JPH0316901A - Production of metal halide - Google Patents
Production of metal halideInfo
- Publication number
- JPH0316901A JPH0316901A JP14970689A JP14970689A JPH0316901A JP H0316901 A JPH0316901 A JP H0316901A JP 14970689 A JP14970689 A JP 14970689A JP 14970689 A JP14970689 A JP 14970689A JP H0316901 A JPH0316901 A JP H0316901A
- Authority
- JP
- Japan
- Prior art keywords
- organometallic compound
- energy
- halogen
- compound
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001507 metal halide Inorganic materials 0.000 title claims abstract description 22
- 150000005309 metal halides Chemical class 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 150000002902 organometallic compounds Chemical class 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 19
- 150000002367 halogens Chemical class 0.000 claims abstract description 19
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 16
- 239000002184 metal Substances 0.000 abstract description 16
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 5
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 abstract description 3
- 229940102396 methyl bromide Drugs 0.000 abstract description 3
- ZRNSSRODJSSVEJ-UHFFFAOYSA-N 2-methylpentacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(C)C ZRNSSRODJSSVEJ-UHFFFAOYSA-N 0.000 abstract description 2
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 abstract description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N monofluoromethane Natural products FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 abstract description 2
- 150000002736 metal compounds Chemical class 0.000 description 15
- -1 alkane compound Chemical class 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- XOOGZRUBTYCLHG-UHFFFAOYSA-N tetramethyllead Chemical compound C[Pb](C)(C)C XOOGZRUBTYCLHG-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000012776 electronic material Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- AYDYYQHYLJDCDQ-UHFFFAOYSA-N trimethylbismuthane Chemical compound C[Bi](C)C AYDYYQHYLJDCDQ-UHFFFAOYSA-N 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 description 1
- VYRLPDUIQPFWPC-UHFFFAOYSA-N trimethylthallane Chemical compound C[Tl](C)C VYRLPDUIQPFWPC-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は金属ハロゲン化物の新規な製造方法に関するも
のである。さらに詳しくいえば、本発明は電子材料など
として有用な金属ハロゲン化4物を、レーザー光などの
エネルギー線を用いて、有機金属化合物の蒸気から、安
価にかつ極めて効率よく製造する方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing metal halides. More specifically, the present invention relates to a method for producing 4 metal halides, which are useful as electronic materials, from organic metal compound vapor at low cost and extremely efficiently using energy rays such as laser light. be.
【従来の技術]
従来、金属ハロゲン化物は種々の特性を有することから
、例えば電子材料などとして幅広く用いられている。[Prior Art] Conventionally, metal halides have been widely used as, for example, electronic materials because they have various properties.
該嘉属ハロゲン化物の製造方法としては、例えば金属を
精製したのち、高温でハロゲンガスと接触させる方法が
知られているが、このような方法においては、熱などの
エネルギーを大量に投入する必要があり、製造コストが
高くつくのを免れず、かつ省エネルギーの面でも問題が
あった。A known method for producing such halides is, for example, to refine the metal and then bring it into contact with halogen gas at high temperature, but such a method requires the input of a large amount of energy such as heat. However, there were problems in terms of energy conservation as well as high manufacturing costs.
他方、金属化合物の蒸気を分解して、金属微粒子を製造
する方法が知られており、例えば気相から金属微粒子を
堆積物として析出させる方法(特開昭60−51539
号公報)や有機金属化合物をレーザー光を用いて分解す
る方法[「ケ1
2
ミストリー・アンド・インダストリー(Chem.an
d Ind,)」第15巻、第247ページ(198
5年)コなどが知られている。On the other hand, there is a known method of producing fine metal particles by decomposing the vapor of a metal compound.
A method of decomposing organometallic compounds using laser light [Chem.
d Ind,) Volume 15, Page 247 (198
5 years) Ko etc. are known.
しかしながら、従来の金属化合物の蒸気を分解する方法
は、例えば、レーザー光の場合、1分子の金属微粒子を
生戒させるために、少なくとも1光子のエネルギーが必
要であり、高価なレーザー光の多大なエネルギーを要し
、また、反応の制御が困難であり、さらに、副生或物の
生戒などの問題があるため、経済的及び品質的に不利で
あった。However, in the case of conventional methods for decomposing vapors of metal compounds, for example, in the case of laser light, at least one photon of energy is required to decompose one molecule of metal fine particles, and a large amount of expensive laser light is required. It requires energy, it is difficult to control the reaction, and there are problems such as by-products and how to use it, so it is disadvantageous economically and in terms of quality.
[発明が解決しようとする課題]
本発明は金属ハロゲン化物を、レーザー光などのエネル
ギー源を用いて、金属化合物の蒸気から、安価に、かつ
極めて効率よく製造する方法を提供することを目的とし
てなされtこものである。[Problems to be Solved by the Invention] The purpose of the present invention is to provide a method for manufacturing metal halides from vapor of metal compounds at low cost and extremely efficiently using energy sources such as laser light. It's a terrible thing to do.
