JPH0218682Y2 - - Google Patents

Info

Publication number
JPH0218682Y2
JPH0218682Y2 JP1982060012U JP6001282U JPH0218682Y2 JP H0218682 Y2 JPH0218682 Y2 JP H0218682Y2 JP 1982060012 U JP1982060012 U JP 1982060012U JP 6001282 U JP6001282 U JP 6001282U JP H0218682 Y2 JPH0218682 Y2 JP H0218682Y2
Authority
JP
Japan
Prior art keywords
rotor
air gap
cooling gas
guide cover
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982060012U
Other languages
Japanese (ja)
Other versions
JPS58162754U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6001282U priority Critical patent/JPS58162754U/en
Priority to US06/486,235 priority patent/US4496863A/en
Priority to CA000426384A priority patent/CA1194531A/en
Priority to SE8302258A priority patent/SE455033B/en
Priority to DE19833314426 priority patent/DE3314426A1/en
Priority to CH2192/83A priority patent/CH659552A5/en
Publication of JPS58162754U publication Critical patent/JPS58162754U/en
Application granted granted Critical
Publication of JPH0218682Y2 publication Critical patent/JPH0218682Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は通風動力損を低減して効率の向上を
図つた回転電機の回転子に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a rotor for a rotating electric machine that reduces ventilation power loss and improves efficiency.

〔従来の技術〕[Conventional technology]

以下、同期機などの回転電機の突極形回転子を
例に説明する。
Hereinafter, a salient pole rotor of a rotating electrical machine such as a synchronous machine will be explained as an example.

従来の同期機の突極形回転子は、第1図及び第
2図に縦断面図及び一部の平面断面図で示すよう
になつていた。図は立て軸形の場合を示し、1は
回転軸、2は回転子スパイダ、3はこの回転子ス
パイダにそう入固着されたリムで、回転子の継鉄
をなす。4はこのリムに設けられた半径方向の複
数の通風ダクトで、複数個のダクト片5及び間隔
環6により通風間隔が形成されている。7はリム
3の締付けボルト、8はナツトである。10は薄
鋼板を積層してなる複数個の突極形の磁極鉄心
で、締付けボルトにより締付けられており、リム
3の外周に固着されている。11は磁極鉄心10
にはめられた界磁コイル、9は磁極で磁極鉄心1
0と界磁コイル11で構成されている。12はリ
ム3に取付けられたフアンである。
A salient pole rotor of a conventional synchronous machine is shown in FIGS. 1 and 2 as a vertical sectional view and a partial plan sectional view. The figure shows the case of a vertical shaft type, where 1 is a rotating shaft, 2 is a rotor spider, and 3 is a rim that is firmly fixed to the rotor spider and forms a yoke for the rotor. Reference numeral 4 denotes a plurality of radial ventilation ducts provided on this rim, and ventilation intervals are formed by a plurality of duct pieces 5 and a spacing ring 6. 7 is a tightening bolt for the rim 3, and 8 is a nut. Reference numeral 10 denotes a plurality of salient pole-shaped magnetic pole cores made of laminated thin steel plates, which are fastened with tightening bolts and fixed to the outer periphery of the rim 3. 11 is the magnetic pole core 10
The field coil fitted in, 9 is the magnetic pole and the magnetic pole iron core 1
0 and a field coil 11. 12 is a fan attached to the rim 3.

次に、13は固定子わく、14はこの固定子わ
くに固定支持された固定子鉄心で、半径方向の通
風ダクト15が設けられている。16は固定子コ
イル、17は端囲いである。18は回転子で1〜
12で構成され、19は固定子で13〜17で構
成されている。20は回転子18と固定子19と
の間に形成されるエアギヤツプである。
Next, 13 is a stator frame, 14 is a stator core fixedly supported by this stator frame, and a radial ventilation duct 15 is provided. 16 is a stator coil, and 17 is an end enclosure. 18 is a rotor from 1 to
12, and 19 is a stator, which is made up of 13 to 17. 20 is an air gap formed between the rotor 18 and the stator 19.

