JPH02188410A - Production of metal oxide - Google Patents
Production of metal oxideInfo
- Publication number
- JPH02188410A JPH02188410A JP775689A JP775689A JPH02188410A JP H02188410 A JPH02188410 A JP H02188410A JP 775689 A JP775689 A JP 775689A JP 775689 A JP775689 A JP 775689A JP H02188410 A JPH02188410 A JP H02188410A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- compd
- oxygen
- energy
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 27
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 150000002902 organometallic compounds Chemical class 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 16
- 239000010419 fine particle Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 20
- 239000002184 metal Substances 0.000 abstract description 20
- 239000000126 substance Substances 0.000 abstract 1
- 150000002736 metal compounds Chemical class 0.000 description 13
- 239000007789 gas Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- -1 alkane compound Chemical class 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- XOOGZRUBTYCLHG-UHFFFAOYSA-N tetramethyllead Chemical compound C[Pb](C)(C)C XOOGZRUBTYCLHG-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000012776 electronic material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- AYDYYQHYLJDCDQ-UHFFFAOYSA-N trimethylbismuthane Chemical compound C[Bi](C)C AYDYYQHYLJDCDQ-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- VYRLPDUIQPFWPC-UHFFFAOYSA-N trimethylthallane Chemical compound C[Tl](C)C VYRLPDUIQPFWPC-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は金属酸化物の新規な製造方法に関するものであ
る。さらに詳しくいえば、本発明は電子材料や酸化物セ
ラミックス材料などとして有用な金属酸化物を、レーザ
ー光などのエネルギー線を用いて、有機金属化合物の蒸
気から、安価にかつ極めて効率よく製造する方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing metal oxides. More specifically, the present invention provides a method for inexpensively and extremely efficiently producing metal oxides useful as electronic materials, oxide ceramic materials, etc. from organometallic compound vapor using energy rays such as laser light. It is related to.
[従来の技術]
従来、金属酸化物は種々の特性を有することから、例え
ば電子材料や酸化物セラミックス材料などとして幅広く
用いられている。[Prior Art] Metal oxides have been widely used as electronic materials, oxide ceramic materials, and the like because they have various properties.
該金属酸化物の製造方法としては、これまで種々の方法
が知られており、その一つに気相から金属酸化物を生成
させる方法、例えばCVD法などが知られている。しか
しながら、このような従来の気相からの生成方法におい
ては、金属原子を気相中で高濃度に生成させることが困
難であるため、効率的に金属酸化物を得ることがむつか
しい上に、レーザー光、定常光、プラズマ、電子ビーム
、熱などのエネルギーを大量に投入する必要があり、製
造コストが高くつくのを免れず、かつ省エネルギーの面
でも問題があった。Various methods have been known for producing the metal oxide, one of which is a method of producing a metal oxide from a gas phase, such as a CVD method. However, in such conventional gas phase production methods, it is difficult to generate metal atoms in a high concentration in the gas phase, making it difficult to efficiently obtain metal oxides. It is necessary to input a large amount of energy such as light, constant light, plasma, electron beam, heat, etc., which inevitably leads to high manufacturing costs and also poses problems in terms of energy conservation.
他方、金属化合物の蒸気を分解して、金属微粒子を製造
する方法が知られており、例えば気相から金属微粒子を
堆積物として析出させる方法(特開昭60−51539
号公報)や有機金属化合物をレーザー光を用いて分解す
る方法【「ケミストリー・アンド・インダストリー(C
hem、andInd、)第15巻、第247ページ(
1985年)」]などが知られている。On the other hand, there is a known method of producing fine metal particles by decomposing the vapor of a metal compound.
Publications) and methods for decomposing organometallic compounds using laser light [Chemistry and Industry (C
hem, andInd,) Volume 15, Page 247 (
1985)] are known.
しかしながら、従来の金属化合物の蒸気を分解する方法
は、例えば、レーザー光の場合、1分子の金属微粒子を
生成させる!こめに、少なくとも1光子のエネルギーが
必要であり、高価なレーザー光の多大なエネルギーを要
し、また、反応の制御が困難であり、さらに、副生成物
の生成などの問題があるため、経済的及び品質的に不利
であった。However, in the conventional method of decomposing metal compound vapor, for example, in the case of laser light, one molecule of metal fine particles is generated! However, it requires at least one photon of energy, requires a large amount of energy from expensive laser light, is difficult to control, and has problems such as the production of by-products, making it uneconomical. It was disadvantageous in terms of target and quality.
[発明が解決しようとする課題]
本発明は金属酸化物を、レーザー光などのエネルギー源
を用いて、金属化合物の蒸気から、安価に、かつ極めて
効率よく製造する方法を提供することを目的としてなさ
れIこものである。[Problems to be Solved by the Invention] The purpose of the present invention is to provide a method for manufacturing metal oxides from vapors of metal compounds at low cost and extremely efficiently using energy sources such as laser light. It is a small thing.
