JPH02186559A - Hydrogen storage alloy electrode for alkaline storage battery - Google Patents

Hydrogen storage alloy electrode for alkaline storage battery

Info

Publication number
JPH02186559A
JPH02186559A JP1006536A JP653689A JPH02186559A JP H02186559 A JPH02186559 A JP H02186559A JP 1006536 A JP1006536 A JP 1006536A JP 653689 A JP653689 A JP 653689A JP H02186559 A JPH02186559 A JP H02186559A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
rare earth
alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1006536A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Seiji Kameoka
亀岡 誠司
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1006536A priority Critical patent/JPH02186559A/en
Publication of JPH02186559A publication Critical patent/JPH02186559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance corrosion resistance of a hydrogen storage alloy used for a negative electrode by containing a specified amount of Nd based on the total weight of rare earth elements in the hydrogen storage alloy containing rare earth elements. CONSTITUTION:30wt.% or more Nd based on the total weight of rare earth elements in a hydrogen storage alloy is contained. The hydrogen storage alloy is represented in the formula ANixMy (wherein A shows a rare earth element containing one element selected from Nd, Pr, and Sm, and M shows an element selected from the group consisting of Co, Al, Cu, Fe, Mn, Cr, Zn, Ti, and Zr), and the alloy having x and y values of 3.5<=x+y<=6.0 is most suitable. The corrosion resistance of the alloy is enhanced and deterioration in electrode capacity attendant on the conversion of the alloy into fine powder can be retarded. An alkaline battery having excellent cycling performance is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、アルカリ蓄電池の負極として用いられる水素
吸蔵合金電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery.

(ロ)従来の技術 従来より使用されている電池としては、ニアケル−カド
ミウム蓄電池の如きアルカリ蓄電池、あるいは鉛蓄電池
等が挙げられるが、近年これらの電池よりも軽量且つ高
容量で高エネルギー密度となる可能性のある水素吸蔵合
金電極を備えた金属酸化物−水素アルカリ蓄電池が注目
されている。
(b) Conventional technology Conventionally used batteries include alkaline storage batteries such as near-cadmium storage batteries, lead storage batteries, etc., but in recent years, batteries have become lighter, higher in capacity, and have higher energy density than these batteries. Metal oxide-hydrogen alkaline storage batteries with potential hydrogen storage alloy electrodes are attracting attention.

この電池に用いられる水素吸蔵合金として、例えば特公
昭59−49671号公報に開示された如く、LaNi
5や、その改良であるLaNi4C。
As a hydrogen storage alloy used in this battery, for example, as disclosed in Japanese Patent Publication No. 59-49671, LaNi
5 and its improvement LaNi4C.

L a N I 4.aF e o、 2等の水素吸蔵
合金が用いられ、LaS CeS Pr%Nd、Smな
どのランタン系の混合物であるMmを用いた水素吸蔵合
金(例えば特開昭62−20245号公報)が開発され
ている。
L a N I 4. Hydrogen storage alloys such as aFeO, 2, etc. are used, and hydrogen storage alloys using Mm, which is a lanthanum-based mixture such as LaS CeS Pr%Nd, Sm, have been developed (for example, Japanese Patent Application Laid-Open No. 62-20245). ing.

ここでMm系水素吸蔵合金は、La系水素吸蔵合金に比
べ平衡圧が高いため、平衡圧を低くした多元素系のMm
系水素吸蔵合金が提案されている。また特開昭62−2
71348号公報には、Mm系水素吸蔵合金電極におい
て、L aの含有量として20%以上が電極の容量の関
係上好ましい事が記載されている。
Here, Mm-based hydrogen storage alloys have a higher equilibrium pressure than La-based hydrogen storage alloys, so multi-element Mm-based alloys with lower equilibrium pressures
Hydrogen storage alloys have been proposed. Also, JP-A-62-2
Publication No. 71348 describes that in a Mm-based hydrogen storage alloy electrode, the content of La is preferably 20% or more in view of the capacity of the electrode.

