
X40朋の試験片に加工し、室温での4点曲げ強度とイ
ンデンテーション法による破壊靭性値(K  )を測定
したところ、強度C が49φm及び破壊靭性値が9.5 MN7’m”/2
の高い値が得られた。
When the obtained composite material was observed under an electron microscope, the ceramic continuous fibers were observed in perfect form, confirming that the reaction had not proceeded. Furthermore, the composite material is 3X4
When processed into a test piece of X40 mm and measured for four-point bending strength at room temperature and fracture toughness value (K) by the indentation method, the strength C was 49φm and the fracture toughness value was 9.5 MN7'm"/2
A high value was obtained.

実施例2 TiO: CuO: Cu Oをモル比で11:1に混
合し、1100 Cにて溶融反応させ、得られたT1と
東の酸化化合物を粉砕し、平均粒径3.0μmに調整し
た。一方、SICウィスカー(平均直径1.5μm×平
均長25μm)を気孔率65%の圧粉体とし、1050
Cで30分間予熱した。次に、予熱された圧粉体75 
gを同じ< 1050 Cに加熱溶融した上記のT1と
Cuの酸化化合物にディッピングし、含浸複合化させた
。この含浸複合化に要した時間は僅かに20秒であった
。含浸複合化の後、直ちに10分間で800Cまで急冷
し、以後室温まで徐冷を行なった。
Example 2 TiO:CuO:CuO was mixed at a molar ratio of 11:1, melted and reacted at 1100 C, and the obtained T1 and Higashi oxide compounds were ground and adjusted to an average particle size of 3.0 μm. . On the other hand, SIC whiskers (average diameter 1.5 μm x average length 25 μm) were used as a compact with a porosity of 65%, and 1050
Preheated at C for 30 minutes. Next, the preheated powder compact 75
g was dipped in the above-mentioned oxidized compound of T1 and Cu heated and melted at <1050 C to form an impregnated composite. The time required for this impregnation and composite formation was only 20 seconds. Immediately after the impregnation and composite formation, the mixture was rapidly cooled to 800C for 10 minutes, and then slowly cooled to room temperature.

比較のため、上記の如く合成したT1とCuの酸化化合
物とSiCウィスカーをボールミル中で混合し、混合物
の圧粉体を10C/分で昇温し、1050Cで30分保
持して複合化させ、その後徐冷して比較例の複合材料を
得た。
For comparison, the oxidized compound of T1 and Cu synthesized as described above and SiC whiskers were mixed in a ball mill, and the green compact of the mixture was heated at 10 C/min and held at 1050 C for 30 minutes to form a composite. Thereafter, it was slowly cooled to obtain a composite material of a comparative example.

各複合材料について、X線回折法により、複合化熱処理
の前と後とのS1CウイスカーのX線回折ピークを測定
し、熱処理前を100としたX線回折ピーク比(但し、
本発明例については、含浸後のT1と(uの酸化化合物
の増加分を補正した)を求めた。又、得られた各複合材
料(こついて実施例1と同様に機械的特性を評価し、結
果を併せて下記に不した。
For each composite material, the X-ray diffraction peaks of the S1C whiskers before and after the composite heat treatment were measured using the X-ray diffraction method, and the X-ray diffraction peak ratio (where the value before heat treatment was taken as 100)
For the present invention example, T1 after impregnation (corrected for the increase in the oxidized compound of u) was determined. In addition, the mechanical properties of each of the obtained composite materials were evaluated in the same manner as in Example 1, and the results are summarized below.

ているため、従来応用化が進まなかった自動車用エンジ
ン部品等の構造用セラミックス材料分野において極めて
有用である。
Therefore, it is extremely useful in the field of structural ceramic materials such as automobile engine parts, which have not been widely applied in the past.