[課題を解決するだめの手段]
本発明者は、先に金属化合物の蒸気から高純度の金属微
粒子を得る方法について鋭意研究を重ね、特定濃度以上
のガス状金属化合物に、特定のエネルギー密度以上のエ
ネルギー線を照射すれば、極めてエネルギー効率良く、
経済的有利に金属微粒子をか得られることを見い出し、
さらに、特定濃度以上のガス状の有機金属化合物の系内
に、該有機金属化合物と金属成分を異にするガス状の他
の金属化合物を存在させて、これに特定のエネルギー密
度以上のエネルギー線を照射することにより、極めてエ
ネルギー効率良く、経済的有利に複合金属化合物が得ら
れることを見い出した。[Means for Solving the Problem] The present inventor has previously conducted extensive research on a method for obtaining high-purity metal particles from the vapor of a metal compound. If you irradiate it with energy rays, it will be extremely energy efficient.
discovered that metal fine particles could be obtained economically,
Furthermore, in the system of a gaseous organometallic compound having a specific concentration or more, another gaseous metal compound having a metal component different from that of the organometallic compound is made to exist, and this is exposed to energy rays having a specific energy density or more. It has been discovered that a composite metal compound can be obtained with extremely high energy efficiency and economical advantage by irradiating with .
本発明者は、さらに鋭意研究を進めた結果、特定濃度以
上のガス状の有機金属化合物の系内に、含酸素化合物を
含有させて、これに特定のエネルギー密度以上のエネル
ギー源を照射することにより、所望の金属酸化物を少な
い投入エネルギーでもって、安価に、かつ極めて効率よ
く製造することができ、しかも酸化物の生成量を容易に
制御しうろことを見い出し、この知見に基づいて本発明
を完成するに至った。As a result of further intensive research, the inventor of the present invention has discovered that an oxygen-containing compound is contained in a system of gaseous organometallic compounds having a concentration higher than a specific concentration, and the oxygen-containing compound is irradiated with an energy source having a specific energy density or higher. It was discovered that a desired metal oxide can be produced inexpensively and extremely efficiently with little input energy, and that the amount of oxide produced can be easily controlled.Based on this knowledge, the present invention has been developed. I was able to complete it.
すなわち、本発明は、IIIIIl当たり10’6分子
以上の濃度のガス状の発熱的な分解反応を起こす有機金
属化合物の系内に、ガス状の含酸素化合物を存在させ、
この系内の一部に1 cr12当たり10ジュール以上
のエネルギー密度のエネルギー線を照射して、系内の一
部に該有機金属化合物に起因する高濃度の活性種を生成
させ、次いでこの活性種により引き起こされる有機金属
化合物と含酸素化合物との発熱的な連鎖反応により、金
属酸化物を生成させることを特徴とする金属酸化物の製
造方法を提供するものである。That is, the present invention allows a gaseous oxygen-containing compound to exist in a system of an organometallic compound that causes a gaseous exothermic decomposition reaction at a concentration of 10'6 molecules or more per IIIl,
A part of this system is irradiated with energy rays with an energy density of 10 joules or more per cr12 to generate a high concentration of active species caused by the organometallic compound, and then this active species is The present invention provides a method for producing a metal oxide, characterized in that the metal oxide is produced by an exothermic chain reaction between an organometallic compound and an oxygen-containing compound caused by the following.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明方法において用いられる有機金属化合物について
は、ガス状になるものであり、かつ金属原子にまで分解
する時に発熱反応を起こすものであればよく、特に制限
はない。このような有機金属化合物としては、テトラア
ルキル鎖、トリアルキルビスマス、トリアルキルタリウ
ム、ジアルキル亜鉛、ジアルキル水銀、ジアルキルカド
ミウムなどが挙げられる。The organometallic compound used in the method of the present invention is not particularly limited as long as it becomes gaseous and causes an exothermic reaction when decomposed into metal atoms. Examples of such organometallic compounds include tetraalkyl chains, trialkyl bismuth, trialkyl thallium, dialkyl zinc, dialkyl mercury, dialkyl cadmium, and the like.
ここでアルキル基としては、メチル基、エチル基、n−
プロピル基、イソプロピル基などが挙げられ、直鎖状の
ものであっても分枝しているものであってもよい。Here, the alkyl group includes methyl group, ethyl group, n-
Examples include propyl group and isopropyl group, and they may be linear or branched.
本発明の有機金属化合物は、金属原子にまで分解すると
き発熱反応を起こすことが必要である。The organometallic compound of the present invention must undergo an exothermic reaction when decomposed into metal atoms.
有機金属化合物の代表例として、一般式MI R1とし
、(Ml:金属、R1:アルキル基、n:アルキル基の
数、通常1〜4の整数)このMR,の反応が
式M’R’、+M’+ (n/ 2) R’−R’のよ
うに表されるとする。ここで
式M’R’、+M’+nR’
で表される反応式における結合解離エネルギーをDAl
!Al
式 nR’−+ (n/2)R’−R’で表される
反応式におけるラジカルR1の再結合エネルギーをり、
とするとΔH−DA−DBとなる。As a representative example of an organometallic compound, the general formula MI R1 is used (Ml: metal, R1: alkyl group, n: number of alkyl groups, usually an integer of 1 to 4).The reaction of this MR is the formula M'R', Suppose that it is expressed as +M'+ (n/2) R'-R'. Here, the bond dissociation energy in the reaction equation expressed by the formula M'R', +M'+nR' is DAl
! The recombination energy of radical R1 in the reaction formula expressed by Al formula nR'-+ (n/2)R'-R' is
Then, it becomes ΔH-DA-DB.
