JPH0218681Y2 - - Google Patents
Info
- Publication number
- JPH0218681Y2 JPH0218681Y2 JP1982060009U JP6000982U JPH0218681Y2 JP H0218681 Y2 JPH0218681 Y2 JP H0218681Y2 JP 1982060009 U JP1982060009 U JP 1982060009U JP 6000982 U JP6000982 U JP 6000982U JP H0218681 Y2 JPH0218681 Y2 JP H0218681Y2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- air gap
- cooling gas
- magnetic poles
- guide cover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000112 cooling gas Substances 0.000 claims description 34
- 238000009423 ventilation Methods 0.000 claims description 23
- 241000239290 Araneae Species 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 2
- 238000001816 cooling Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Cooling System (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は通風動力損を低減して効率の向上を
図つた回転電機の回転子に関するものである。[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a rotor for a rotating electrical machine that reduces ventilation power loss and improves efficiency.
〔従来の技術〕
以下、同期機などの回転電機の突極形回転子を
例に説明する。[Prior Art] Hereinafter, a salient pole rotor of a rotating electrical machine such as a synchronous machine will be described as an example.
従来の同期機の突極形回転子は、第1図及び第
2図に縦断面図及び一部の平面断面図で示すよう
になつていた。図は立て軸形の場合を示し、1は
回転軸、2は回転子スパイダ、3はこの回転子ス
パイダにそう入固着されたリムで、回転子の継鉄
をなす。4はこのリムに設けられた半径方向の複
数の通風ダクトで、複数個のダクト片5及び間隔
環6により通風間隔が形成されている。7はリム
3の締付けボルト、8はナツトである。10は薄
鋼板を積層してなる複数個の突極形の磁極鉄心
で、締付けボルトにより締付けられており、リム
3の外周に固着されている。11は磁極鉄心10
にはめられた界磁コイル、9は磁極で磁極鉄心1
0と界磁コイル11で構成されている。12はリ
ム3に取付けられたフアンである。 A salient pole rotor of a conventional synchronous machine is shown in FIGS. 1 and 2 as a vertical sectional view and a partial plan sectional view. The figure shows the case of a vertical shaft type, where 1 is a rotating shaft, 2 is a rotor spider, and 3 is a rim that is firmly fixed to the rotor spider and forms a yoke for the rotor. Reference numeral 4 denotes a plurality of radial ventilation ducts provided on this rim, and ventilation intervals are formed by a plurality of duct pieces 5 and a spacing ring 6. 7 is a tightening bolt for the rim 3, and 8 is a nut. Reference numeral 10 denotes a plurality of salient pole-shaped magnetic pole cores made of laminated thin steel plates, which are fastened with tightening bolts and fixed to the outer periphery of the rim 3. 11 is the magnetic pole core 10
The field coil fitted in, 9 is the magnetic pole and the magnetic pole iron core 1
0 and a field coil 11. 12 is a fan attached to the rim 3.
次に、13は固定子わく、14はこの固定子わ
くに固定支持された固定子鉄心で、半径方向の通
風ダクト15が設けられている。16は固定子コ
イル、17は端囲いである。18は回転子で1〜
12で構成され、19は固定子で13〜17で構
成されている。20は回転子18と固定子19と
の間に形成されるエアギヤツプである。 Next, 13 is a stator frame, 14 is a stator core fixedly supported by this stator frame, and a radial ventilation duct 15 is provided. 16 is a stator coil, and 17 is an end enclosure. 18 is a rotor from 1 to
12, and 19 is a stator, which is made up of 13 to 17. 20 is an air gap formed between the rotor 18 and the stator 19.
上記従来の装置において、回転子18が回転す
ると、フアン12により流入した、たとえば冷却
空気のような冷却気体は、界磁コイル11の端部
を冷却し、矢印のように固定子コイル16端を通
りこれを冷却する。また、回転子スパイダ2の内
径側に入つた冷却空気は、通風ダクト4を通り、
矢印のように隣接する界磁コイル11間を流通し
てこれを冷却する。界磁コイル11間を通る冷却
空気は突極のフアン作用が加わつてエアギヤツプ
20に噴出し、これを経て固定子通風ダクト15
を通り、固定子コイル16及び固定子鉄心14を
冷却する。 In the conventional device described above, when the rotor 18 rotates, the cooling gas such as cooling air flowing in by the fan 12 cools the end of the field coil 11 and the end of the stator coil 16 as shown by the arrow. Cool this through. In addition, the cooling air that has entered the inner diameter side of the rotor spider 2 passes through the ventilation duct 4,
It flows between adjacent field coils 11 as shown by the arrows to cool them. The cooling air passing between the field coils 11 is affected by the fan action of the salient poles, blows out into the air gap 20, and then passes through the stator ventilation duct 15.