[課題を解決するだめの手段]
本発明者らは、先に金属化合物の蒸気から高純度の金属
微粒子を得る方法について鋭意研究を重ね、特定濃度以
上のガス状金属化合物に、特定のエネルギー密度以上の
エネルギー線を照射すれば、極めてエネルギー効率良〈
、経済的有利に金属微粒子が得られることを見い出し、
さらに、特定濃度以上のガス状の有機金属化合物の系内
に、該有機金属化合物と金属戒分を異にするガス状の他
の金属化合物を存在させて、これに特定のエネルギー密
度以上のエネルギー線を照射することにより、極めてエ
ネルギー効率良く、経済的有゛利に複合金属化合物が得
られることを見い出した。[Means for Solving the Problem] The present inventors have previously conducted extensive research on a method for obtaining high-purity metal particles from the vapor of a metal compound. If you irradiate the energy beams above, it will be extremely energy efficient.
, discovered that fine metal particles could be obtained economically,
Furthermore, in the system of a gaseous organometallic compound having a specific concentration or more, another gaseous metal compound having a different metal classification from that of the organometallic compound is made to exist, and this is charged with an energy having a specific energy density or more. It has been discovered that composite metal compounds can be obtained with extremely high energy efficiency and economic advantage by irradiation with radiation.
本発明者らは、さらに鋭意研究を進めた結果、特定濃度
以上のガス状の有機金属化合物の系内に、含ハロゲン化
合物を含有させて、これに特定のエネルギー密度以上の
エネルギー線、例えばレーザー光を1パルス照射するこ
とにより、所望の金属ハロゲン化物を少ない投入エネル
ギーでもって、安価に、かつ極めて効率よく製造するこ
とができ、しかもハロゲン化物の組戒及び生或量を容易
に制御しうろことを見い出し、この知見に基づいて本発
明を完成するに至った。As a result of further intensive research, the present inventors discovered that a halogen-containing compound was contained in the system of a gaseous organometallic compound at a specific concentration or higher, and this was combined with energy rays at a specific energy density or higher, such as laser beams. By irradiating a single pulse of light, a desired metal halide can be produced inexpensively and extremely efficiently with a small amount of input energy, and the composition and amount of the halide can be easily controlled. Based on this finding, we have completed the present invention.
すなわち、本発明は、1ml当たり1015分子以上の
濃度のガス状の発熱的な分解反応を起こ3
4
す有機金属化合物の系内に、ガス状の含ハロゲン化合物
を存在させ、この系内の一部に1 cm2当たり10”
’ジュール以上のエネルギー密度のエネルギー線を照射
して、系内の一部に該有機金属化合物に起因する高濃度
の活性種を生成させ、次いでこの活性種により引き起こ
される有機金属化合物と含ハロゲン化合物との発熱的な
連鎖反応により、金属ハロゲン化物を生成させることを
特徴とする金属ハロゲン化物の製造方法を提供するもの
である。That is, in the present invention, a gaseous halogen-containing compound is present in a system of an organometallic compound that causes a gaseous exothermic decomposition reaction at a concentration of 1015 molecules or more per ml. 10” per cm2
'By irradiating an energy beam with an energy density of Joule or more, a high concentration of active species caused by the organometallic compound is generated in a part of the system, and then the organometallic compound and halogen-containing compound caused by this active species are The present invention provides a method for producing a metal halide, which is characterized by producing a metal halide by an exothermic chain reaction with a metal halide.
以下、本発明を詳細に説明する。The present invention will be explained in detail below.
本発明方法において用いられる有機金属化合物について
は、ガス状になるものであり、かつ金属原子にまで分解
する時に発熱反応を起こすものであればよく、特に制限
はない。このような有機金属化合物としては、テトラア
ルキル鉛、トリアルキルビスマス、トリアルキルタリウ
ム、ジアルキル亜鉛、ジアルキル水銀、ジアルキルカド
ミウムなどが挙げられる。The organometallic compound used in the method of the present invention is not particularly limited as long as it becomes gaseous and causes an exothermic reaction when decomposed into metal atoms. Examples of such organometallic compounds include tetraalkyl lead, trialkyl bismuth, trialkyl thallium, dialkyl zinc, dialkyl mercury, and dialkyl cadmium.
ここでアルキル基としては、メチル基、エチル基、n−
プロビル基、イングロビル基などが挙げられ、直鎖状の
ものであっても分枝しているものであってもよい。Here, the alkyl group includes methyl group, ethyl group, n-
Examples include probyl group and inglovir group, and they may be linear or branched.
本発明の有機金属化合物は、金属原子にまで分解すると
き発熱反応を起こすことが必要である。The organometallic compound of the present invention must undergo an exothermic reaction when decomposed into metal atoms.
有機金属化金物の代表例として、一般弐MI R 1と
し(M1:金属、R1:アルキル基、n:アルキル基の
数、通常1〜4の整数)、このyi l R l。の反
応が
式M’R’,+M’+ (n/ 2) R’−R’のよ
うに表されるとする。ここで
式 M’R ’,−+M’+n R ’で表される反応
式における結合解離エネルギーをDAとし
式 n R’+ (n/ 2)R’−R’で表され
る反応式におけるラジカルR1の再結合エイ・ルギーを
DBとするとΔH=DA DBとなる。As a typical example of an organometallated metal compound, general 2 MI R 1 (M1: metal, R1: alkyl group, n: number of alkyl groups, usually an integer of 1 to 4) is used. Suppose that the reaction is expressed as the formula M'R', +M'+ (n/2) R'-R'. Here, the bond dissociation energy in the reaction formula represented by the formula M'R', -+M'+n R' is DA, and the radical in the reaction formula represented by the formula n R'+ (n/2)R'-R' If the recombination A and R of R1 are DB, then ΔH=DA DB.