かかるΔHが負になると発熱反応を起こすことになる。If ΔH becomes negative, an exothermic reaction will occur.
このような有機金属化合物を用いることにより、熱によ
る連鎖反応が進行し、本発明の目的を達成できる。連鎖
的分解反応の円滑な開始、進行のために原料濃度を高く
できる蒸気圧の比較的高いものが好ましい。例えばアル
キル基の炭素数の少ない有機金属化合物が好ましい。By using such an organometallic compound, a chain reaction due to heat proceeds, and the object of the present invention can be achieved. In order to smoothly start and proceed the chain decomposition reaction, it is preferable to use a material with a relatively high vapor pressure that can increase the raw material concentration. For example, an organometallic compound having a small number of carbon atoms in an alkyl group is preferable.
さらに、有機金属化合物のΔHの絶対値は、大きい程好
ましく、このような有機金属化合物として、テトラメチ
ル鉛(ΔH= −33kcsll/ mol)、トリメ
チルビスマス(ΔH= −36kcsll/ mol)
などが挙げられる。Furthermore, the larger the absolute value of ΔH of the organometallic compound, the better. Examples of such organometallic compounds include tetramethyl lead (ΔH = −33 kcsll/mol) and trimethyl bismuth (ΔH = −36 kcsll/mol).
Examples include.
一方、含酸素化合物としては、酸素元素を含有し、かつ
ガス状になるものであればよく、特に制限はないが、蒸
気圧が高く、かつ分解も容易である化合物が望ましい。On the other hand, the oxygen-containing compound may be any compound that contains the oxygen element and becomes gaseous, and is not particularly limited, but a compound that has a high vapor pressure and is easily decomposed is desirable.
このような化合物の中で、酸素若しくは酸素原子を含む
ガス、又はそれぞれを含む化合物、例えば空気、N、0
1No、NO!、S02などが蒸気圧も高く、生成する
金属原子との反応性も高いので有利である。特に、空気
は取り扱い性やコストなどの点で極めて有利である。Among such compounds, oxygen or gases containing oxygen atoms, or compounds containing each, such as air, N, 0
1No, NO! , S02, etc. are advantageous because they have high vapor pressure and high reactivity with the metal atoms produced. In particular, air is extremely advantageous in terms of ease of handling and cost.
これらの含酸素化合物は1種用いてもよいし、2種以上
を組み合わせて用いてもよい。One type of these oxygen-containing compounds may be used, or two or more types may be used in combination.
以上のような有機金属化合物と含酸素化合物と全存在さ
せ、この系内の一部に以下に述べるレーザーなどのエネ
ルギー線を照射することにより発熱的な連鎖反応が進行
し、金属酸化物を生成することができる。When all of the organometallic compounds and oxygen-containing compounds mentioned above are present, and a part of this system is irradiated with energy rays such as the laser described below, an exothermic chain reaction progresses and metal oxides are produced. can do.
ここで連鎖反応は主として分解反応と酸化反応である。Here, the chain reactions are mainly decomposition reactions and oxidation reactions.
また「発熱的」とは反応における全熱収支が負になるこ
とをいう。Furthermore, "exothermic" means that the total heat balance in the reaction is negative.
具体的に説明すると次の通りである。The specific explanation is as follows.
有機金属化合物として例えば一般式、M2 R2(M2
:金属、R2、アルキル基、m:正の有理数)で表され
る化合物と、含酸素化合物として例えば一般式、R’、
O,(R3:特に制限がないが、窒素原子、イオウ原子
などである、pro又は正の有理数、q:正の有理数)
で表される化合物とをモル比で1対x(xは正の有理数
)の割合で混合した系の反応が
M ”R2m+ x R’、0 、+
[M 2−o 、、]+[R”□十R3,,(又はR2
,−R3□)]・・・式■
で表されるとする。As an organometallic compound, for example, the general formula, M2 R2 (M2
: metal, R2, alkyl group, m: positive rational number), and oxygen-containing compounds such as the general formula, R',
O, (R3: pro or positive rational number, which is a nitrogen atom, sulfur atom, etc., although there is no particular restriction, q: a positive rational number)
The reaction of a system in which the compound represented by is mixed at a molar ratio of 1:x (x is a positive rational number) is M ``R2m+ x R', 0 , + [M 2-o , , ] + [R ”□10R3,, (or R2
, -R3□)]...It is assumed that it is represented by the formula ■.
ここでR2□は分解反応により生じたm分子のR2ラジ
カルの再結合反応により生ずる最も安定なアルカン化合
物であり、R’pmはXモルの含酸素化合物R”、O、
より生じたpxIK子のR3原子又はpx分子のR3分
子から生ずる最も安定な化合物である。Here, R2□ is the most stable alkane compound produced by the recombination reaction of R2 radicals of m molecules produced by the decomposition reaction, and R'pm is the oxygen-containing compound R" of X moles, O,
It is the most stable compound generated from the R3 atom of the pxIK child or the R3 molecule of the px molecule.