The stator coil 16 and the stator core 14 are cooled through the air.
しかるに、回転子18の機械損(空転損)は風
損と軸受損に分けられ、風損は通風のために必要
な動力として消費され風量の増大に伴つて増大す
る通風動力損と周囲気体との摩擦に消費される損
失で風量に無関係で一定な摩擦損に分けられる。 However, the mechanical loss (slip loss) of the rotor 18 is divided into wind loss and bearing loss, and wind loss is consumed as the power necessary for ventilation, and the ventilation power loss increases as the air volume increases, and the surrounding gas The loss consumed by friction with the airflow is divided into friction loss, which is constant and unrelated to the air volume.
従来の回転電機の回転子は上記のように構成さ
れているので、磁極9間を通つてエアギヤツプに
流れる冷却気体は、磁極9のフアン作用により磁
極9と同一の周速(同一の角速度)を与えられ、
この周速(角速度)を持つてエアギヤツプ20に
噴出しており、大きな角運動量を持つたままエア
ギヤツプ20に噴出することになる。
Since the rotor of a conventional rotating electric machine is configured as described above, the cooling gas flowing between the magnetic poles 9 and into the air gap has the same peripheral speed (same angular velocity) as the magnetic poles 9 due to the fan action of the magnetic poles 9. given,
It is ejected into the air gap 20 with this circumferential velocity (angular velocity), and is ejected into the air gap 20 with a large angular momentum.
しかるにエアギヤツプ20を通過して固定子1
9の通風ダクト15に入ると、半径方向に設けら
れたこの通風ダクト15によつて冷却気体は半径
方向のみの流れに変換されるため、エアギヤツプ
20部で有していた冷却気体の角速度は零とな
る。したがつて、エアギヤツプ20における大き
な角運動量はこの流れの変更に費やされてしま
い、ほぼそのまま通風動力損となり、十分な効率
が得られないと云う問題点を有していた。 However, after passing through the air gap 20, the stator 1
9, the cooling gas is converted into a flow only in the radial direction by the ventilation duct 15 provided in the radial direction, so that the angular velocity of the cooling gas in the air gap 20 becomes zero. becomes. Therefore, a large angular momentum in the air gap 20 is wasted in changing the flow, resulting in a loss of ventilation power, resulting in a problem in that sufficient efficiency cannot be obtained.
この考案は上記のような従来のものの問題点を
除去するためになされたものであり、隣接する磁
極の一方の磁極頭部の回転方向と逆方向側の端部
に固定され、他方の磁極頭部との間に噴出路を形
成するガイドカバーを設け、磁極間からエアギヤ
ツプに噴出する冷却気体のエアギヤツプ側への出
口を絞り冷却気体を噴出路から回転子の回転方向
と逆方向に噴出させることにより、エアギヤツプ
に噴出する冷却気体の通風動力損を低減し、十分
な効率が得られる回転電機の回転子を提供するこ
とを目的としている。 This idea was made in order to eliminate the problems of the conventional ones as described above, and it is fixed to the end of one of the adjacent magnetic poles in the opposite direction to the rotational direction of the magnetic pole head, and the magnetic pole head of the other magnetic pole is A guide cover is provided which forms a jetting path between the magnetic poles and the air gap, and the outlet of the cooling gas spouted from between the magnetic poles to the air gap is throttled so that the cooling gas is spouted from the jetting path in a direction opposite to the rotational direction of the rotor. It is an object of the present invention to provide a rotor for a rotating electrical machine that can reduce the ventilation power loss of cooling gas ejected into an air gap and obtain sufficient efficiency.