かかるΔHが負になると発熱反応を起こすことになる。If ΔH becomes negative, an exothermic reaction will occur.
このような有機金属化合物を用いることにより、5
一〇一
熱による連鎖反応が進行し、本発明の目的を達戒できる
。連鎖的分解反応の円滑な開始、進行のために原料濃度
を高くできる蒸気圧の比較的高いものが好ましい。例え
ばアルキル基の炭素数の少ない有機金属化合物が好まし
い。By using such an organometallic compound, a chain reaction due to 5-101 heat proceeds, and the object of the present invention can be achieved. In order to smoothly start and proceed the chain decomposition reaction, it is preferable to use a material with a relatively high vapor pressure that can increase the raw material concentration. For example, an organometallic compound having a small number of carbon atoms in an alkyl group is preferable.
さらに、有機金属化合物のΔHの絶対値は、大きいほど
好ましく、このような有機金属化合物として、テトラメ
チル鉛(ΔH = − 2 5 kcall/man)
、トリメチルビスマス(ΔH=−30k.ca劃/ m
o L )などが挙げられる。Further, the larger the absolute value of ΔH of the organometallic compound is, the more preferable it is, and as such an organometallic compound, tetramethyl lead (ΔH = −25 kcall/man)
, trimethyl bismuth (ΔH=-30k.ca/m
o L ), etc.
一方、含ハロゲン化合物としては、ノ\ロゲン元素(F
,CQ,Br、■)を含有し、かつガス状になるもので
あればよく、特に制限はないが、蒸気圧が高く、かつ分
解も容易である化合物が望ましい。このような化合物の
中で、フツ化メチル、塩化メチル、臭化メチル、ヨウ化
メチル、さらにはF,、CIl2、Br.、■,などが
好適である。これらの含ハロゲン化合物は1種用いても
よいし、2種以上を組み合わせて用いてもよい。On the other hand, as a halogen-containing compound, halogen element (F
, CQ, Br, ■) and becomes gaseous. There is no particular restriction, but a compound that has a high vapor pressure and is easily decomposed is desirable. Among such compounds are methyl fluoride, methyl chloride, methyl bromide, methyl iodide, as well as F,, CIl2, Br. , ■, etc. are suitable. One type of these halogen-containing compounds may be used, or two or more types may be used in combination.
以上のような有機金属化合物と含/’iロゲン化合物と
を存在させ、この系内の一部に以下に述べるレーザーな
どのエネルギー線を照射することにより発熱的な連鎖反
応が進行し、金属ノ\ロゲン化物を生戒することができ
る。When the organometallic compound and the i-containing compound as described above are present, and a part of this system is irradiated with energy rays such as the laser described below, an exothermic chain reaction proceeds, and the metal \Rogenide can be avoided.
ここで連鎖反応は主として分解反応とノ1ロゲン化反応
である。また「発熱的」とは反応における全熱収支が負
になることをいう。The chain reaction here is mainly a decomposition reaction and a nitrogenation reaction. Furthermore, "exothermic" means that the total heat balance in the reaction is negative.
具体的に説明すると次のとおりである。The specific explanation is as follows.
有機金属化合物として例えば一般式、MI R *,(
M2:金属、R2 ,アルキル基、m:正の有理数)で
表される化合物と、含ノ\ロゲン化合物として例えば一
般式、R3,X,(R3は特に制限はないが、例えばメ
チル基などであり、Xはハロゲン原子、pはOまたは正
の有理数、qは正の有理数である)で表される化合物と
をモル比で1:y(yは正の有理数)の割合で混合した
系の反応が
M ”R 2,l十y R 3,X (+[ M2−x
+ F ] + [ R2− + R” e v (
又はR ”m− R ”ey)]・・・式I
で表されるとする。As an organometallic compound, for example, the general formula, MI R *, (
M2: metal, R2, alkyl group, m: positive rational number) and a compound represented by the general formula, R3, , X is a halogen atom, p is O or a positive rational number, and q is a positive rational number) in a molar ratio of 1:y (y is a positive rational number). The reaction is M ''R 2,10y R 3,X (+[ M2-x
+ F ] + [ R2− + R” e v (
or R ``m-R ''ey)]... is represented by Formula I.
7
8一
?こでR2■は分解反応により生じたm分子のR2ラジ
カルの再結合反応により生ずる最も安定なアルカン化合
物であり、R”eWはyモルの含ノ\ウゲン化合物R
’,X .より生じたpyW子のR3i子又はpy分子
のR3分子から生ずる最も安定な化合物である。7 81? Here, R2■ is the most stable alkane compound generated by the recombination reaction of R2 radicals of m molecules generated by the decomposition reaction, and R''eW is the y mole of the nitrogen-containing compound R.
',X. It is the most stable compound generated from the R3i child of the pyW child or the R3 molecule of the py molecule.
またR2 −RZvは、m分子のR2ラジカルとpy原
子のR3原子又はpy分子のR3分子との反応により生
ずる最も安定な化合物である。Furthermore, R2-RZv is the most stable compound produced by the reaction between the R2 radical of m molecules and the R3 atom of a py atom or the R3 molecule of a py molecule.