またR 2 R3、wは、m分子のR2ラジカルと
pxi子のR3[子又はpx分子のR3分子との反応に
より生ずる最も°安定な化合物である。Further, R 2 R3,w is the most stable compound produced by the reaction between the R2 radical of the m molecule and the R3 molecule of the pxi molecule or the R3 molecule of the px molecule.
この反応においてD A + D m −D c −D
o < Oとなると、発熱反応が起こり、その熱によ
り連鎖反応が進行し、金属酸化物M2−0□が生成する
。ここでDAは、M2R2ffiがM ” + m R
2に分解する結合解離エネルギーであり、DllはR’
、O、が1)R’十(Q/2)02に分解する結合解離
エネルギーのX倍であり、DCは、M2とx(q/2)
OxとからM2−01.を生成する結合エネルギーであ
り、DDはmR2から最も安定なアルカン化合物である
R2ヮを生成する結合エネルギーとpxR3から最も安
定な化合物であるR32.を生成する結合エネルギーの
和である。In this reaction DA + D m -D c -D
When o < O, an exothermic reaction occurs, and the heat causes a chain reaction to proceed, producing metal oxide M2-0□. Here, DA is M2R2ffi is M ” + m R
It is the bond dissociation energy that decomposes into 2, and Dll is R'
, O, is 1) X times the bond dissociation energy that decomposes into R' ten (Q/2)02, and DC is M2 and x (q/2)
M2-01 from Ox. , and DD is the binding energy to generate R2ヮ, the most stable alkane compound, from mR2, and R32, the most stable compound from pxR3. is the sum of the bond energies that produce .
ただし、D、は、式1においてRz−R3pmが生成す
るときはm R2とpxR”とからR2IN 13t
yを生成する結合エネルギーである。However, when Rz−R3pm is generated in Equation 1, D is R2IN 13t from m R2 and pxR”
is the binding energy that produces y.
本発明方法においては、系内における有機金属化合物の
蒸気濃度は1015分子/mQ(約ITo r r)以
上、好ましくはIQ16分子/m1以上、より好ましく
はIQ17分子/mQ以上であることが必要である。こ
の濃度が101″分子/mQより低いと、連鎖開始の活
性種の濃度が低過ぎて、活性種の寿命のある間に、含酸
素化合物との反応が起こりにくく、活性種が失活してし
まうので連鎖反応が開始しにくくなる。In the method of the present invention, it is necessary that the vapor concentration of the organometallic compound in the system is 1015 molecules/mQ (approximately ITorr) or more, preferably IQ 16 molecules/m1 or more, and more preferably IQ 17 molecules/mQ or more. be. If this concentration is lower than 101'' molecules/mQ, the concentration of chain-initiating active species is too low, and during the lifetime of the active species, reaction with oxygen-containing compounds is difficult to occur, and the active species are deactivated. This makes it difficult for a chain reaction to start.
この有機金属化合物の蒸気濃度は、該有機金属化合物の
エネルギーの吸収係数との関係で、適切な条件を選択で
きる。例えばエネルギー線の振動数を選択して、吸収効
率が大きい条件で照射を行うときは、該蒸気濃度を小さ
くしても連鎖的分解反応は開始する。Appropriate conditions can be selected for the vapor concentration of the organometallic compound in relation to the energy absorption coefficient of the organometallic compound. For example, when the frequency of the energy beam is selected and irradiation is performed under conditions that provide high absorption efficiency, the chain decomposition reaction will start even if the vapor concentration is reduced.
一方、含酸素化合物の系内における濃度については特に
制限はないが、酸素分子(02)換算で前記有機金属化
合物の濃度の等倍モル以上が好ましい。On the other hand, the concentration of the oxygen-containing compound in the system is not particularly limited, but it is preferably equal to or more than the same molar concentration of the organometallic compound in terms of oxygen molecules (02).
本発明方法においては、所望に応じ系内に希釈ガスを存
在させてもよい。希釈ガスとしては、例えばヘリウム、
窒素、水素、アルゴンなどを用いることができる。In the method of the present invention, a diluent gas may be present in the system as desired. Examples of diluent gas include helium,
Nitrogen, hydrogen, argon, etc. can be used.
この希釈ガスの濃度は、照射するエネルギー線の強度に
より適宜選択されるが、連鎖的な分解反応を起こさせる
ためには低い方がよい。The concentration of this diluent gas is appropriately selected depending on the intensity of the energy rays to be irradiated, but is preferably lower in order to cause a chain decomposition reaction.