〔課題を解決するための手段〕
この考案に係る回転電機の回転子は、隣接する
磁極の一方の磁極頭部の回転方向と逆方向側の端
部にエアギヤツプ側に突出することなく固定さ
れ、他方の磁極頭部との間に噴出路を形成するガ
イドカバーを備えたものである。[Means for Solving the Problems] A rotor of a rotating electrical machine according to this invention is fixed to an end of one of the adjacent magnetic poles on the side opposite to the rotational direction of the magnetic pole head without protruding toward the air gap side, It is equipped with a guide cover that forms an ejection path between it and the other magnetic pole head.
この考案に係る回転電機の回転子のガイドカバ
ーは、たとえば冷却空気のような冷却気体のエア
ギヤツプ側への出口を絞り、冷却気体を回転子ス
パイダ側から回転子リムの通風ダクトを経て磁極
間を通して噴出路からエアギヤツプへ回転子の回
転方向と逆方向に噴出させる。
The guide cover for the rotor of a rotating electric machine according to this invention narrows the outlet of cooling gas such as cooling air to the air gap side, and passes the cooling gas from the rotor spider side through the ventilation duct of the rotor rim and between the magnetic poles. The air is ejected from the ejection passage into the air gap in the opposite direction to the rotational direction of the rotor.
以下、この考案の一実施例による回転電機の回
転子の構成を図に基づいて説明する。第3図ない
し第6図において、1〜20は上記従来装置と同
様のものである。21は隣接する磁極9の磁極頭
部の回転方向と逆方向側の端部にボルト(図示せ
ず)等により固定され、他方の磁極9頭部との間
に噴出路22を形成するガイドカバーで、ほぼ磁
極9の軸方向全長にわたつて設けられ、磁極鉄心
10の外周面と共に回転子18の外周面を構成
し、磁極9間を通つた冷却気体のエアギヤツプ2
0側への出口を絞り冷却気体が噴出路22からエ
アギヤツプ20に噴出するときに回転子18の回
転方向と逆方向に噴出するように構成されてい
る。23はリム3に設けられた通風ダクト4から
磁極9間に流通した冷却気体が磁極9の上、下か
ら流出するのを防ぐために磁極9間に設けられた
シール板である。
Hereinafter, the configuration of a rotor of a rotating electric machine according to an embodiment of this invention will be explained based on the drawings. In FIGS. 3 to 6, numerals 1 to 20 are the same as the conventional device described above. Reference numeral 21 denotes a guide cover that is fixed to the end of the adjacent magnetic pole 9 in the opposite direction to the rotating direction of the magnetic pole head with a bolt (not shown) or the like, and forms an ejection path 22 between it and the other magnetic pole 9 head. An air gap 2 is provided over almost the entire length of the magnetic poles 9 in the axial direction, constitutes the outer peripheral surface of the rotor 18 together with the outer peripheral surface of the magnetic pole iron core 10, and is used for cooling gas passing between the magnetic poles 9.
The outlet toward the 0 side is throttled so that when the cooling gas is ejected from the ejection path 22 to the air gap 20, it is ejected in a direction opposite to the rotational direction of the rotor 18. A seal plate 23 is provided between the magnetic poles 9 to prevent the cooling gas flowing between the magnetic poles 9 from the ventilation duct 4 provided on the rim 3 from flowing out from above and below the magnetic poles 9.
尚、ガイドカバー21としては、高磁界中で使
用するため渦電流による過熱の恐れのない非磁性
材料がよく、例えば日本工業規格(JIS)の
G4304(熱間圧延ステンレス鋼板)で規定されて
いるSUS304,SUS316又はアルミニウム、FRP
(ガラス繊維強化プラスチツク)、熱硬化性樹脂積
層板等を使用する。 The guide cover 21 is preferably made of a non-magnetic material that is free from overheating due to eddy currents since it is used in a high magnetic field.
SUS304, SUS316 or aluminum, FRP specified by G4304 (hot rolled stainless steel plate)
(glass fiber reinforced plastic), thermosetting resin laminate, etc.
