JPH02188445A - Production of high-temperature superconducting crystallized glass - Google Patents

Production of high-temperature superconducting crystallized glass

Info

Publication number
JPH02188445A
JPH02188445A JP900089A JP900089A JPH02188445A JP H02188445 A JPH02188445 A JP H02188445A JP 900089 A JP900089 A JP 900089A JP 900089 A JP900089 A JP 900089A JP H02188445 A JPH02188445 A JP H02188445A
Authority
JP
Japan
Prior art keywords
glass
weight
superconducting
crystallized
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP900089A
Other languages
Japanese (ja)
Other versions
JPH0443860B2 (en
Inventor
Hideo Tanigawa
谷川 秀夫
Toru Ogura
透 小倉
Ichiro Matsubara
一郎 松原
Hiroshi Yamashita
博志 山下
Minoru Kinoshita
木下 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP900089A priority Critical patent/JPH02188445A/en
Publication of JPH02188445A publication Critical patent/JPH02188445A/en
Publication of JPH0443860B2 publication Critical patent/JPH0443860B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the high-temp. superconducting crystallized glass capable of being easily worked into various forms, e.g. film, ribbon, and filament, while keeping its characteristic as a superconductor by using a specified glass composition, melting the composition by heating, and crystallizing the molten composition by heat treatment. CONSTITUTION:From 0.02 to 0.08 pts.wt. of Au or Pt is added to 100 pts.wt. of a mixed powder contg., by weight, 3.7-4.9% GeO2 or Ge2O3, 39.0-39.5% Bi2O3, 20.1-20.3% SrO2, 9.4-9.5% CaO, and 26.6-27.0% CuO. The mixture is heated and melted to produce glass, and the glass is crystallized by heat treatment. Colloidal Au or Pt has to be incorporated into the glass as the crystalline nucleus. Accordingly, Au or Pt is preferably incorporated into the starting raw mixture in the form of the aq. soln. of chloroauric acid (HAuCl4.4H2O) or hexachloroplatinic acid (H2PtCl6.6H2O).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温超電導結晶化ガラスの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing high temperature superconducting crystallized glass.

〔従来の技術〕[Conventional technology]

高温酸化物超電導材料の製造法は、原料粉末を焼いて固
める焼結法と、原料粉末を溶融したのち加熱処理をして
製造する溶融法の二つに大別される。
Methods for producing high-temperature oxide superconducting materials are broadly divided into two: sintering methods in which raw material powder is baked and solidified, and melting methods in which raw material powders are melted and then heat treated.

いずれの方法もすでに多くの提案がなされている。Many proposals have already been made for both methods.

ところで、これらの方法で製造された超電導材料は、そ
の成形、加工が困難である。
However, superconducting materials produced by these methods are difficult to mold and process.

しかしながら、最近では膜状、リボン状、糸状体など各
種の形状のものが要求されるようになって来た。
However, in recent years, various shapes such as membrane, ribbon, and filament shapes have been required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の溶融法による製造方法では、ガラス状溶融物より
急冷固化して、各種の形状に加工する際に失透現象が起
こりやすく、加工が困難であった。
In the conventional manufacturing method using the melting method, the glass-like melt is rapidly solidified and devitrification tends to occur when processing it into various shapes, making processing difficult.

これは原料構成元素が極めてガラス化しに、くいもので
あり、しかも限定された成分でなければ酸化物超電導体
にならないためである。
This is because the constituent elements of the raw material are extremely difficult to vitrify, and the oxide superconductor cannot be formed unless the ingredients are in a limited range.

換言すれば、超電導特性を示すためには組成的にガラス
化が困難であり、失透しやすい範囲にあるのが通常であ
る。
In other words, in order to exhibit superconducting properties, it is difficult to vitrify the composition, and it is usually within a range where devitrification is likely to occur.

そこで本発明は、かかる従来の溶融法の欠点を解消し、
超電導体としての特性を保持しながら、膜状体、リボン
状体、糸状体など各種の形状に容易に加工することがで
きる超電導体の製造方法を提供することを目的とするも
のである。
Therefore, the present invention solves the drawbacks of the conventional melting method, and
It is an object of the present invention to provide a method for manufacturing a superconductor that can be easily processed into various shapes such as a film-like body, a ribbon-like body, and a filament-like body while maintaining the characteristics as a superconductor.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の高温超電導結晶化ガラスの
製造方法は、GeO2またはGaza、 3.7〜4.
9重量%、BizOi 39.0〜39.5重量%、S
r0゜20、1〜20.3重量%、CaQ 9.4〜9
.5重量%およびCu026.6〜27.0i景%から
なる混合粉末100重量部に、AuまたはPt O,0
2〜0.08重量部を配合し、この配合物を加熱溶融し
てガラスを製造し、このガラスを熱処理して結晶化させ
ることを特徴とするものである。
The method for producing high-temperature superconducting crystallized glass of the present invention which achieves the above object uses GeO2 or Gaza, 3.7 to 4.
9% by weight, BizOi 39.0-39.5% by weight, S
r0°20, 1-20.3% by weight, CaQ 9.4-9
.. Au or Pt O,0
It is characterized by blending 2 to 0.08 parts by weight, heating and melting this blend to produce glass, and heat-treating this glass to crystallize it.