上記従来の装置において、回転子18が回転す
ると、フアン12により流入した、たとえば冷却
空気のような冷却気体は界磁コイル11の端部を
冷却し、矢印のように固定子コイル16端を通り
これを冷却する。また、回転子スパイダ2の内径
側に入つた冷却気体は、通風ダクト4を通り、矢
印のように隣接する界磁コイル11間を流通して
これを冷却する。界磁コイル11間を通る冷却気
体は突極のフアン作用が加わつてエアギヤツプ2
0に噴出し、これを経て固定子通風ダクト15を
通り、固定子コイル16及び固定子鉄心14を冷
却する。
In the conventional device described above, when the rotor 18 rotates, the cooling gas, such as cooling air, flowing in by the fan 12 cools the end of the field coil 11 and passes through the end of the stator coil 16 as shown by the arrow. Cool this. Further, the cooling gas that has entered the inner diameter side of the rotor spider 2 passes through the ventilation duct 4 and flows between adjacent field coils 11 as shown by the arrows, thereby cooling the coils. The cooling gas passing between the field coils 11 is affected by the fan action of the salient poles and is formed into an air gap 2.
0, passes through the stator ventilation duct 15, and cools the stator coil 16 and stator core 14.

しかるに、回転子18の機械損(空転損)は風
損と軸受損に分けられ、風損は通風のために必要
な動力として消費され風量の増大に伴つて増大す
る通風動力損と周囲気体との摩擦に消費される損
失で風量に無関係で一定な摩擦損に分けられる。
However, the mechanical loss (slip loss) of the rotor 18 is divided into wind loss and bearing loss, and wind loss is consumed as the power necessary for ventilation, and the ventilation power loss increases as the air volume increases, and the surrounding gas The loss consumed by friction with the airflow is divided into friction loss, which is constant and unrelated to the air volume.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

従来の回転電機の回転子は上記のように構成さ
れているので、磁極9間を通つてエアギヤツプに
流れる冷却気体は、磁極9のフアン作用により磁
極9と同一の周速(同一の角速度)を与えられ、
この周速(角速度)を持つてエアギヤツプ20に
噴出しており、大きな角運動量を持つたままエア
ギヤツプ20に噴出することになる。
Since the rotor of a conventional rotating electric machine is configured as described above, the cooling gas flowing between the magnetic poles 9 and into the air gap has the same peripheral speed (same angular velocity) as the magnetic poles 9 due to the fan action of the magnetic poles 9. given,
It is ejected into the air gap 20 with this circumferential velocity (angular velocity), and is ejected into the air gap 20 with a large angular momentum.

しかるにエアギヤツプ20を通過して固定子1
9の通風ダクト15に入ると、半径方向に設けら
れたこの通風ダクト15によつて冷却気体は半径
方向のみの流れに変換されるため、エアギヤツプ
20部で有していた冷却気体の角速度は零とな
る。したがつてエアギヤツプ20における大きな
角運動量はこの流れの変更に費やされてしまい、
ほぼそのまま通風動力損となり、十分な効率が得
られないと云う問題点を有していた。
However, after passing through the air gap 20, the stator 1
9, the cooling gas is converted into a flow only in the radial direction by the ventilation duct 15 provided in the radial direction, so that the angular velocity of the cooling gas in the air gap 20 becomes zero. becomes. Therefore, a large amount of angular momentum in the air gap 20 is wasted in changing this flow,
This resulted in a loss of ventilation power almost directly, and the problem was that sufficient efficiency could not be obtained.