更に、例えば特開昭62−11.9863号公報には、
Mm系水素吸蔵合金が開示されており、組成としてはL
aが25〜35重量%、Ceが40〜50重量%、Nd
が5〜15重量%、Prが2〜lO重量%、その他の希
土類元素と他種金属が1〜5重量%であることが記載さ
れている。
Furthermore, for example, in JP-A-62-11.9863,
A Mm-based hydrogen storage alloy is disclosed, and its composition is L
a is 25-35% by weight, Ce is 40-50% by weight, Nd
It is described that Pr is 5 to 15% by weight, Pr is 2 to 10% by weight, and other rare earth elements and other metals are 1 to 5% by weight.

しかし、この種の水素吸蔵合金は、Nd、PrSmの含
有量が少ないので、アルカリ電解液中で充放電を繰り返
した時に、水素吸蔵合金が微粉化したり、あるいは合金
表面が不活性化して電極容量が低下し、遂にはサイクル
寿命となってしまうという傾向がある。
However, this type of hydrogen storage alloy has a low content of Nd and PrSm, so when it is repeatedly charged and discharged in an alkaline electrolyte, the hydrogen storage alloy becomes fine powder, or the alloy surface becomes inactive, resulting in electrode capacity. There is a tendency for the cycle life to decrease and eventually reach the end of its cycle life.

(ハ)発明が解決しようとする課題 本発明は、前記問題点に鑑みてなされたものであって、
負極に用いる水素吸蔵合金の耐食性を向上させ、かかる
電極を用いたアルカリ蓄電池のサイクル特性の向上を計
るものである。
(c) Problems to be solved by the invention The present invention has been made in view of the above problems, and includes:
The purpose is to improve the corrosion resistance of the hydrogen storage alloy used in the negative electrode, and to improve the cycle characteristics of alkaline storage batteries using such an electrode.

(ニ)課題を解決するための手段 本発明の第1のアルカリ蓄電池用水素吸蔵合金電極は、
水素吸蔵合金中の全希土類元素の総重量に対して、Nd
の含有量が30重量%以上であることを特徴とするもの
である。
(d) Means for solving the problems The first hydrogen storage alloy electrode for alkaline storage batteries of the present invention includes:
With respect to the total weight of all rare earth elements in the hydrogen storage alloy, Nd
The content thereof is 30% by weight or more.

また、本発明の第2のアルカリ蓄電池用水素吸蔵合金電
極は、水素吸蔵合金中の全希土類元素の総重量に対して
、Prの含有量が20重量%以上であることを特徴とす
るものである。
Further, the second hydrogen storage alloy electrode for alkaline storage batteries of the present invention is characterized in that the content of Pr is 20% by weight or more based on the total weight of all rare earth elements in the hydrogen storage alloy. be.

更に、本発明の第3のアルカリ蓄電池用水素吸蔵合金電
極は、水素吸蔵合金中の全希土類元素の総重量に対して
、Smの含有量が10重量%以上であることを特徴とす
るものである。
Furthermore, the third hydrogen storage alloy electrode for alkaline storage batteries of the present invention is characterized in that the Sm content is 10% by weight or more based on the total weight of all rare earth elements in the hydrogen storage alloy. be.

そして、前記水素吸蔵合金としては、組成式が、ANi
xMy(組成式中、Ai、1tNd、Pr、Smのうち
のいずれが1種を含む希土類元素、MはCo、Al、C
uSFe、Mn、Cr、Zn、TI、Zrよりなる群よ
り選ばれた少なくとも1種の元素)で表わされ、35≦
x+y ≦6.0であるものが好適である。
The hydrogen storage alloy has a compositional formula of ANi
xMy (in the composition formula, a rare earth element containing one of Ai, 1tNd, Pr, and Sm, M is Co, Al, and C
uSFe, Mn, Cr, Zn, TI, Zr), 35≦
It is preferable that x+y≦6.0.