本発明により得られる高温超電導結晶化ガラスの超電導
特性は、絶対温度77〜80Kにおいて電気抵抗がO(
ゼロ)となる、またこのときの反磁性帯磁率は−3,4
〜−4,OXl0−”emu/gを示している。結晶粒
子の大きさは3〜7μmの範囲にある。
The superconducting properties of the high-temperature superconducting crystallized glass obtained by the present invention are such that the electrical resistance is O(
zero), and the diamagnetic susceptibility at this time is -3,4
~-4, OXl0-''emu/g. The crystal grain size is in the range of 3 to 7 μm.

本発明における出発原料は、Gem、またはGa、03
、Bit’s、SrO2,CaOおよびCuOからなる
混合粉末に、Auまたはptを配合することにより調製
される。その構成成分限定理由は次のとおりである。
The starting material in the present invention is Gem, or Ga, 03
, Bit's, SrO2, CaO and CuO by blending Au or PT. The reason for limiting the constituent components is as follows.

なお、以下の説明における%は特記ない限り、重量%で
ある。
Note that % in the following description is by weight unless otherwise specified.

Ge0z (酸化ゲルマニウム)またはGazOi(酸
化ガリウム)は本発明において溶融状態にあるガラスが
急冷して固化するに際して失透防止の役目をする。
In the present invention, Ge0z (germanium oxide) or GazOi (gallium oxide) serves to prevent devitrification when glass in a molten state is rapidly cooled and solidified.

Gem、またはGatesが4.9%を超えると超電導
特性が著しく欠化し、一方、3.7%に満たないと失透
防止の効果が損失する。
If Gem or Gates exceeds 4.9%, superconducting properties will be significantly lost, while if it is less than 3.7%, the effect of preventing devitrification will be lost.

8izOz(#化ビスマス)は超電導体を構成する結晶
の必須成分であり、Bi、03が39.5%を超えると
半導体となる。また39.0%に満たないと、非超電導
相になる。
8izOz (bismuth #) is an essential component of crystals constituting superconductors, and when Bi, 03 exceeds 39.5%, it becomes a semiconductor. Moreover, if it is less than 39.0%, it becomes a non-superconducting phase.

5rOt (酸化ストロンチウム)も超電導体を構成す
る結晶の必須成分であり、SrO□が20.3%を超え
ると半導体となる。まj、:20.1%に満たないと非
超電導相になる。
5rOt (strontium oxide) is also an essential component of crystals constituting superconductors, and when SrO□ exceeds 20.3%, it becomes a semiconductor. If it is less than 20.1%, it becomes a non-superconducting phase.

更に、Cab(酸化カルシウム)は、超電導体を構成す
る結晶の必須成分であり、CaOが9.5%を超えると
半導体となる。また9、4%に満たないと、非超電導相
になる。
Furthermore, Cab (calcium oxide) is an essential component of crystals constituting superconductors, and when CaO exceeds 9.5%, it becomes a semiconductor. Moreover, if it is less than 9.4%, it becomes a non-superconducting phase.

更にまた、Cu0(酸化銅)は超電導体を構成する結晶
の必須成分であり、CuOは27.0%を超えると半導
体となり、26.6%に満たないと非超電導相になる。
Furthermore, CuO (copper oxide) is an essential component of the crystal that constitutes a superconductor, and when CuO exceeds 27.0%, it becomes a semiconductor, and when it is less than 26.6%, it becomes a non-superconducting phase.

Au (金)またはPt (白金)はガラスを熱処理し
て結晶化させる際に、結晶核形成剤の役目をする。この
結晶核形成剤によって、結晶粒子を小さくすることが可
能となり、機械的強度を太き(することができる。
Au (gold) or Pt (platinum) serves as a crystal nucleating agent when glass is heat-treated and crystallized. This crystal nucleating agent makes it possible to make crystal grains smaller and increase mechanical strength.

AuまたはPtが0.08%を超えると結晶核としての
作用が損失する。また0、02%に満たないときは結晶
核としての効果が期待できない。
When Au or Pt exceeds 0.08%, the crystal nucleus function is lost. Further, when the content is less than 0.02%, no effect as a crystal nucleus can be expected.