本発明方法において、連鎖開始反応のエネルギーに用い
るエネルギー線については、活性種を高密度に生成させ
るものであればよく、特に制限はない。このようなエネ
ルギー線としては、例えばレーザー光、水銀ランプやキ
セノンランプなどの非コヒーレント光、軌道放射光、マ
イクロ波及びX線のような放射線などの電磁波、あるい
はイオンビーム、電子ビーム、プラズマなどが用いられ
るが、これらの中でレーザー光、軌道放射光、X線が好
ましく、特にレーザー光が好適である。In the method of the present invention, there are no particular limitations on the energy rays used for the chain initiation reaction as long as they can generate active species at a high density. Such energy rays include, for example, laser light, incoherent light such as mercury lamps and xenon lamps, orbital synchrotron radiation, electromagnetic waves such as microwaves and radiation such as X-rays, ion beams, electron beams, plasma, etc. Among these, laser light, orbital synchrotron radiation, and X-rays are preferred, and laser light is particularly preferred.
このレーザー光としては、大出力のパルスレーザ−から
のものが好ましく、具体的には、紫外領域で発振するエ
キシマ−レーザーや窒素レーザー赤外領域で発振する炭
酸ガスレーザー −酸化炭素レーザー、YAGレーザ−
、ガラスレーザールビーレーザー、アレクサンドライト
レーザーまた可視領域で発振するYAGレーザーなどの
高調波、銅蒸気レーザーや全蒸気レーザー、色素レーザ
ー、アルゴンイオンレーザ−やクリプトンイオンレーザ
−などからのものが挙げられる。This laser light is preferably from a high-output pulsed laser, and specifically, an excimer laser that oscillates in the ultraviolet region, a nitrogen laser, a carbon dioxide laser that oscillates in the infrared region, a carbon oxide laser, or a YAG laser. −
Examples include glass lasers, ruby lasers, alexandrite lasers, harmonics such as YAG lasers that oscillate in the visible region, copper vapor lasers, all vapor lasers, dye lasers, argon ion lasers, krypton ion lasers, and the like.
一般的に、有機金属化合物は、紫外領域に大きな吸収を
有しているので、前記レーザーのうち、紫外領域で発振
するレーザーを用いると容易に活性種を高密度に発生さ
せることができる。エキシマ−レーザーはこのような作
用を有するとともにエネルギー密度が大きいので特に好
適である。また、炭酸ガスレーザーも、有機金属化合物
が赤外領域にもつ振動単位を多光子励起することにより
分解に導くことができるため、好ましい。なお、他のレ
ーザーを用いて励起レベルのない波長で照射しても、一
般にレーザーによるブレークダウンを起こさせることが
できるため、連鎖的な分解を起こさせることが可能であ
る。In general, organometallic compounds have large absorption in the ultraviolet region, and therefore, among the lasers described above, when a laser that oscillates in the ultraviolet region is used, active species can be easily generated at a high density. An excimer laser is particularly suitable because it has such an effect and a high energy density. Further, a carbon dioxide laser is also preferable because it can lead to decomposition by multiphoton excitation of the vibrational unit that the organometallic compound has in the infrared region. Note that even if another laser is used to irradiate at a wavelength that has no excitation level, breakdown by the laser can generally be caused, so chain decomposition can be caused.
本発明におけるエネルギー線は、連続エネルギー線でも
よいが、パルス線が高密度な活性種を容易に発生させる
ことができるので好ましい。The energy beam in the present invention may be a continuous energy beam, but a pulsed beam is preferred because it can easily generate active species with high density.
本発明におけるエネルギー線の照射は、エネルギー密度
が高いほど有利である。The higher the energy density of energy ray irradiation in the present invention, the more advantageous it is.
本発明では、照射時間を非常に短くして、単位時間当た
りに生成する活性種の濃度を高く保つことが好ましく、
これを10−3秒以内、特に好ましくは、10−4秒以
内、さらに好ましくは、10−6秒以内にすることがよ
い。この値より照射時間を長くしても活性種の失活が起
こるため活性種の濃度を高くすることができなくなるこ
とがある。In the present invention, it is preferable to keep the irradiation time very short to maintain a high concentration of active species generated per unit time.
This is preferably within 10-3 seconds, particularly preferably within 10-4 seconds, and even more preferably within 10-6 seconds. Even if the irradiation time is made longer than this value, the active species will be deactivated, so it may not be possible to increase the concentration of the active species.
また、その際、照射線のエネルギー密度は、1 cm2
当たり、10−4ジユ一ル以上、好ましくは1O−3ジ
ユ一ル以上であればよく、これより少ない密度では連鎖
的分解反応がほとんど開始しない。In addition, at that time, the energy density of the irradiation beam is 1 cm2
The density may be at least 10@-4 joules per unit, preferably at least 10@-3 joules, and chain decomposition reactions will hardly start if the density is lower than this.
また、このエネルギー線の照射は、照射する金属化合物
の吸収係数(エネルギー線がレーザー光などの光である
場合は、モル吸光係数)が大きい条件で実施するのが望
ましい。例えば、テトラメチル鉛を原料として用いると
きは、波長約200nm付近で吸収係数の極大値があり
、この場合は、波長193nmのArFエキシマ−レー
ザーを使用するのが、好適である。Moreover, it is desirable that the irradiation with this energy ray be carried out under conditions where the absorption coefficient (molar absorption coefficient when the energy ray is light such as a laser beam) of the metal compound to be irradiated is large. For example, when tetramethyl lead is used as a raw material, the absorption coefficient has a maximum value around a wavelength of about 200 nm, and in this case, it is preferable to use an ArF excimer laser with a wavelength of 193 nm.