この考案は上記のような従来のものの問題点を
除去するためになされたものであり、隣接する磁
極の一方の磁極頭部の回転方向と逆方向側の端部
に固定され、他方の磁極頭部との間に噴出路を形
成するガイドカバーと、固定子リムに設けられガ
イドカバーをリム側に引張つて固定する固定部材
とを設け、磁極間からエアギヤツプに噴出する冷
却気体のエアギヤツプ側への出口を絞り冷却気体
を噴出路から回転子の回転方向と逆方向に噴出さ
せることにより、エアギヤツプに噴出する冷却気
体の通風動力損を低減し、十分な効率が得られる
回転電機の回転子を提供することを目的としてい
る。
This idea was made in order to eliminate the problems of the conventional ones as described above, and it is fixed to the end of one of the adjacent magnetic poles in the opposite direction to the rotational direction of the magnetic pole head, and the magnetic pole head of the other magnetic pole is A guide cover that forms an ejection path between the magnetic poles and a fixing member that is provided on the stator rim and that pulls and fixes the guide cover toward the rim side is provided, and cooling gas that is ejected from between the magnetic poles to the air gap is directed to the air gap side. By narrowing the outlet and ejecting cooling gas from the ejection path in the opposite direction to the rotor's rotational direction, the ventilation power loss of the cooling gas ejected into the air gap is reduced, providing a rotor for a rotating electric machine that achieves sufficient efficiency. It is intended to.

〔課題を解決するための手段〕[Means to solve the problem]

この考案に係る回転電機の回転子は、隣接する
磁極の一方の磁極頭部の回転方向と逆方向側の端
部にエアギヤツプ側に突出することなく固定さ
れ、他方の磁極頭部との間に噴出路を形成するガ
イドカバーと、回転子リムに設けられるガイドカ
バーをリム側に引張つて固定する固定部材とを備
えたものである。
The rotor of the rotating electric machine according to this invention is fixed to the end of one of the adjacent magnetic poles in the opposite direction to the rotational direction of the magnetic pole head without protruding toward the air gap side, and between the magnetic pole head of the other magnetic pole and the other magnetic pole head. It is equipped with a guide cover that forms an ejection path, and a fixing member that pulls and fixes the guide cover provided on the rotor rim toward the rim.

〔作用〕[Effect]

この考案に係る回転電機の回転子のガイドカバ
ーは、たとえば冷却空気のような冷却気体のエア
ーギヤツプ側への出口を絞り、冷却気体を回転子
スパイダー側から回転子リムの通風ダクトを経て
磁極間を通して噴出路からエアギヤツプへ回転子
の回転方向と逆方向に噴出させる。
The rotor guide cover of a rotating electrical machine according to this invention restricts the outlet of cooling gas such as cooling air to the air gap side, and passes the cooling gas from the rotor spider side through the ventilation duct of the rotor rim and between the magnetic poles. The air is ejected from the ejection passage into the air gap in the opposite direction to the rotational direction of the rotor.

〔考案の実施例〕[Example of idea]

以下、この考案の一実施例による回転電機の回
転子の構成を図に基づいて説明する。第3図ない
し第6図において、1〜20は上記従来装置と同
様のものである。21は隣接する磁極9の磁極頭
部の回転方向と逆方向側の端部に配設され、他方
の磁極9頭部との間に噴出路22を形成するガイ
ドカバーで、ほぼ磁極9の軸方向全長にわたつて
設けられ、磁極鉄心10の外周面と共に回転子1
8の外周面を構成し、磁極9間を通つた冷却空気
のエアギヤツプ20側への出口を絞り冷却空気が
噴出路22からエアギヤツプ20に噴出するとき
に回転子18の回転方向と逆方向に噴出するよう
に構成されている。23はリム3に設けられた通
風ダクト4から磁極9間に流通した冷却気体が磁
極9の上、下から流出するのを防ぐために磁極9
間に設けられたシール板である。24はリム3に
植設され、ガイドカバー21をリム3側に引張つ
て遠心力が働いてもゆるまないように固定する固
定部材で例えばボルト24aとナツト24bによ
り構成されている。
Hereinafter, the configuration of a rotor of a rotating electric machine according to an embodiment of this invention will be explained based on the drawings. In FIGS. 3 to 6, numerals 1 to 20 are the same as the conventional device described above. Reference numeral 21 denotes a guide cover that is disposed at the end of the magnetic pole head of the adjacent magnetic pole 9 in the opposite direction to the rotating direction, and forms an ejection path 22 between the magnetic pole head of the other magnetic pole 9, and is approximately aligned with the axis of the magnetic pole 9. The rotor 1 is provided along the entire length of the magnetic pole core 10 along with the outer peripheral surface of the magnetic pole core 10.
8, and throttles the outlet of the cooling air that has passed between the magnetic poles 9 toward the air gap 20. When the cooling air is ejected from the ejection passage 22 to the air gap 20, it is ejected in the opposite direction to the rotational direction of the rotor 18. is configured to do so. 23 is a magnetic pole 9 in order to prevent the cooling gas that has flowed between the magnetic poles 9 from the ventilation duct 4 provided in the rim 3 from flowing out from above and below the magnetic poles 9.
This is a seal plate provided in between. Reference numeral 24 is a fixing member that is implanted in the rim 3 and that pulls the guide cover 21 toward the rim 3 and fixes it so that it will not loosen even if a centrifugal force is applied, and is composed of, for example, a bolt 24a and a nut 24b.