本発明においては上記組成に調合された出発原料を十分
に混合し、これを耐熱容器、例えばアルミするつぼに入
れ、蓋をして加熱溶融してガラスを製造する。この加熱
溶融処理は、温度1150〜1180°Cにおいて12
か15分間を要して行なわれる。ついで、この溶融物を
できる限り急冷状態で所用の成形体に成形し、成形体を
810〜820℃で酸素雰囲気中で加熱処理する。
In the present invention, the starting materials prepared in the above composition are thoroughly mixed, placed in a heat-resistant container such as an aluminum crucible, covered with a lid, and heated and melted to produce glass. This heat melting treatment is carried out at a temperature of 1150 to 1180°C for 12
It takes about 15 minutes. Then, this melt is cooled as rapidly as possible to form a desired molded body, and the molded body is heat-treated at 810 to 820° C. in an oxygen atmosphere.

昇温時間はその成形体に応じた適当な速度、好ましくは
100°C/2時間よりもよりゆっくりした速度が望ま
しい。
The heating time is determined at an appropriate rate depending on the molded article, preferably at a rate slower than 100°C/2 hours.

なお、本発明においては、結晶核形成剤であるAuまた
はptはコロイドの状態で均一にガラス中に存在するこ
とが必要である。
In the present invention, it is necessary that Au or pt, which is a crystal nucleating agent, exists uniformly in the glass in a colloidal state.

このために、Auまたはptを塩化金()lALIc1
4・4HzO)またはへキサクロロ白金酸CHzPtC
1&・6HzO)の水溶液の形で出発原料混合物に導入
することが好ましい。
For this purpose, Au or pt is converted into gold chloride ()lALIc1
4.4HzO) or hexachloroplatinic acid CHzPtC
Preferably, it is introduced into the starting material mixture in the form of an aqueous solution of 1 &.6 HzO).

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

各原料を採取して下記第1表に示す成分組成を有する出
発原料(1)〜(6)を調整した。
Each raw material was collected to prepare starting materials (1) to (6) having the component compositions shown in Table 1 below.

これをアルミするつぼに装入し、蓋をして温度1150
〜1180℃で加熱し、12〜15分間を要して溶融し
た。
Place this in an aluminum pot, cover with a lid, and set the temperature to 1150.
It was heated to ˜1180° C. and took 12-15 minutes to melt.

この溶融物を一20°C以下に冷却した黒鉛板上に流し
出して厚さ1.5 mmの薄板を得た。
This melt was poured onto a graphite plate cooled to below -20°C to obtain a thin plate with a thickness of 1.5 mm.

X線測定では、完全にガラスであることを認めた。この
ガラスを温度810〜820°Cで酸素雰囲気中で加熱
処理をした。この結果、ガラスは完全に結晶体に変化し
た。結晶粒子の大きさは、3〜7μmであった。得られ
た結晶体に間隔が約2rmになるように銀ペーストで電
極を4本形成した。
X-ray measurements confirmed that it was completely glass. This glass was heat-treated at a temperature of 810 to 820°C in an oxygen atmosphere. As a result, the glass completely transformed into a crystalline substance. The size of the crystal particles was 3 to 7 μm. Four electrodes were formed using silver paste on the obtained crystal body with an interval of about 2 rm.

これを所定の温度に冷却した電気抵抗測定装置に挿入し
て電気抵抗値の変化を測定した。また同じように反磁性
帯磁率を測定した。測定結果を第1表に示す。
This was inserted into an electrical resistance measuring device cooled to a predetermined temperature, and changes in electrical resistance were measured. Diamagnetic susceptibility was also measured in the same manner. The measurement results are shown in Table 1.

第1表から明らかなように、本発明により得られた結晶
化ガラスは、絶対温度77〜80Kにおいてその電気抵
抗値がゼロになる。また反磁性帯磁率は−3,4〜−4
,OXl0−”emu/gである。
As is clear from Table 1, the electrical resistance value of the crystallized glass obtained by the present invention becomes zero at an absolute temperature of 77 to 80K. Also, the diamagnetic susceptibility is -3,4 to -4
, OXl0-"emu/g.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の新規な組成のガラスを用い
て製造した高温超電導結晶化ガラスは液体窒素(77K
 )の温度域で電気抵抗がゼロになる特性を有し、また
反磁性帯磁率が認められた。
As detailed above, the high-temperature superconducting crystallized glass produced using the glass with the new composition of the present invention is produced using liquid nitrogen (77K).
) It has the characteristic that electrical resistance becomes zero in the temperature range, and diamagnetic susceptibility was observed.

本発明の製造方法によれば、各種の形状のものを特別の
設備や操作を必要とせずに安定的に製造することができ
る。
According to the manufacturing method of the present invention, products of various shapes can be stably manufactured without requiring special equipment or operations.