このようなエネルギー線の照射によって、系内の一部に
、1olS個/m1以上、好ましくはIQ16個/m1
以上の高濃度の活性種が発生し、活性種により引き起こ
される発熱的な連鎖反応が逐次的に起こり、瞬間的に有
機金属化合物がほとんど完全に分解し、金属活性種と酸
素とが反応して、金属酸化物の微粒子が生成する。By irradiating such energy rays, a part of the system is exposed to 1olS particles/m1 or more, preferably IQ16 particles/m1.
The above high concentration of active species is generated, and an exothermic chain reaction caused by the active species occurs sequentially.The organometallic compound is almost completely decomposed instantly, and the metal active species reacts with oxygen. , fine particles of metal oxide are generated.
また本発明では、前記有機金属化合物の他、本発明の目
的を損なわない範囲で他の金属化合物を存在させること
ができる。このような金属化合物は、ガス状になるもの
であればよく、特に制限はない。該他の金属化合物とし
ては、例えば鉛、ビスマス、タリウム、亜鉛、アルミニ
ウム、カドミウム、水銀、金、銀、白金、コバルト、ニ
ッケル、鉄、スズ、ケイ素、ゲルマニウムなどの金属又
は半金属のアルキル基などとの間の金属−炭素結合を有
する有機金属化合物及びこれらの金属や半金属の水素化
物、アルコキシド、カルボニル化物、メタロセン化合物
、ハロゲン化物、水酸化物、酸化物、炭化物、窒化物、
硫化物などが挙げられ、これらの金属化合物は1種用い
てもよいし、2種以上を組み合わせて用いてもよい。Further, in the present invention, other metal compounds may be present in addition to the organometallic compound as long as the object of the present invention is not impaired. Such a metal compound is not particularly limited as long as it becomes gaseous. Examples of the other metal compounds include alkyl groups of metals or semimetals such as lead, bismuth, thallium, zinc, aluminum, cadmium, mercury, gold, silver, platinum, cobalt, nickel, iron, tin, silicon, and germanium. Organometallic compounds having a metal-carbon bond between them, and hydrides, alkoxides, carbonylates, metallocene compounds, halides, hydroxides, oxides, carbides, nitrides of these metals and metalloids,
Examples include sulfides, and these metal compounds may be used alone or in combination of two or more.
これらの金属化合物においても、前記有機金属化合物の
場合と同様に、分解反応が発熱反応であるもの、結合解
離エネルギーが小さいもの、蒸気圧が比較的高いものが
好ましい。このようなものとしては、前記のテトラメチ
ル鉛、トリメチルビスマス、トリメチルタリウムなどの
有機金属化合物以外に、金属ハロゲン化物が蒸気圧が大
きい点で好ましく、また金属カルボニル化合物、例えば
鉄カルボニル、ニッケルカルボニル、クロムカルボニル
、モリブデンカルボニル、タングステンカルボニルなど
が金属原子にまで分解する結合解離エネルギーが小さい
点で好ましい。このように他の金属化合物を用いれば、
複数の金属からなる金属酸化物が得られる。As in the case of the organometallic compounds, these metal compounds are preferably those whose decomposition reaction is exothermic, those whose bond dissociation energy is small, and those whose vapor pressure is relatively high. In addition to the above-mentioned organometallic compounds such as tetramethyl lead, trimethyl bismuth, and trimethyl thallium, metal halides are preferable because of their high vapor pressure, and metal carbonyl compounds such as iron carbonyl, nickel carbonyl, Chromium carbonyl, molybdenum carbonyl, tungsten carbonyl, and the like are preferred because they have low bond dissociation energy for decomposing into metal atoms. If other metal compounds are used in this way,
A metal oxide consisting of multiple metals is obtained.
このようにして得られる金属酸化物の微粒子の径は、1
μm以下であるが、大部分は0.3μm以下の粒子で構
成されている。The diameter of the metal oxide fine particles thus obtained is 1
The particle size is 0.3 μm or less, but most of the particles are 0.3 μm or less.
[実施例]
次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。[Example] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.
実施例1
100mQ容のガラス製の反応容器に、テトラメチル鉛
を、その蒸気濃度が3.3X1017分子/rnQ (
10To r r)になるように入れ、さらに空気(酸
素20容量%)を、その濃度が5.7×1O1e分子/
m1l(155Torr)になるように混入したのち、
これにArFエキシマレーザ−からのレーザー光(19
3nm)を合成石英製の窓を通して1パルス(10−’
秒間)だけ照射したところ、白色の極めて強い発光を伴
いながら、−気に連鎖的な爆発反応が起こり、粒径0.