尚、ガイドカバー21の材料としては、高磁界
中で使用するため渦電流による過熱の恐れのない
非磁性材料がよく、例えば日本工業規格(JIS)
のG4304(熱間圧延ステンレス鋼板)で規定され
ているSUS304,SUS316、又はアルミニウム、
FRP(ガラス繊維強化プラスチツク)、熱硬化性
樹脂積層板等を使用する。
The material of the guide cover 21 is preferably a non-magnetic material that does not cause overheating due to eddy current since it is used in a high magnetic field, such as Japanese Industrial Standard (JIS).
SUS304, SUS316 specified by G4304 (hot rolled stainless steel plate), or aluminum,
FRP (glass fiber reinforced plastic), thermosetting resin laminates, etc. are used.

上記構成において、回転子18の回転により、
従来と同様に回転子スパイダ2の内径側に入つた
冷却気体は、通風ダクト4を通り隣接する界磁コ
イル11間に流通し、これを冷却する。磁極9間
を通る冷却気体はガイドカバー11によりエアギ
ヤツプ20側への出口が絞られ風速が高められて
突極のフアン作用が加わつて磁極鉄心10の頭部
とガイドカバー21の間の噴出路22からエアギ
ヤツプ20に回転子18の回転方向と逆方向に周
速の1/2〜1/3程度の速度を持つて噴出する。エア
ギヤツプ20を通過した冷却気体は固定子19の
通風ダクト15を通り、固定子コイル16及び固
定子鉄心14を冷却する。また、フアン12によ
る冷却気体の流通は上記従来装置と同様である。
In the above configuration, due to the rotation of the rotor 18,
As in the conventional case, the cooling gas that has entered the inner diameter side of the rotor spider 2 passes through the ventilation duct 4 and flows between adjacent field coils 11 to cool them. The outlet of the cooling gas passing between the magnetic poles 9 to the air gap 20 side is narrowed by the guide cover 11, the wind speed is increased, and the fan action of the salient poles is added, resulting in an ejection path 22 between the head of the magnetic pole core 10 and the guide cover 21. The air is ejected from the air gap 20 in a direction opposite to the direction of rotation of the rotor 18 at a speed of about 1/2 to 1/3 of the circumferential speed. The cooling gas that has passed through the air gap 20 passes through the ventilation duct 15 of the stator 19 and cools the stator coil 16 and the stator core 14. Further, the circulation of cooling gas by the fan 12 is the same as in the conventional device described above.

このようにすることによつて通風動力損が小さ
くなる原理を回転子18の周速度と冷却気体の速
度関係を示した第5図の速度三角形で説明する。
The principle by which the ventilation power loss is reduced by doing this will be explained using the speed triangle in FIG. 5, which shows the relationship between the circumferential speed of the rotor 18 and the speed of the cooling gas.