従って得られた成形体は、各種の産業機器、種々の環境
で使用されるセンサー用検知材料として開発が期待され
る。
Therefore, the obtained molded product is expected to be developed as a sensing material for sensors used in various industrial equipment and in various environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得られた高温超電導結晶化ガラスの絶
対温度と電気抵抗値との相関を示す図である。 特許出願人 工業技術院長 飯 塚 幸 三指定代理人
 工業技術大阪工業技術試験所長速水諒三 度(Kン
FIG. 1 is a diagram showing the correlation between the absolute temperature and the electrical resistance value of the high-temperature superconducting crystallized glass obtained by the present invention. Patent applicant: Director of the Agency of Industrial Science and Technology Sachi Iizuka Designated agent: Director of the Osaka Institute of Industrial Science and Technology Ryo Hayami

Claims (1)

【特許請求の範囲】[Claims] GeO_2またはGa_2O_33.7〜4.9重量%
、Bi_2O_339.0〜39.5重量%、SrO_
220.1〜20.3重量%、CaO9.4〜9.5重
量%およびCuO26.6〜27.0重量%からなる混
合粉末100重量部に、AuまたはPt0.02〜0.
08重量部を配合し、この配合物を加熱溶融してガラス
を製造し、このガラスを熱処理して結晶化させることを
特徴とする高温超電導結晶化ガラスの製造方法。
GeO_2 or Ga_2O_33.7-4.9% by weight
, Bi_2O_339.0-39.5% by weight, SrO_
100 parts by weight of a mixed powder consisting of 220.1 to 20.3% by weight, 9.4 to 9.5% by weight of CaO, and 26.6 to 27.0% by weight of CuO, and 0.02 to 0.0% of Au or Pt.
A method for producing high-temperature superconducting crystallized glass, which comprises blending 08 parts by weight of the blend, heating and melting the blend to produce glass, and heat-treating the glass to crystallize it.
JP900089A 1989-01-17 1989-01-17 Production of high-temperature superconducting crystallized glass Granted JPH02188445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP900089A JPH02188445A (en) 1989-01-17 1989-01-17 Production of high-temperature superconducting crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP900089A JPH02188445A (en) 1989-01-17 1989-01-17 Production of high-temperature superconducting crystallized glass

Publications (2)

Publication Number Publication Date
JPH02188445A true JPH02188445A (en) 1990-07-24
JPH0443860B2 JPH0443860B2 (en) 1992-07-17

Family

ID=11708409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP900089A Granted JPH02188445A (en) 1989-01-17 1989-01-17 Production of high-temperature superconducting crystallized glass

Country Status (1)

Country Link
JP (1) JPH02188445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413981A (en) * 1991-01-31 1995-05-09 Mitsubishi Denki Kabushiki Kaisha Oxide superconductor and a method for manufacturing an oxide superconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565662A (en) * 2016-01-20 2016-05-11 广西丛欣实业有限公司 Method for preparing heat-resistant glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413981A (en) * 1991-01-31 1995-05-09 Mitsubishi Denki Kabushiki Kaisha Oxide superconductor and a method for manufacturing an oxide superconductor

Also Published As

Publication number Publication date
JPH0443860B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
NO300062B1 (en) Process for producing a high temperature superconductor
US3725091A (en) Glass-ceramic metal cermets and method
US3947279A (en) Thermally crystallizable glasses possessing precision controlled crystallization and flow properties and process of producing same
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH02188445A (en) Production of high-temperature superconducting crystallized glass
JP2539214B2 (en) Glass ceramics and manufacturing method thereof
DE1596949A1 (en) Devitrifying solder glass
EP0356231A2 (en) Process for making Tl-Ba-Ca-Gu-O superconductors
US3982918A (en) Process for preparing a copper containing sealing glass
JP3916094B2 (en) Monoclinic celsian-containing crystallized glass, glass having a composition suitable for production thereof, and production method
JPS6227353A (en) Glass ceramic composite material
US3393060A (en) Method of changing the conductivity of ceramic materials
JPH05194018A (en) High temperature superconductor and method for its production
US3542571A (en) Process for preparing ferric titanate
JPH01226735A (en) Production of superconducting material
US3936397A (en) Semiconductive glass-ceramic articles
JPH0354103A (en) Production of oxide superconductor
US5059560A (en) Bi-Ca-Sr-Cu-Zn-O superconducting glass-ceramics
JP2003277199A (en) METHOD FOR PRODUCING Bi-BASED OXIDE SUPERCONDUCTING WHISKER
Dimitriev et al. High-TC superconducting glass-ceramics prepared by the melt-quenching methods in the bismuthate system with additives
JPH02145423A (en) Production of oxide-based superconductor
JPH01111765A (en) Glass ceramic superconductive at high temperature
JPH0517141A (en) Production of oxide superconductor having oriented crystal
JPH01203257A (en) Production of superconductor
CA1061807A (en) Thermally crystallizable glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term