(ホ)作 用 第1の本発明電極の如く、水素吸蔵合金中の希土類元素
の総重量に対してNdの含有量が30重量%以上、また
第2の本発明電極の如<Prの含有量が20重量%以上
、更に第3の本発明電極の々D< Smの含有量が10
重量%以上とすることで、水素吸蔵合金表面の不活性化
が抑制され、且つ合金の耐食性が向上して、合金の微粉
化に伴なう電極容量低下を抑制することが可能となる。
(E) Function As in the first electrode of the present invention, the content of Nd is 30% by weight or more based on the total weight of rare earth elements in the hydrogen storage alloy, and as in the electrode of the second present invention, the content of <Pr is The content of the third invention electrode is 20% by weight or more, and the content of D<Sm is 10% by weight or more.
When the content is at least % by weight, inactivation of the surface of the hydrogen storage alloy is suppressed, and the corrosion resistance of the alloy is improved, making it possible to suppress a decrease in electrode capacity due to pulverization of the alloy.

その結果、長期サイクルに亘って高容量を維持すること
ができ、サイクル特性に優れたアルカリ蓄電池が提供で
きる。
As a result, it is possible to provide an alkaline storage battery that can maintain high capacity over long cycles and has excellent cycle characteristics.

(へ)実施例 以下に、本発明と比較例との対比に言及し、詳述する。(f) Example Below, the comparison between the present invention and a comparative example will be mentioned and explained in detail.

[第1実験例] 先づ、Ndを含有せる種々の水素吸蔵合金について検討
する。
[First Experimental Example] First, various hydrogen storage alloys containing Nd will be studied.

希土類混合物A(Nd:60重量%、La:10重量%
、Ce:25重量%、Pr:4重量%、Sm:1重量%
)Ni(純度99%以」−)及び組成式中のMとしての
C01A!、Cu、Fe、Mnを用い、第1表に示す組
成を有する水素吸蔵合金電極を得た。そして、これらの
水素吸蔵合金電極を備えた電池を、第1表に示す如く、
それぞれ本発明電池A、B、C,D、Eとした。
Rare earth mixture A (Nd: 60% by weight, La: 10% by weight
, Ce: 25% by weight, Pr: 4% by weight, Sm: 1% by weight
)Ni (purity 99% or more''-) and C01A as M in the composition formula! , Cu, Fe, and Mn to obtain hydrogen storage alloy electrodes having the compositions shown in Table 1. As shown in Table 1, batteries equipped with these hydrogen storage alloy electrodes are as follows:
These were designated as inventive batteries A, B, C, D, and E, respectively.

第  1  表 この時用いた水素吸蔵合金電極の作製方法は、各元素を
第1表に示す組成比で夫々秤量して混合し、次いでアル
ゴン雰囲気下でアーク溶解炉に入れ、加熱溶解して合金
化し、冷却する。次に、この合金を機械的に50μm以
下に粉砕して、水素吸蔵合金粉末を得た。これらの各種
水素吸蔵合金粉末90重量%及び結着剤としてのフッ素
払(脂末]0重量%を、それぞれ混合し、フッ素樹脂を
繊維化させる。そしてこの混合物をニッケル網で包み込
み、3ton/cm’で加圧成型して、水素吸蔵合金電
極とした。この水素吸蔵合金電極に用いた水素吸蔵合金
粉末の使用量は、それぞれ1,5gである。このように
して得た水素吸蔵合金電極を負極とし、焼結式ニッケル
正極と組み合せ、電解液としての水酸化カリウム水溶液
を用いて、密閉型ニッケルー水素アルカリ蓄電池(A−
E)を作製した。
Table 1 The method for producing the hydrogen storage alloy electrode used at this time was to weigh and mix each element in the composition ratio shown in Table 1, then place it in an arc melting furnace under an argon atmosphere, and heat and melt it to form an alloy. and cool. Next, this alloy was mechanically crushed to a size of 50 μm or less to obtain a hydrogen storage alloy powder. 90% by weight of these various hydrogen-absorbing alloy powders and 0% by weight of fluoride removal (fat powder) as a binder are mixed, respectively, and the fluororesin is made into fibers.Then, this mixture is wrapped in a nickel net, and 3 ton/cm ' to make a hydrogen storage alloy electrode.The amount of hydrogen storage alloy powder used in this hydrogen storage alloy electrode was 1.5g each.The hydrogen storage alloy electrode obtained in this way was A sealed nickel-hydrogen alkaline storage battery (A-
E) was produced.