この反応においてDA+Dll−DC−DD<Oとなる
と、発熱反応が起こり、その熱により連鎖反応が進行し
、金属/%ロゲン化物M”−X.,が生成する。ここで
DAは、M2 R 2,がM 2+ m R ”に分解
する結合解離エネルギーであり、D,はR”,X.がp
R3+QXに分解する結合解離エネルギーのy倍であり
、DCは、M2とyqxとからM’−X.,を生或する
結合エネルギーであり、DBI:tmR”から最も安定
なアルカン化合物であるR2,を生成する結合エネルギ
ーとpyR’から最も安定な化合物であるR ’ p
yを生成する結合エネルギーの和である。In this reaction, when DA+Dll-DC-DD<O, an exothermic reaction occurs, and the heat promotes a chain reaction to produce metal/% halogenide M"-X., where DA is M2 R2 , is the bond dissociation energy that decomposes into M 2+ m R'', D, is R'', and X. is p
It is y times the bond dissociation energy that decomposes into R3+QX, and DC is y times the bond dissociation energy that decomposes into R3+QX. , the bond energy that produces R2, which is the most stable alkane compound from DBI:tmR', and R' p, which is the most stable compound from pyR'.
It is the sum of the bond energies that produce y.
ただし、DDは、式IにおいてRζ一R3,,が生或す
るときはm R 2とpyR’とからR 2,− R
”tyを生成する結合エネルギーである。However, when Rζ-R3,, occurs in formula I, DD is R2,-R from m R2 and pyR'.
``This is the binding energy that produces ty.
本発明方法においては、系内における有機金属化合物の
蒸気濃度は10lfi分子/mll(室温で約ITor
r)以上、好ましくは10″分子/mQ以上、より好ま
しくは1017分子/mI1以上であることが必要であ
る。この濃度が101s分子7mlbより低いと、連鎖
開始の活性種の濃度が低過ぎて、活性種の寿命のある間
に、含ハロゲン化合物との反応が起こりに<<、活性種
が失活してしまうので連鎖反応が開始しにくくなる。In the method of the present invention, the vapor concentration of the organometallic compound in the system is 10 lfi molecules/ml (approximately I Tor at room temperature).
r) or more, preferably 10" molecules/mQ or more, more preferably 1017 molecules/ml or more. If this concentration is lower than 7 mlb of 101s molecules, the concentration of the active species for chain initiation is too low. During the lifetime of the active species, a reaction with the halogen-containing compound occurs and the active species are deactivated, making it difficult to initiate a chain reaction.
この有機金属化合物の蒸気濃度は、該有機金属化合物の
エネルギーの吸収係数との関係で、適切な条件を選択で
きる。例えばエネルギー線の振動数を選択して、吸収効
率が大きい条件で照射を行うときは、該蒸気濃度を小さ
くしても連鎖的分解反応は開始する。Appropriate conditions can be selected for the vapor concentration of the organometallic compound in relation to the energy absorption coefficient of the organometallic compound. For example, when the frequency of the energy beam is selected and irradiation is performed under conditions that provide high absorption efficiency, the chain decomposition reaction will start even if the vapor concentration is reduced.
一方、含ハロゲン化合物の系内における濃度にー9
10
ついては特に制限はないが、前記有機金属化合物の濃度
の4倍モル以下が好ましい。On the other hand, the concentration of the halogen-containing compound in the system -9 10 is not particularly limited, but is preferably at most 4 times the molar concentration of the organometallic compound.
本発明方法においては、所望に応じ系内に希釈ガスを存
在させてもよい。希釈ガスとしては、例えばヘリウム、
窒素、水素、アルゴンなどを用いることができる。In the method of the present invention, a diluent gas may be present in the system as desired. Examples of diluent gas include helium,
Nitrogen, hydrogen, argon, etc. can be used.
この希釈ガスの濃度は、照射するエネルギー線の強度に
より適宜選択されるが、連鎖的な分解反応を起こさせる
ためには低い方がよい。The concentration of this diluent gas is appropriately selected depending on the intensity of the energy rays to be irradiated, but is preferably lower in order to cause a chain decomposition reaction.
本発明方法において、連鎖開始反応のエネルギーに用い
るエネルギー線については、活性種を高密度に生成させ
るものであればよく、特に制限はない。このようなエネ
ルギー線としては、例えばレーザー光、水銀ランプやキ
セノンランプなどの非コヒーレント光、軌道放射光、マ
イクロ波及びX線のような放射線などの電磁波、あるい
はイオンビーム、電子ビーム、プラズマなどが用いられ
るが、これらの中でレーザー光、軌道放射光、X線が好
ましく、特にレーザー光が好適である。In the method of the present invention, there are no particular limitations on the energy rays used for the chain initiation reaction as long as they can generate active species at a high density. Such energy rays include, for example, laser light, incoherent light such as mercury lamps and xenon lamps, orbital synchrotron radiation, electromagnetic waves such as microwaves and radiation such as X-rays, ion beams, electron beams, plasma, etc. Among these, laser light, orbital synchrotron radiation, and X-rays are preferred, and laser light is particularly preferred.