本発明例は、X線回折ピーク比が100に近く、複合化
の前後でSiCウィスカーが殆ど反応していないこと、
従って強度及び破壊靭性値ともに優れた値が得られたこ
とが判る。
In the example of the present invention, the X-ray diffraction peak ratio is close to 100, and the SiC whisker hardly reacts before and after compounding.
Therefore, it can be seen that excellent values for both strength and fracture toughness were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、短時間で複合化を完了でさ、るので、
補強繊維であるセラミックス繊維がマトリックスである
チタンと銅の酸化化合物と反応して損傷したり脆性化す
ることがなく、強度及び靭性ともに優れたセラミックス
複合材料を容易に製造することが出来る。
According to the present invention, since compositing can be completed in a short time,
Ceramic fibers, which are reinforcing fibers, do not react with the oxidized compound of titanium and copper, which is a matrix, and are not damaged or become brittle, making it possible to easily produce a ceramic composite material with excellent strength and toughness.

Claims (2)

【特許請求の範囲】[Claims] (1) 800℃以上に予熱したセラミックス繊維又は
ウィスカーに、加熱溶融させたチタンと銅の酸化化合物
を数秒から数分間で含浸させ、その後直ちに900℃以
下の温度まで急冷することを特徴とするセラミックス複
合材料の製造方法。
(1) Ceramics characterized by impregnating ceramic fibers or whiskers preheated to 800°C or higher with a heated and molten titanium and copper oxide compound for several seconds to several minutes, and then immediately rapidly cooling to a temperature of 900°C or lower. Method of manufacturing composite materials.
(2) 請求項(1)の方法において、900℃以下の
温度まで急冷した後、徐冷することを特徴とするセラミ
ックス複合材料の製造方法。
(2) A method for producing a ceramic composite material according to claim (1), characterized in that the material is rapidly cooled to a temperature of 900° C. or less and then slowly cooled.
JP1007328A 1989-01-13 1989-01-13 Production of ceramic composite material Pending JPH02188473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007328A JPH02188473A (en) 1989-01-13 1989-01-13 Production of ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007328A JPH02188473A (en) 1989-01-13 1989-01-13 Production of ceramic composite material

Publications (1)

Publication Number Publication Date
JPH02188473A true JPH02188473A (en) 1990-07-24

Family

ID=11662892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007328A Pending JPH02188473A (en) 1989-01-13 1989-01-13 Production of ceramic composite material

Country Status (1)

Country Link
JP (1) JPH02188473A (en)

Similar Documents

Publication Publication Date Title
KR100556582B1 (en) Processes for preparing a preform for use in a metal matrix composite and for fabricating a metal composite, and a magnesium or magnesium alloy composite
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
EP0394056B1 (en) Metal-based composite material and process for preparation thereof
JPH02188473A (en) Production of ceramic composite material
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH0672029B2 (en) Fiber reinforced metal
JP3618106B2 (en) Composite material and method for producing the same
JP4537501B2 (en) Cemented carbide and method for producing the same
KR102324737B1 (en) Manufacturing method carbon fiber reinforced metal composites and carbon fiber reinforced aluminum composites manufactured thereby
US4573519A (en) Method for forming metal base composite
JP4119770B2 (en) Method for producing composite preform
JPH01263233A (en) Production of beta type silicon nitride whisker-reinforced metallic composite material
JPS59156972A (en) Ceramics composite material
JP2952361B2 (en) Magnesium borate fiber reinforced metal matrix composite and method for producing the same
JPH0564692B2 (en)
JPS6367535B2 (en)
JPH11302078A (en) Composite material and its production
JPH09268080A (en) Production of composite ceramic of filament
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPS63297277A (en) Sic whisker-reinforced metallic composite material and production thereof
JPS62297427A (en) Manufacture of reinforcement for fiber-reinforced metal
JP2981594B2 (en) Reinforced metal matrix composite
JP2001316184A (en) Metal-ceramuc compound material and its manufacturing method
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JP2004035307A (en) Metal-ceramic composite material