方、比較例として、市販のミツシュメタルMm(Nd:
14重量%、La:30重量%、Ce:50重量%、P
r:4重量%、Sm:1重量%、残渣、1重量%)を希
土類混合物Aとして水素吸蔵合金を得た事を除いて他は
、前記本発明電池と同様にして、比較電池a、bs C
,d、eを作製した。
On the other hand, as a comparative example, commercially available Mitshu Metal Mm (Nd:
14% by weight, La: 30% by weight, Ce: 50% by weight, P
Comparative batteries a and bs were prepared in the same manner as the batteries of the present invention, except that a hydrogen storage alloy was obtained using rare earth mixture A (r: 4% by weight, Sm: 1% by weight, residue: 1% by weight). C
, d, and e were prepared.

この比較電池a、b、c、d、eに用いた水素吸蔵合金
組成を、第2表に示す。
Table 2 shows the hydrogen storage alloy compositions used in the comparative batteries a, b, c, d, and e.

第  2  表 これらの本発明電池A−E及び比較電池a−eを用い、
電池のサイクル寿命を調べた。この時のサイクル条件は
、電池を20mAの電流で5時間充電した後、40mA
の電流で電池電圧が1.0Vになる迄放電するというも
のであり、電池の容量が初期容量の50%となったサイ
クル数をサイクル寿命とした。
Table 2 Using these inventive batteries A-E and comparative batteries a-e,
The cycle life of the battery was investigated. The cycle conditions at this time were to charge the battery with a current of 20mA for 5 hours, then charge the battery with a current of 40mA.
The battery was discharged at a current of 1.0 V until the battery voltage reached 1.0 V, and the cycle life was defined as the number of cycles at which the battery capacity became 50% of its initial capacity.

この結果を、第1表、第2表に合わせて示す。The results are shown in Tables 1 and 2.

これより、本発明電池A−Eは、比較電池a〜eに比べ
、添加元素Mが同じである場合(Ni、Co、AI、C
u、Fe、Mn等)、充放電サイクル寿命が著しく向上
していることが理解される。これは、水素吸蔵合金中に
おける、希土類元素のNd含有量の差に起因すると考え
られる。
From this, it can be seen that the batteries A-E of the present invention have the same additive element M (Ni, Co, AI, C
u, Fe, Mn, etc.), it is understood that the charge/discharge cycle life is significantly improved. This is considered to be due to the difference in the Nd content of the rare earth element in the hydrogen storage alloy.

[第2実験例] 次に、Ndの含有量を変化させた場合について検討する
[Second Experimental Example] Next, the case where the Nd content is changed will be considered.

ここで用いた水素吸蔵合金は、 AN 12cO2□Alo s (A  希土類元素)
の組成を有するものであり、希土類元素Aとして、第3
表に示す如く、Nd、La、Ce、Pr、Smが含有さ
れている。尚、合金組成の合計が100とならないもの
があるのは、残渣を含んでいるためである。
The hydrogen storage alloy used here is AN12cO2□Alos (A rare earth element)
It has a composition of
As shown in the table, Nd, La, Ce, Pr, and Sm are contained. The reason why some alloy compositions do not add up to 100 is because they contain residues.

第  3  表 これらの電池す、F、G、H,1,Jを用い、電池のサ
イクル寿命を調べた。この時のサイクル条件は、前記第
1実験例に準じた。
Table 3 Using these batteries F, G, H, 1, and J, the cycle life of the batteries was investigated. The cycle conditions at this time were similar to those in the first experimental example.