このレーザー光としては、大出力のパルスレーザーから
のものが好ましく、具体的には、紫外領域で発振するエ
キシマーレーザーや窒素レーザー赤外領域で発振する炭
酸ガスレーザー 一酸化炭素レーザー、YAGレーザー
、ガラスレーザールビーレーザー、アレクサンドライト
レーザーまた可視領域で発振するYAGレーザーなどの
高調波、銅蒸気レーザーや金蒸気レーザー、色素レーザ
ー、アルゴンイオンレーザーやクリプトンイオンレーザ
ーなどからのものが挙げられる。This laser light is preferably from a high-output pulse laser, and specifically, excimer lasers that oscillate in the ultraviolet region, nitrogen lasers, carbon dioxide lasers that oscillate in the infrared region, carbon monoxide lasers, YAG lasers, glass lasers, etc. Lasers include ruby lasers, alexandrite lasers, harmonics of YAG lasers that oscillate in the visible region, copper vapor lasers, gold vapor lasers, dye lasers, argon ion lasers, krypton ion lasers, and the like.
般的に、有機金属化合物は、紫外領域に大きな吸収を有
しているので、前記レーザーのうち、紫外領域で発振す
るレーザーを用いると容易に活性種を高密度に発生させ
ることができる。エキシマーレーザーはこのような作用
を有するとともにエネルギー密度が大きいので特に好適
である。また、炭酸ガスレーザーも、有機金属化合物が
赤外領域にもつ振動準位を多光子励起することにより分
解に導くことができるため、好ましい。なお、他のレー
ザーを用いて励起レベルのない波長で照射しても、一般
にレーザーによるブレークダウン一11
一12
を起こさせることができるため、連鎖的な分解を起こさ
せることが可能である。Generally, organometallic compounds have large absorption in the ultraviolet region, and therefore, among the lasers described above, when a laser that oscillates in the ultraviolet region is used, active species can be easily generated at a high density. Excimer lasers are particularly suitable because they have such an effect and a high energy density. Further, a carbon dioxide laser is also preferable because it can lead to decomposition by multiphoton excitation of the vibrational level that the organometallic compound has in the infrared region. Note that even if another laser is used to irradiate at a wavelength that has no excitation level, it is generally possible to cause breakdown by the laser, and therefore chain decomposition can be caused.
本発明におけるエネルギー線は、連続エネルギー線でも
よいが、パルス線が高密度な活性種を容易に発生させる
ことができるので好ましい。The energy beam in the present invention may be a continuous energy beam, but a pulsed beam is preferred because it can easily generate active species with high density.
本発明におけるエネルギー線の照射は、エネルギー密度
が高いほど有利である。The higher the energy density of energy ray irradiation in the present invention, the more advantageous it is.
本発明では、照射時間を非常に忽<シて、単位時間当た
りに生成する活性種の濃度を高く保つことが好ましく、
これを10−3秒以内、特に好ましくは、10−’秒以
内、さらに好ましくは、10−6秒以内にすることがよ
い。この値より照射時間を長くしても活性種の失活が起
こるため活性種の濃度を高くすることができなくなるこ
とがある。In the present invention, it is preferable to closely adjust the irradiation time to maintain a high concentration of active species generated per unit time.
This is preferably within 10-3 seconds, particularly preferably within 10-' seconds, and even more preferably within 10-6 seconds. Even if the irradiation time is made longer than this value, the active species will be deactivated, so it may not be possible to increase the concentration of the active species.
また、その際、照射線のエネルギー密度は、1cm2当
たり、10−4ジュール以上、好ましくは10−3ジュ
ール以上であればよく、これより少ない密度では連鎖的
分解反応がほとんど開始しない。Further, in this case, the energy density of the irradiation rays should be at least 10 -4 joules, preferably at least 10 -3 joules per cm 2 , and chain decomposition reactions will hardly start if the density is lower than this.
また、このエネルギー線の照射は、照射する金属化合物
の吸収係数(エネルギー線がレーザー光などの光である
場合は、モル吸光係数)が大きい条件で実施するのが望
ましい。例えば、テトラメチル船を原料として用いると
きは、波長約200nm付近で吸収係数の極大値があり
、この場合は、波長193nmのArFエキシマーレー
ザーを使用するのが、好適である。Moreover, it is desirable that the irradiation with this energy ray be carried out under conditions where the absorption coefficient (molar absorption coefficient when the energy ray is light such as a laser beam) of the metal compound to be irradiated is large. For example, when a tetramethyl vessel is used as a raw material, the absorption coefficient has a maximum value around a wavelength of about 200 nm, and in this case, it is preferable to use an ArF excimer laser with a wavelength of 193 nm.
このようなエネルギー線の照射によって、系内の一部に
、x011個/mL以上、好ましくは1016個7mQ
.以上の高濃度の活性種が発生し、活性種により引き起
こされる発熱的な連鎖反応が逐次的に起こり、瞬間的に
有機金属化合物がほとんど完全に分解し、金属活性種と
ハロゲンとが反応して、金属ハロゲン化物の微粒子が生
成する。By irradiating such energy rays, a part of the system is exposed to x011 cells/mL or more, preferably 1016 cells/mL.
.. These high concentrations of active species are generated, and an exothermic chain reaction caused by the active species occurs sequentially, causing the organometallic compound to almost completely decompose in an instant, and the metal active species to react with the halogen. , fine particles of metal halide are produced.