この速度三角形でわかるように、磁極9出口部
分での冷却気体の絶対速度v1は磁極9の周速uと
磁極に対する冷却気体の相対速度w1を合成した
形で決まる。ここでvはv1,v2にwはw1,w2
対応する。従来の装置では、磁極9間を通る冷却
気体は磁極9のフアン作用により磁極9とほぼ同
一の周速を与えられるため、磁極9に対する冷却
気体の相対速度w1はほぼ外向きになり相対速度
w1が磁極間中心線外向と成す角度β1は0゜に接近す
る。これにより冷却気体の絶対速度v1の周速成分
u1は回転子18の周速uに近くなる。これに対し
て、この考案では磁極頭部にガイドカバー21が
取付けられ、このガイドカバー21によつて冷却
気体の噴出方向が回転方向と逆方向に向けられ
る。このため冷却気体の磁極9に対する相対速度
w2は、磁極間中心線外向に対して、周速と反対
方向に大きく傾く(角度β2)ことになる。これに
より冷却気体の絶対速度v2の周速成分u2は回転子
18の周速uよりかなり小さくでき、通風量が同
一の場合、通風動力はエアギヤツプ20に噴出す
る冷却気体の絶対速度の周速成分に比例するため
u2/u1倍に小さくなる。
As can be seen from this velocity triangle, the absolute velocity v 1 of the cooling gas at the exit portion of the magnetic pole 9 is determined by the combination of the circumferential velocity u of the magnetic pole 9 and the relative velocity w 1 of the cooling gas with respect to the magnetic pole. Here, v corresponds to v 1 and v 2 and w corresponds to w 1 and w 2 . In the conventional device, the cooling gas passing between the magnetic poles 9 is given almost the same circumferential speed as the magnetic poles 9 due to the fan action of the magnetic poles 9, so the relative velocity w 1 of the cooling gas with respect to the magnetic poles 9 is almost outward, and the relative velocity is
The angle β 1 that w 1 forms with the outward direction of the center line between the magnetic poles approaches 0°. As a result, the circumferential velocity component of the absolute velocity v 1 of the cooling gas
u 1 becomes close to the circumferential speed u of the rotor 18. In contrast, in this invention, a guide cover 21 is attached to the magnetic pole head, and the guide cover 21 directs the jetting direction of the cooling gas in a direction opposite to the rotation direction. Therefore, the relative velocity of the cooling gas to the magnetic pole 9 is
w 2 is largely inclined (angle β 2 ) in the direction opposite to the circumferential speed with respect to the outward direction of the center line between the magnetic poles. As a result, the circumferential velocity component u 2 of the absolute velocity v 2 of the cooling gas can be made considerably smaller than the circumferential velocity u of the rotor 18, and when the amount of ventilation is the same, the ventilation power is the circumference of the absolute velocity of the cooling gas jetted into the air gap 20. Because it is proportional to the velocity component
u 2 /u becomes 1 times smaller.

すなわち、エアギヤツプ20に噴出する冷却気
体の絶対速度の周速成分が小さくなることによつ
て角運動量が小さくなつて、通風動力損が小さく
なる。
That is, as the circumferential velocity component of the absolute velocity of the cooling gas ejected into the air gap 20 becomes smaller, the angular momentum becomes smaller, and the ventilation power loss becomes smaller.

このように隣接する磁極9間からエアギヤツプ
20に噴出する冷却気体は、ガイドカバー21に
よつて回転方向と逆方向に噴出させられることに
なり噴出部での冷却気体の周速(角速度)は回転
子18の周速よりかなり小さくなるため、この部
分で冷却気体が有する角運動量も小さくなる。従
つて、これがエアギヤツプ20で消滅することに
よつて、生じる通風動力損が小さくなる。
In this way, the cooling gas ejected from between the adjacent magnetic poles 9 into the air gap 20 is ejected in the opposite direction to the rotational direction by the guide cover 21, so that the circumferential velocity (angular velocity) of the cooling gas at the ejection part is Since the circumferential speed of the child 18 is considerably lower than that of the child 18, the angular momentum of the cooling gas in this portion is also small. Therefore, by eliminating this in the air gap 20, the ventilation power loss that occurs is reduced.