上記構成において、回転子18の回転により、
従来と同様に回転子スパイダ2の内径側に入つた
冷却気体は、通風ダクト4を通り隣接する界磁コ
イル11間に流通し、これを冷却する。磁極9間
を通る冷却気体はガイドカバー21によりエアギ
ヤツプ20側への出口が絞られ風速が高められて
突極のフアン作用が加わつて磁極鉄心10の頭部
とガイドカバー21の間の噴出路22からエアギ
ヤツプ20に回転子18の回転方向と逆方向に噴
出する。エアギヤツプ20を通過した冷却気体は
固定子19の通風ダクト15を通り、固定子コイ
ル16及び固定子鉄心14を冷却する。また、フ
アン12による冷却気体の流通は上記従来装置と
同様である。このようにすることによつて通風動
力損が小さくなる原理を回転子18の周速度と冷
却気体の速度の関係を示した第5図の速度三角形
で説明する。 In the above configuration, due to the rotation of the rotor 18,
As in the conventional case, the cooling gas that has entered the inner diameter side of the rotor spider 2 passes through the ventilation duct 4 and flows between adjacent field coils 11 to cool them. The outlet of the cooling gas passing between the magnetic poles 9 to the air gap 20 side is narrowed by the guide cover 21, the wind speed is increased, and the fan action of the salient poles is added, resulting in a blowout path 22 between the head of the magnetic pole core 10 and the guide cover 21. The air is ejected from the air gap 20 in the direction opposite to the direction of rotation of the rotor 18. The cooling gas that has passed through the air gap 20 passes through the ventilation duct 15 of the stator 19 and cools the stator coil 16 and the stator core 14. Further, the circulation of cooling gas by the fan 12 is the same as in the conventional device described above. The principle by which ventilation power loss is reduced by doing this will be explained using the speed triangle in FIG. 5, which shows the relationship between the circumferential speed of the rotor 18 and the speed of the cooling gas.
この速度三角形でわかるように、磁極9出口部
分での冷却気体の絶対速度vは磁極9の周速uと
磁極に対する冷却気体の相対速度wを合成した形
で決まる。ここでvはv1,v2にwはw1,w2に対
応する。従来の装置では、磁極9間を通る冷却気
体は磁極9のフアン作用により磁極9とほぼ同一
の周速を与えられるため、磁極9に対する冷却気
体の相対速度w1はほぼ外向きになり、相対速度
w1が磁極間中心線外向と成す角度β1は0゜に接近す
る。これにより冷却気体の絶対速度v1の周速成分
u1は回転子18の周速uに近くなる。これに対し
て、この考案では磁極頭部にガイドカバー21が
取付けられ、このガイドカバー21によつて冷却
気体の噴出方向が回転方向と逆方向に向けられ
る。このため冷却気体の磁極9に対する相対速度
w2は、磁極間中心線外向に対して、周速と反対
方向に大きく傾く(角度β2)ことになる。これに
より冷却気体の絶対速度v2の周速成分u2は回転子
18の周速uよりかなり小さくでき、通風量が同
一の場合、通風動力はエアギヤツプ20に噴出す
る冷却気体の絶対速度の周速成分に比例するため
u2/u1倍に小さくなる。すなわち、エアギヤツプ
20に噴出する冷却空気の絶対速度の周速成分が
小さくなることによつて角運動量が小さくなつ
て、通風動力損が小さくなる。 As can be seen from this velocity triangle, the absolute velocity v of the cooling gas at the exit portion of the magnetic pole 9 is determined by the combination of the circumferential velocity u of the magnetic pole 9 and the relative velocity w of the cooling gas with respect to the magnetic pole. Here, v corresponds to v 1 and v 2 and w corresponds to w 1 and w 2 . In the conventional device, the cooling gas passing between the magnetic poles 9 is given almost the same peripheral speed as the magnetic poles 9 due to the fan action of the magnetic poles 9, so the relative velocity w 1 of the cooling gas with respect to the magnetic poles 9 is almost outward, and the relative speed
The angle β 1 that w 1 forms with the outward direction of the center line between the magnetic poles approaches 0°. As a result, the circumferential velocity component of the absolute velocity v 1 of the cooling gas
u 1 becomes close to the circumferential speed u of the rotor 18. In contrast, in this invention, a guide cover 21 is attached to the magnetic pole head, and the guide cover 21 directs the jetting direction of the cooling gas in a direction opposite to the rotation direction. Therefore, the relative velocity of the cooling gas to the magnetic pole 9 is
w 2 is largely inclined (angle β 2 ) in the direction opposite to the circumferential speed with respect to the outward direction of the center line between the magnetic poles. As a result, the circumferential velocity component u 2 of the absolute velocity v 2 of the cooling gas can be made considerably smaller than the circumferential velocity u of the rotor 18, and when the amount of ventilation is the same, the ventilation power is the circumference of the absolute velocity of the cooling gas jetted into the air gap 20. Because it is proportional to the velocity component
u 2 /u becomes 1 times smaller. That is, as the circumferential velocity component of the absolute velocity of the cooling air jetted into the air gap 20 becomes smaller, the angular momentum becomes smaller, and the ventilation power loss becomes smaller.