また本発明では、前記有機金属化合物の他、本発明の目
的を損なわない範囲で他の金属化合物を存在させること
ができる。このような金属化合物は、ガス状になるもの
であればよく、特に制限はない。該他の金属化合物どし
ては、例えば鉛、ビスマス、タリウム、亜鉛、アルミニ
ウム、カドミ一13
一14
ウム、水銀、金、銀、白金、コバルト、ニッケル、鉄、
スズ、ケイ素、ゲルマニウムなどの金属又は半金属のア
ルキル基などとの間の金属一炭素結合を有する有機金属
化合物及びこれらの金属や半金属の水素化物、アルコキ
シド、カルポニル化物、メタロセン化合物、ハロゲン化
物、水酸化物、酸化物、炭化物、窒化物、硫化物などが
挙げられ、これらの金属化合物は1種用いてもよいし、
2種以上を組み合わせて用いてもよい。Further, in the present invention, other metal compounds may be present in addition to the organometallic compound as long as the object of the present invention is not impaired. Such a metal compound is not particularly limited as long as it becomes gaseous. Examples of the other metal compounds include lead, bismuth, thallium, zinc, aluminum, cadmium, mercury, gold, silver, platinum, cobalt, nickel, iron,
Organometallic compounds having a metal-carbon bond between an alkyl group of a metal or metalloid such as tin, silicon, germanium, etc., and hydrides, alkoxides, carbonylates, metallocene compounds, halides of these metals or metalloids, Examples include hydroxides, oxides, carbides, nitrides, sulfides, etc., and one type of these metal compounds may be used,
You may use two or more types in combination.
これらの金属化合物においても、前記有機金属化合物の
場合と同様に、分解反応が発熱反応であるもの、結合解
離エネルギーが小さいもの、蒸気圧が比較的高いものが
好ましい。このようなものとしては、前記のテトラメチ
ル鉛、トリメチルビスマス、トリメチルタリウムなどの
有機金属化合物以外に、金属ハロゲン化物が蒸気圧が大
きい点で好ましく、また金属力ルボニル化合物、例えば
鉄カルポニル、ニッケル力ルポニル、クロム力ルボニル
、モリブデン力ルボニル、タングステン力ルポニルなど
が金属原子にまで分解する結合解離エネルギーが小さい
点で好ましい。このように他の金属化合物を用いれば、
複数の金属からなる金属ハロゲン化物が得られる。As in the case of the organometallic compounds, these metal compounds are preferably those whose decomposition reaction is exothermic, those whose bond dissociation energy is small, and those whose vapor pressure is relatively high. In addition to the organometallic compounds such as tetramethyl lead, trimethyl bismuth, and trimethyl thallium, metal halides are preferable because of their high vapor pressure, and metal carbonyl compounds such as iron carbonyl and nickel metal compounds are preferable as such compounds. Luponyl, chromium carbonyl, molybdenum carbonyl, tungsten carbonyl, and the like are preferred because they have low bond dissociation energy for decomposition into metal atoms. If other metal compounds are used in this way,
A metal halide consisting of multiple metals is obtained.
このようにして得られる金属ハロゲン化物の微粒子の径
は、1μm以下であるが、大部分は0.3μm以下の粒
子で構威されている。The diameter of the metal halide fine particles thus obtained is 1 μm or less, but most of the particles are 0.3 μm or less.
[実施例]
次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。[Example] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.
実施例1
7mlの石英セルに、テトラメチル鉛3.3×10″分
子/mA(1 0.OT o r r)を封じ込め、こ
れにヨウ化メチルを6.4X 1 0”分子/IIII
!(1、9.3To r r)添加した。この試料に十
分な光子密度をもったKrFエキシマーレーザーからの
レーザー光(波長248nmsエネルギー密度7 5
m J / cm2)を1パルス(IXIO−a秒間)
照射したところ、橙色の光を発しながら、一気に連鎖的
な分解生成反応が起こり、反応後粒径一15−
−16−
0.3μm以下のヨウ化鉛の黄色い微粒子約1.7mg
を生成した。Example 1 In a 7 ml quartz cell, 3.3 x 10'' molecules/mA (10.OT o r r) of tetramethyl lead was sealed, and 6.4 x 10'' molecules/mA of methyl iodide was sealed therein.
! (1,9.3 Torr) was added. Laser light from a KrF excimer laser with sufficient photon density for this sample (wavelength: 248 nm, energy density: 7 5
mJ/cm2) for 1 pulse (IXIO-a seconds)
When irradiated, a chain decomposition reaction occurred all at once while emitting orange light, and after the reaction approximately 1.7 mg of yellow fine particles of lead iodide with a particle size of -15--16-0.3 μm or less were produced.
was generated.
この生成物について、X線光電子分光法(XPS)によ
り分析を行ったところ、ヨウ素のピークが619.1e
V付近に現れ、また鉛のピークが138.5eVにみら
れた。一方、標準サンプル(ニョウ化船)ではそれぞれ
6 1 9.O eV及び13B.4eVでピークがみ
られた。PbI,の鉛のピークはまた、W.B.Mo
r g a nらによって報告されている値1 38.
5eV (J.Phys.Cham.77,96,’7
3)ともよい一致を示す。この測定結果により、生或物
を確認した。When this product was analyzed by X-ray photoelectron spectroscopy (XPS), the iodine peak was found at 619.1e.