〔考案の効果〕[Effect of idea]

この考案は以上説明した通り、隣接する磁極の
一方の磁極頭部に固定され、他方の磁極頭部との
間に噴出路を形成するガイドカバーを設け、磁極
間からエアギヤツプに噴出する冷却気体のエアギ
ヤツプ側への出口を絞り冷却気体を噴出路からエ
アギヤツプへ回転子の回転方向と逆方向に噴出さ
せると共に、ガイドカバーをリム側に引張つて固
定する固定部材を回転子リムに設けたのでガイド
カバーは遠心力がかかつてもゆるむことなく、
又、通風動力損は低減でき、十分な効率を得るこ
とができる。
As explained above, this idea includes a guide cover that is fixed to the head of one of the adjacent magnetic poles and forms a blowout path between the head of the other magnetic pole, and the cooling gas that blows out from between the magnetic poles into the air gap. The outlet to the air gap side is throttled and the cooling gas is ejected from the blowout path to the air gap in the opposite direction to the rotational direction of the rotor, and a fixing member is provided on the rotor rim to pull and fix the guide cover toward the rim, so the guide cover is fixed. does not loosen even when centrifugal force is applied,
Moreover, ventilation power loss can be reduced and sufficient efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の突極形回転子を示す縦断面図、
第2図は第1図の−線における断面図、第3
図はこの考案の一実施例による突極形回転子を示
す縦断面図、第4図は第3図の−線における
断面図、第5図はこの考案の原理を説明するため
の原理図、第6図は第4図の部分拡大図である。 図において、2は回転子スパイダ、3はリム、
18は回転子、20はエアギヤツプ、21はガイ
ドカバー、22は噴出路、24は固定部材であ
る。尚、図中同一符号は同一又は相当部分を示
す。
Figure 1 is a longitudinal cross-sectional view showing a conventional salient pole rotor.
Figure 2 is a sectional view taken along the - line in Figure 1;
The figure is a longitudinal sectional view showing a salient pole rotor according to an embodiment of this invention, FIG. 4 is a sectional view taken along the - line in FIG. 3, and FIG. 5 is a principle diagram for explaining the principle of this invention. FIG. 6 is a partially enlarged view of FIG. 4. In the figure, 2 is a rotor spider, 3 is a rim,
18 is a rotor, 20 is an air gap, 21 is a guide cover, 22 is an ejection path, and 24 is a fixing member. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 回転子スパイダ側から半径方向に形成された
通風ダクトを通してエアギヤツプ側に冷却気体
を噴出するようにした回転電機の回転子におい
て、隣接する磁極の一方の磁極頭部の回転方向
と逆方向側の端部に上記エアギヤツプ側に突出
することなく固定され、他方の磁極頭部との間
に噴出路を形成すると共に上記冷却気体の上記
エアギヤツプ側への出口を絞り上記冷却気体を
上記回転子スパイダ側から回転子リムの通風ダ
クトを経て上記磁極間を通して上記噴出路から
上記エアギヤツプへ回転子の回転方向と逆方向
に噴出させるガイドカバーと、上記回転子リム
に設けられて上記ガイドカバーを回転子リム側
に引張つて固定する固定部材とを備えたことを
特徴とする回転電機の回転子。 (2) ガイドカバーの材料は非磁性材料であること
を特徴とする実用新案登録請求の範囲第1項記
載の回転電機の回転子。 (3) ガイドカバーの材料はステンレス材であるこ
とを特徴とする実用新案登録請求の範囲第2項
記載の回転電機の回転子。 (4) 噴出路は複数個形成されていることを特徴と
する実用新案登録請求の範囲第1項ないし第3
項の何れかに記載の回転電機の回転子。 (5) 固定部材は回転子リムに植設されるボルト・
ナツトであることを特徴とする実用新案登録請
求の範囲第1項記載の回転電機の回転子。
[Scope of Claim for Utility Model Registration] (1) In a rotor of a rotating electric machine in which cooling gas is jetted from the rotor spider side to the air gap side through a ventilation duct formed in the radial direction, one of the adjacent magnetic poles It is fixed to the end of the head in the direction opposite to the direction of rotation without protruding toward the air gap side, and forms an ejection path between it and the other magnetic pole head, and also provides an outlet for the cooling gas to the air gap side. a guide cover for spouting the cooling gas from the rotor spider side through the ventilation duct of the rotor rim and between the magnetic poles from the jetting path to the air gap in a direction opposite to the rotational direction of the rotor; A rotor for a rotating electric machine, comprising: a fixing member that is provided to pull and fix the guide cover to a rotor rim side. (2) The rotor of a rotating electric machine according to claim 1, wherein the material of the guide cover is a non-magnetic material. (3) The rotor of a rotating electric machine according to claim 2, wherein the material of the guide cover is stainless steel. (4) Claims 1 to 3 of the utility model registration claim characterized in that a plurality of ejection passages are formed.
A rotor of a rotating electric machine according to any of the paragraphs. (5) The fixing member is a bolt installed in the rotor rim.
A rotor for a rotating electrical machine according to claim 1, which is a nut.
JP6001282U 1982-04-22 1982-04-22 rotor of rotating electric machine Granted JPS58162754U (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6001282U JPS58162754U (en) 1982-04-22 1982-04-22 rotor of rotating electric machine
US06/486,235 US4496863A (en) 1982-04-22 1983-04-18 Salient-pole rotor of a rotary electric machine
CA000426384A CA1194531A (en) 1982-04-22 1983-04-21 Salient-pole rotor of a rotary electric machine
SE8302258A SE455033B (en) 1982-04-22 1983-04-21 WITH EXTENDED POLES EQUIPPED ROTOR FOR A ROTATING ELECTRIC MACHINE
DE19833314426 DE3314426A1 (en) 1982-04-22 1983-04-21 LEG POLLAR FOR AN ELECTRICAL ROTATION MACHINE
CH2192/83A CH659552A5 (en) 1982-04-22 1983-04-22 ROTOR FOR ELECTRIC ROTATION MACHINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6001282U JPS58162754U (en) 1982-04-22 1982-04-22 rotor of rotating electric machine