5μm以下の金属酸化物である酸化鉛9mgが生成した
。Example 1 Tetramethyl lead was added to a 100 mQ glass reaction vessel at a vapor concentration of 3.3 x 1017 molecules/rnQ (
10 Torr r), and then add air (20% by volume of oxygen) to a concentration of 5.7 x 1 O1e molecule/
After mixing the mixture to ml (155 Torr),
Laser light from an ArF excimer laser (19
3 nm) through a synthetic quartz window for one pulse (10-'
When irradiated for only 1 second), an explosive chain reaction occurred accompanied by extremely strong white light emission, and the particle size was 0.2 seconds.
9 mg of lead oxide, which is a metal oxide with a size of 5 μm or less, was produced.
この際のレーザー光のエネルギー密度は5.OXl 0
−2J 7cm2で、照射強度は200mJであつ/こ
。The energy density of the laser beam at this time is 5. OXl 0
-2J 7cm2, and the irradiation intensity was 200mJ.
生成した微粒子の元素分析をプラズマ発光分析(ICP
)およびCHNコーダーで行ったところ、CHNは検出
されず、鉛が84%存在することが明らかとなった。な
お、空気を混入しない場合に得られた微粒子では、鉛が
98%存在していたことから、この差は酸化物を形成し
たためによるものと認められる。さらに、この微粒子を
X線光電子分光法(XPS)により分析したところ、0
(1s)が529.5eV付近に観測され、酸化物を
形成していることが明らかとなった。Elemental analysis of the generated fine particles was performed using plasma emission spectrometry (ICP).
) and CHN coder, it was found that no CHN was detected and 84% lead was present. Note that in the fine particles obtained without mixing air, 98% of lead was present, so this difference is recognized to be due to the formation of oxides. Furthermore, when this fine particle was analyzed by X-ray photoelectron spectroscopy (XPS), it was found that 0
(1s) was observed around 529.5 eV, and it became clear that an oxide was formed.
実施例2
100mQ容のガラス製の反応器に、トリメチルビスマ
スを、その蒸気濃度が6.6X10”分子/mα(20
To r r)になるように入れ、さらに空気を、その
濃度が4.6X10”分子/n1l(140Torr)
になるように混入したのち、これに、ArFエキシマレ
ーザ−からのレーザー光(193nm)を、合成石英製
の窓を通して1パルス(10−’秒間)だけ照射したと
ころ、白色の極めて強い発光を伴いながら、−気に連鎖
的な爆発反応が起こり、粒径0.3μm以下の金属酸化
物である酸化ビスマス25Hが生成した。Example 2 Trimethyl bismuth was added to a 100 mQ glass reactor at a vapor concentration of 6.6 x 10" molecules/mα (20
Add air so that the concentration is 4.6 x 10" molecules/nl (140 Torr)
When this was mixed with laser light (193 nm) from an ArF excimer laser for one pulse (10 seconds) through a synthetic quartz window, extremely strong white light was emitted. However, a chain explosion reaction occurred, and bismuth oxide 25H, a metal oxide with a particle size of 0.3 μm or less, was produced.
この際のレーザー光のエネルギー密度は3.8×10−
”17cm2で、照射強度は150mJであった。The energy density of the laser beam at this time is 3.8 x 10-
"It was 17 cm2, and the irradiation intensity was 150 mJ.
生成した微粒子を標準試料であるBi2O,と比較して
、XPSにより分析したところ、第1表に示す結果が得
られた。この表から、Bi2O3が生成していることが
明らかとなった。When the generated fine particles were compared with a standard sample of Bi2O and analyzed by XPS, the results shown in Table 1 were obtained. From this table, it became clear that Bi2O3 was generated.
第
表
比較例1
実施例1において、レーザー光の照射をエネルギー密度
7.5 x 10−51 /CIl+2、照射強度0.
3mJの条件で行った以外は、実施例1と同様にして実
施したところ、連鎖的な分解反応は進行しなかった。Comparative Example 1 in Table 1 In Example 1, laser light irradiation was performed at an energy density of 7.5 x 10-51 /CIl+2 and an irradiation intensity of 0.
When carried out in the same manner as in Example 1 except that the test was carried out under the condition of 3 mJ, no chain decomposition reaction proceeded.
比較例2
実施例1において、空気の代わりに窒素を用いた以外は
、実施例1と同様にして実施したところ、連鎖的な分解
反応は進行しなかった。Comparative Example 2 When the same procedure as in Example 1 was carried out except that nitrogen was used instead of air, a chain decomposition reaction did not proceed.
比較例3
実施例1において、テトラメチル鉛の蒸気濃度を3.3
X10”分子/ml’o、o ITo r r)とした
以外は、実施例1と同様にして実施したところ、連鎖的
な爆発反応は観測されなかった。Comparative Example 3 In Example 1, the vapor concentration of tetramethyl lead was set to 3.3.
When the procedure was carried out in the same manner as in Example 1 except that X10''molecules/ml'o, o ITor r), no chain explosive reaction was observed.