It appeared near V, and a lead peak was observed at 138.5 eV. On the other hand, the standard sample (Nyokasen) had 6 1 9. O eV and 13B. A peak was observed at 4 eV. The lead peak of PbI, is also similar to that of W. B. Mo
The value reported by rgan et al. 1 38.
5eV (J.Phys.Cham.77,96,'7
3) shows good agreement. Based on this measurement result, the presence of a living substance was confirmed.
実施例2
7mQの石英製セルに、テトラメチル鉛8.3×101
7分子/mQ (2 5.OT.o r r)を封じ込
め、これに臭化メチル2.6X10”分子/m悲(77
.9Torr)を添加した。この試料に十分な光子密度
をもったArFエキシマレーザーからのレーザー光(波
長193nmsエネルギー密度5 0 m J /cm
2)を1パルス(IXIO−’秒間)照射したところ、
橙色の光を発しながら、一気に連鎖的な分解生戒反応が
起こり、反応後粒径0.3μm以下の臭化鉛の微粒子約
2.8mgを生成した。Example 2 Tetramethyl lead 8.3 x 101 in a 7 mQ quartz cell
7 molecules/mQ (2 5.OT.o r r), and methyl bromide 2.6
.. 9 Torr) was added. Laser light from an ArF excimer laser with sufficient photon density for this sample (wavelength: 193 nm, energy density: 50 mJ/cm)
2) was irradiated with one pulse (IXIO-' seconds),
A chain decomposition reaction occurred all at once while emitting orange light, and after the reaction, about 2.8 mg of lead bromide fine particles with a particle size of 0.3 μm or less were produced.
この生戒物について、XPS測定を行ったところ、市販
のサンプル(二臭化鉛)の値と一致した。When this raw material was subjected to XPS measurement, the value matched that of a commercially available sample (lead dibromide).
この測定結果より生成物を確認した。The product was confirmed from this measurement result.
実施例3
7rrfLの石英製セルに、テトラメチル鉛8.3×1
017分子/mA(25.OTorr)を添加した。Example 3 Tetramethyl lead 8.3×1 in a 7rrfL quartz cell
017 molecules/mA (25.OTorr) was added.
この試料に、十分な光子密度をもったArFエキシマレ
ーザーからのレーザー光(波長193nm,エネルギー
密度5 0 m J / cm2)を1パルス(1XI
O−’秒間)照射したところ、橙色の光を発しながら一
気に連鎖的な分解生成反応が起こり、反応後粒径0.3
μm以下の塩化鉛の微粒子約2.6mgを生戒した。One pulse of laser light (wavelength 193 nm, energy density 50 mJ/cm2) from an ArF excimer laser with sufficient photon density was applied to this sample (1
When irradiated (0-' seconds), a chain reaction of decomposition and production occurred at once while emitting orange light, and after the reaction the particle size was 0.3.
Approximately 2.6 mg of lead chloride fine particles with a size of less than μm were administered.
この生成物についてXPS測定を行ったところ、市販の
サンプル(二塩化船)の値と一致した。この測定結果よ
り生成物を確認した。When this product was subjected to XPS measurement, the value coincided with that of a commercially available sample (dichloride vessel). The product was confirmed from this measurement result.
17−
18−
実施例4
実施例1において、テトラメチル鉛の代わりにトリメチ
ルビスマスを用いた以外は、実施例2と同様にして実施
したところ、連鎖的な分解生成反応が起こり、反応後粒
径0.3μm以下のヨウ化ビスマスの微粒子約3.5+
Bを生成した。17-18- Example 4 The same procedure as Example 2 was carried out except that trimethyl bismuth was used instead of tetramethyl lead in Example 1. A chain decomposition reaction occurred, and the particle size after the reaction decreased. Approximately 3.5+ fine particles of bismuth iodide of 0.3 μm or less
produced B.
比較例l
実施例1において、レーザー光の照射をエネルギー密度
7 .5 X 1 0−’J /cm2、照射強度0.
3mJの条件で行った以外は、実施例1と同様にして実
施したところ、連鎖的な分解反応は進行しなかった。Comparative Example 1 In Example 1, laser light irradiation was performed at an energy density of 7. 5 X 10-'J/cm2, irradiation intensity 0.
When carried out in the same manner as in Example 1 except that the test was carried out under the condition of 3 mJ, no chain decomposition reaction proceeded.
比較例2
実施例1において、テトラメチル船の蒸気濃度を3.3
X10”分子/m0.(0.0 1To r r)とし
た以外は、実施例1と同様にして実施したところ、連鎖
的な爆発反応は観測されなかった。Comparative Example 2 In Example 1, the steam concentration in the tetramethyl ship was set to 3.3.
When carried out in the same manner as in Example 1 except that the setting was X10'' molecules/m0. (0.01 Torr), no chain explosive reaction was observed.
[発明の効果]
本発明方法によると、ガス状の含ハロゲン化合物の存在
下、ガス状の有機金属化合物に、1パルスの工不ルギー
線を照射することにより、金属ハロゲン化物を少ない投
入エネルギーでもって、安価にかつ極めて効率よく製造
することができ、しかも気相中で有機金属化合物が分解
すると同時に、ハロゲンによるハロゲン化反応が起こる
ため、金属ハロゲン化物が容易に得られる上、ハロゲン
の量のコントロールが容易なので、金属ハロゲン化物の
量と組或を制御することが容易である。[Effects of the Invention] According to the method of the present invention, metal halides can be removed with a small input energy by irradiating a gaseous organometallic compound with one pulse of energy radiation in the presence of a gaseous halogen-containing compound. Therefore, it can be produced at a low cost and extremely efficiently. Moreover, since the halogenation reaction with the halogen occurs at the same time as the organometallic compound decomposes in the gas phase, the metal halide can be easily obtained, and the amount of halogen can be reduced. Since it is easy to control, it is easy to control the amount and composition of metal halides.