このように隣接する磁極9間からエアギヤツプ
20に噴出する冷却気体は、ガイドカバー21に
よつて回転方向と逆方向に噴出させられることに
なり噴出部での冷却気体の周速(角速度)は回転
子18の周速よりかなり小さくなるため、この部
分で冷却気体が有する角運動量も小さくなる。従
つてこれがエアギヤツプ20で消滅することによ
つて、生じる通風動力損が小さくなる。 In this way, the cooling gas ejected from between the adjacent magnetic poles 9 into the air gap 20 is ejected in the opposite direction to the rotational direction by the guide cover 21, so that the circumferential velocity (angular velocity) of the cooling gas at the ejection part is Since the circumferential speed of the child 18 is considerably lower than that of the child 18, the angular momentum of the cooling gas in this portion is also small. Therefore, by eliminating this in the air gap 20, the resulting ventilation power loss is reduced.
この考案は以上説明した通り、隣接する磁極の
一方の磁極頭部に固定され、他方の磁極頭部との
間に噴出路を形成するガイドカバーを設け、磁極
間からエアギヤツプに噴出する冷却気体のエアギ
ヤツプ側への出口を絞り冷却気体を噴出路からエ
アギヤツプへ回転子の回転方向と逆方向に噴出さ
せたので、通風動力損を低減でき、十分な効率を
得ることができる。
As explained above, this idea includes a guide cover that is fixed to the head of one of the adjacent magnetic poles and forms a blowout path between the head of the other magnetic pole, and the cooling gas that blows out from between the magnetic poles into the air gap. Since the outlet to the air gap side is throttled and the cooling gas is ejected from the ejection path to the air gap in the opposite direction to the rotational direction of the rotor, the ventilation power loss can be reduced and sufficient efficiency can be obtained.
第1図は従来の突極形回転子を示す縦断面図、
第2図は第1図の−線における断面図、第3
図はこの考案の一実施例による突極形回転子を示
す縦断面図、第4図は第3図の−線における
断面図、第5図はこの考案の原理を説明するため
の原理図、第6図は第4図の部分拡大図である。
図において、2は回転子スパイダ、18は回転
子、20はエアギヤツプ、21はガイドカバー、
22は噴出路である。尚、図中同一符号は同一又
は相当部分を示す。
Figure 1 is a longitudinal cross-sectional view showing a conventional salient pole rotor.