Publications (2)

Publication Number Publication Date
JPS58162754U JPS58162754U (en) 1983-10-29
JPH0218682Y2 true JPH0218682Y2 (en) 1990-05-24

Family

ID=30070276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6001282U Granted JPS58162754U (en) 1982-04-22 1982-04-22 rotor of rotating electric machine

Country Status (1)

Country Link
JP (1) JPS58162754U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240322U (en) * 1975-09-16 1977-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240322U (en) * 1975-09-16 1977-03-22

Also Published As

Publication number Publication date
JPS58162754U (en) 1983-10-29

Similar Documents

Publication Publication Date Title
US4383191A (en) Dynamoelectric machine
US5021696A (en) Cooling fan with reduced noise for variable speed machinery
KR20080036003A (en) Electric machine
US8294309B2 (en) Electrical rotating machine
US5757094A (en) Ventilation system for an AC machine having overhanging salient poles with juxtaposed shrouds
JP2000333409A (en) Induction motor
US3518467A (en) Totally enclosed fan-cooled electric motor
US4670677A (en) Electric motor with shrouded fan
US3588557A (en) Low loss ventilation for salient pole machines
US4496863A (en) Salient-pole rotor of a rotary electric machine
US3226580A (en) Fluid-cooled rotating machines, particularly electric motors and generators
JPH05227701A (en) Electric machine cooled by gas
JPH0218682Y2 (en)
JPH0218681Y2 (en)
JPH0216099B2 (en)
JP2021195883A (en) Electric blower
JPH09215271A (en) Cooling device for adjustable speed motor
JPS6145730Y2 (en)
JPS6216774Y2 (en)
WO2023162284A1 (en) Electric blower and electric vacuum cleaner using same
JPS6211182Y2 (en)
JP2524080Y2 (en) Rotor iron plate of synchronous motor
JPS6213403Y2 (en)
JPS642526Y2 (en)
JPS62262633A (en) Cooling device of vertical shaft rotary electric machine