本発明方法で得られた金属ハロゲン化物は、例えば電子
材料などとして好適に用いられる。The metal halide obtained by the method of the present invention is suitably used, for example, as an electronic material.
Claims (1)
の発熱的な分解反応を起こす有機金属化合物の系内に、
ガス状の含ハロゲン化合物を存在させ、この系内の一部
に1cm^2当たり10^−^4ジュール以上のエネル
ギー密度のエネルギー線を照射して、系内の一部に該有
機金属化合物に起因する高濃度の活性種を生成させ、次
いでこの活性種により引き起こされる有機金属化合物と
含ハロゲン化合物との発熱的な連鎖反応により、金属ハ
ロゲン化物を生成させることを特徴とする金属ハロゲン
化物の製造方法。 2 金属ハロゲン化物が微粒子状のものである請求項1
記載の製造方法。[Claims] 1. In a system of an organometallic compound that causes a gaseous exothermic decomposition reaction at a concentration of 10^1^5 molecules or more per ml,
A gaseous halogen-containing compound is present, and a part of the system is irradiated with an energy beam with an energy density of 10^-^4 joules or more per cm^2, so that a part of the system is exposed to the organometallic compound. production of a metal halide, characterized in that a high concentration of active species is generated, and then a metal halide is generated by an exothermic chain reaction between an organometallic compound and a halogen-containing compound caused by the active species. Method. 2. Claim 1, wherein the metal halide is in the form of fine particles.
Manufacturing method described.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14970689A JPH0316901A (en) | 1989-06-14 | 1989-06-14 | Production of metal halide |
US07/463,392 US5064517A (en) | 1989-01-18 | 1990-01-11 | Method for the preparation of fine particulate-metal-containing compound |
EP19900300507 EP0379360A3 (en) | 1989-01-18 | 1990-01-18 | Method for the preparation of fine particulate metal-containing compound |
US07/728,182 US5207878A (en) | 1989-01-18 | 1991-07-10 | Method for the preparation of fine particulate metal-containing compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14970689A JPH0316901A (en) | 1989-06-14 | 1989-06-14 | Production of metal halide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0316901A true JPH0316901A (en) | 1991-01-24 |
Family
ID=15481036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14970689A Pending JPH0316901A (en) | 1989-01-18 | 1989-06-14 | Production of metal halide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0316901A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022537253A (en) * | 2019-06-03 | 2022-08-25 | メカロエナジー カンパニー リミテッド | Manufacturing method of perovskite solar cell absorber layer by chemical vapor deposition |
-
1989
- 1989-06-14 JP JP14970689A patent/JPH0316901A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022537253A (en) * | 2019-06-03 | 2022-08-25 | メカロエナジー カンパニー リミテッド | Manufacturing method of perovskite solar cell absorber layer by chemical vapor deposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kogelschatz | Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation | |
US5064517A (en) | Method for the preparation of fine particulate-metal-containing compound | |
GB1595216A (en) | Isotope separation | |
US5207878A (en) | Method for the preparation of fine particulate metal-containing compound | |
Brahms et al. | Difluoromaleic anhydride as a source of matrix isolated difluoropropadienone, difluorocyclopropenone and difluoroacetylene | |
US4844736A (en) | Method for the preparation of finely divided metal particles | |
Gangal et al. | Synergies between polyacrylamide polymerization and nanoparticle generation using an atmospheric pressure plasma jet | |
JPH0316901A (en) | Production of metal halide | |
Fendler et al. | Pulse radiolysis study of the reactions of hydrated electrons with naphthalene, phenanthrene, biphenyl and fluorene in aqueous micellar solutions | |
US4604274A (en) | Photochemical process for the preparation of disilane | |
JPH0759721B2 (en) | Method for producing fine metal particles | |
JPH059016A (en) | Manufacture of silicon and silicon dioxide | |
JPH02188410A (en) | Production of metal oxide | |
JPH02213404A (en) | Manufacture of metal fine particles | |
JPH0351675B2 (en) | ||
JPH0455306A (en) | Production of metal oxide | |
JPH02190408A (en) | Manufacture of multi metal compound | |
US4075505A (en) | Molecular emission lamp | |
JP3379886B2 (en) | Method for synthesizing fullerenes | |
Feliz et al. | Mechanism of the photoreversible ClRe (CO) 3 (4-phenylpyridine) 2-induced reduction of a Cu (II) macrocycle | |
RU2142185C1 (en) | Method for producing laser beams at iodine magnetic dipole transition | |
Shimo et al. | Laser-ignited explosive decomposition of organometallic compounds | |
EP0298126A1 (en) | Optical cvd process | |
Shimo et al. | Fine Metal Particle Formation from Organometallic Compounds by Laser Ignited Mild Explosive Reaction | |
JPH108257A (en) | Production of carbon nitride and carbon nitride |