Figure 2 is a sectional view taken along the - line in Figure 1;
The figure is a longitudinal sectional view showing a salient pole rotor according to an embodiment of this invention, FIG. 4 is a sectional view taken along the - line in FIG. 3, and FIG. 5 is a principle diagram for explaining the principle of this invention. FIG. 6 is a partially enlarged view of FIG. 4. In the figure, 2 is a rotor spider, 18 is a rotor, 20 is an air gap, 21 is a guide cover,
22 is a jetting passage. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
通風ダクトを通してエアギヤツプ側に冷却気体
を噴出するようにした回転電機の回転子におい
て、 隣接する磁極の一方の磁極頭部の回転方向と
逆方向側の端部に上記エアギヤツプ側に突出す
ることなく固定され、他方の磁極頭部との間に
噴出路を形成すると共に上記冷却気体の上記エ
アギヤツプ側への出口を絞り上記冷却気体を上
記回転子スパイダ側から回転子リムの通風ダク
トを経て上記磁極間を通して上記噴出路から上
記エアギヤツプへ回転子の回転方向と逆方向に
噴出させるガイドカバーを備えたことを特徴と
する回転電機の回転子。 (2) ガイドカバーの材料は非磁性材料であること
を特徴とする実用新案登録請求の範囲第1項記
載の回転電機の回転子。 (3) ガイドカバーの材料はステンレス材であるこ
徴とする実用新案登録請求の範囲第2項記載の
回転電機の回転子。[Scope of Claim for Utility Model Registration] (1) In a rotor of a rotating electrical machine in which cooling gas is jetted from the rotor spider side to the air gap side through a ventilation duct formed in the radial direction, one of the adjacent magnetic poles. It is fixed to the end of the head in the direction opposite to the direction of rotation without protruding toward the air gap side, and forms an ejection path between it and the other magnetic pole head, and also provides an outlet for the cooling gas to the air gap side. The throttle includes a guide cover that causes the cooling gas to be ejected from the rotor spider side, through the ventilation duct of the rotor rim, between the magnetic poles, and from the ejection path to the air gap in a direction opposite to the rotational direction of the rotor. The rotor of a rotating electric machine. (2) The rotor of a rotating electric machine according to claim 1, wherein the material of the guide cover is a non-magnetic material. (3) The rotor of a rotating electrical machine according to claim 2 of the utility model registration claim, wherein the material of the guide cover is stainless steel.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000982U JPS58162751U (en) | 1982-04-22 | 1982-04-22 | rotor of rotating electric machine |
US06/486,235 US4496863A (en) | 1982-04-22 | 1983-04-18 | Salient-pole rotor of a rotary electric machine |
CA000426384A CA1194531A (en) | 1982-04-22 | 1983-04-21 | Salient-pole rotor of a rotary electric machine |
SE8302258A SE455033B (en) | 1982-04-22 | 1983-04-21 | WITH EXTENDED POLES EQUIPPED ROTOR FOR A ROTATING ELECTRIC MACHINE |
DE3314426A DE3314426C2 (en) | 1982-04-22 | 1983-04-21 | Salient pole rotor for an electrical machine |
CH2192/83A CH659552A5 (en) | 1982-04-22 | 1983-04-22 | ROTOR FOR ELECTRIC ROTATION MACHINE. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000982U JPS58162751U (en) | 1982-04-22 | 1982-04-22 | rotor of rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58162751U JPS58162751U (en) | 1983-10-29 |
JPH0218681Y2 true JPH0218681Y2 (en) | 1990-05-24 |
Family
ID=30070273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6000982U Granted JPS58162751U (en) | 1982-04-22 | 1982-04-22 | rotor of rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58162751U (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240322U (en) * | 1975-09-16 | 1977-03-22 |
-
1982
- 1982-04-22 JP JP6000982U patent/JPS58162751U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240322U (en) * | 1975-09-16 | 1977-03-22 |
Also Published As
Publication number | Publication date |
---|---|
JPS58162751U (en) | 1983-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4383191A (en) | Dynamoelectric machine | |
US8294309B2 (en) | Electrical rotating machine | |
CN101821926A (en) | Device and method to clamp and lock permanent magnets and improve cooling within rotating electrical machine using pitched focused flux magnets | |
US3518467A (en) | Totally enclosed fan-cooled electric motor | |
AU731373B2 (en) | Axial cooling of a rotor | |
US3588557A (en) | Low loss ventilation for salient pole machines | |
US4496863A (en) | Salient-pole rotor of a rotary electric machine | |
US3226580A (en) | Fluid-cooled rotating machines, particularly electric motors and generators | |
JPH05227701A (en) | Electric machine cooled by gas | |
JPH0218681Y2 (en) | ||
JPH0218682Y2 (en) | ||
JPH0216099B2 (en) | ||
JPS6145730Y2 (en) | ||
JPS6216774Y2 (en) | ||
JPS6213403Y2 (en) | ||
JPS607894B2 (en) | Salient pole rotating electric machine | |
JPS6211182Y2 (en) | ||
JPS6026500Y2 (en) | Salient pole rotating electric machine | |
JPH09215271A (en) | Cooling device for adjustable speed motor | |
JPS642526Y2 (en) | ||
JPS60118036A (en) | Cooler of magneto generator | |
JPS62262633A (en) | Cooling device of vertical shaft rotary electric machine | |
JPS642525Y2 (en) | ||
JPS6114304Y2 (en) | ||
JPS6216778Y2 (en) |