[発明の効果]
本発明方法によると、ガス状の含酸素化合物の存在下、
ガス状の有機金属化合物に、1パルスのエネルギー線を
照射することにより、金属酸化物を少ない投入エネルギ
ーでもって、安価にかつ極めて効率よく製造することが
でき、しかも気相中で有機金属化合物が分解すると同時
に、酸素による酸化反応が起こるため、金属酸化物が容
易に得られる上、酸素の量のコントロールが容易なので
、金属酸化物の量を制御することが容易である。[Effect of the invention] According to the method of the invention, in the presence of a gaseous oxygen-containing compound,
By irradiating a gaseous organometallic compound with a single pulse of energy rays, metal oxides can be produced inexpensively and extremely efficiently with a small amount of input energy. Simultaneously with decomposition, an oxidation reaction with oxygen occurs, so metal oxides can be easily obtained, and the amount of oxygen can be easily controlled, making it easy to control the amount of metal oxides.
本発明方法で得られた金属酸化物は、例えば電子材料や
セラミックス材料などとして好適に用いられる。The metal oxide obtained by the method of the present invention is suitably used, for example, as an electronic material or a ceramic material.
Claims (1)
の発熱的な分解反応を起こす有機金属化合物の系内に、
ガス状の含酸素化合物を存在させ、この系内の一部に1
cm^2当たり10^−^4ジュール以上のエネルギー
密度のエネルギー線を照射して、系内の一部に該有機金
属化合物に起因する高濃度の活性種を生成させ、次いで
この活性種により引き起こされる有機金属化合物と含酸
素化合物との発熱的な連鎖反応により、金属酸化物を生
成させることを特徴とする金属酸化物の製造方法。 2 金属酸化物が微粒子状のものである請求項1記載の
製造方法。[Claims] 1. In a system of an organometallic compound that causes a gaseous exothermic decomposition reaction at a concentration of 10^1^5 molecules or more per ml,
A gaseous oxygen-containing compound is present, and 1
By irradiating energy rays with an energy density of 10^-^4 joules or more per cm^2, a high concentration of active species caused by the organometallic compound is generated in a part of the system, and then the active species caused by this active species is A method for producing a metal oxide, the method comprising producing a metal oxide through an exothermic chain reaction between an organometallic compound and an oxygen-containing compound. 2. The manufacturing method according to claim 1, wherein the metal oxide is in the form of fine particles.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP775689A JPH02188410A (en) | 1989-01-18 | 1989-01-18 | Production of metal oxide |
US07/463,392 US5064517A (en) | 1989-01-18 | 1990-01-11 | Method for the preparation of fine particulate-metal-containing compound |
EP19900300507 EP0379360A3 (en) | 1989-01-18 | 1990-01-18 | Method for the preparation of fine particulate metal-containing compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP775689A JPH02188410A (en) | 1989-01-18 | 1989-01-18 | Production of metal oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02188410A true JPH02188410A (en) | 1990-07-24 |
Family
ID=11674540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP775689A Pending JPH02188410A (en) | 1989-01-18 | 1989-01-18 | Production of metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02188410A (en) |
-
1989
- 1989-01-18 JP JP775689A patent/JPH02188410A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4581249A (en) | Photochemical vapor deposition method | |
Lignell et al. | Interaction of rare-gas-containing molecules with nitrogen: Matrix-isolation and ab initio study of HArF⋯ N 2, HKrF⋯ N 2, and HKrCl⋯ N 2 complexes | |
Freund et al. | CO2 tea laser-induced photochemical enrichment of boron isotopes | |
GB1595216A (en) | Isotope separation | |
US4681640A (en) | Laser-induced chemical vapor deposition of germanium and doped-germanium films | |
WO2015198608A1 (en) | Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product | |
Tanskanen et al. | Matrix isolation and ab initio study of the HXeCCH⋯ CO2 complex | |
EP0379360A2 (en) | Method for the preparation of fine particulate metal-containing compound | |
Colman et al. | Photopolymerization of carbon disulfide yields the high-pressure-phase (CS2) X | |
US4844736A (en) | Method for the preparation of finely divided metal particles | |
JPH02188410A (en) | Production of metal oxide | |
Ellul et al. | Reaction of hydrogen atoms with hexamethyldisilane | |
Ferraudi | Photochemical primary processes in copper (I) complexes. A probe for charge transfer to solvent and charge transfer to ligand excited states | |
EP0429814A3 (en) | Process and apparatus for initiating and/or promoting chemical processes | |
Smardzewski et al. | Infrared study of the photolysis of trifluoromethyl hypofluorite and hypochlorite in argon matrices at 8. deg. K | |
Cai et al. | Generation of cold free radicals by the reaction of organic halides with metal atoms produced by laser vaporization | |
JPH0316901A (en) | Production of metal halide | |
EP0211538A1 (en) | Photochemical process for the preparation of disilane | |
JPH0455306A (en) | Production of metal oxide | |
JPH02190408A (en) | Manufacture of multi metal compound | |
JPH059016A (en) | Manufacture of silicon and silicon dioxide | |
JPS60128264A (en) | Formation of thin film | |
JPH0759721B2 (en) | Method for producing fine metal particles | |
RU2264888C2 (en) | Nano-dispersed oxide powder production method | |
RU1793335C (en) | Method of studying interaction of monatomic oxygen with surface of material |