この結果を、第3表に示すと共に、第1図に図示する。The results are shown in Table 3 and illustrated in FIG.

これより、Ndの含有量が30重量%未満になると、N
d以外の希土類元素である、La、Ceの含有量が多く
なる。このLa、Ceは、Ndに比べて、アルカリ電解
液中で腐食され易いので、水素吸蔵合金が腐食、不活性
化したり、微粉化するので、電池のサイクル寿命が短か
くなると考えられる。しかしながら、Ndの添加量を3
0重量%以上とすることにより、上述の問題点が解消さ
れ、電池のサイクル寿命が向上する。
From this, when the Nd content is less than 30% by weight, Nd
The content of rare earth elements other than d, such as La and Ce, increases. Since La and Ce are more easily corroded in an alkaline electrolyte than Nd, the hydrogen storage alloy is corroded, inactivated, or pulverized, which is thought to shorten the cycle life of the battery. However, the amount of Nd added was
By setting the content to 0% by weight or more, the above-mentioned problems are solved and the cycle life of the battery is improved.

[第3実験例] 水素吸蔵合金中のPrの含有量を変化させた場合につい
て検討する。
[Third Experimental Example] A case will be considered in which the content of Pr in the hydrogen storage alloy is changed.

ここで用いた水素吸蔵合金は、 AN i 2CO22AIO8(A ’希土類元素)の
組成を有するものであり、希土類元素として、第4表に
示す如く、Pr、La、Ce、Nd、Smが含有されて
いる。尚、合金組成の合計が]00とならないものがあ
るのは、残渣を含んでいるためである。
The hydrogen storage alloy used here has a composition of AN i 2 CO 2 2 AIO 8 (A' rare earth element), and contains Pr, La, Ce, Nd, and Sm as rare earth elements as shown in Table 4. There is. It should be noted that the reason why the sum of the alloy compositions is not 00 in some cases is because they contain residues.

第  4  表 これらの電池す、に、L、M、Nを用い、電池のサイク
ル寿命を調べた。この時のサイクル条件は、前記第]実
験例に準じた。
Table 4 Using these batteries, L, M, and N, the cycle life of the batteries was investigated. The cycle conditions at this time were in accordance with the above-mentioned Experimental Example.

この結果を第4表に示す。The results are shown in Table 4.

これより、Prの含有量が20重量%未満、たとえば1
0重量%、4重量%になると、電池のサイクル特性が悪
くなる。しかしながら、Prの含有量を20重量%以上
に設定することにより、1 ] Prがアルカリ電解液中で腐食され難いことに起因して
、水素吸蔵合金の耐食性が向上し、合金の不活性化を抑
制することができる。その結果、電池のサイクル寿命が
向上する。
From this, the content of Pr is less than 20% by weight, for example 1
When the amount is 0% or 4% by weight, the cycle characteristics of the battery deteriorate. However, by setting the Pr content to 20% by weight or more, 1] Due to the fact that Pr is difficult to corrode in an alkaline electrolyte, the corrosion resistance of the hydrogen storage alloy is improved and the inactivation of the alloy is improved. Can be suppressed. As a result, the cycle life of the battery is improved.

[第4実験例コ 次に、水素吸蔵合金中のSmの含有量を変化させた場合
について検討する。
[Fourth Experimental Example Next, the case where the Sm content in the hydrogen storage alloy is changed will be considered.

ここで用いた水素吸蔵合金は、 AN I 2CO2zAj2o m (A ’希土類元
素)の組成を有するものであり、希土類元素として、第
5表に示す如く、Sm、La、Ce、Nd、Prが含有
されている。尚、合金組成の合計が100とならないも
のがあるのは、残渣を含んでいるためである。
The hydrogen storage alloy used here has a composition of AN I 2 CO 2 z A j 2 o m (A' rare earth element), and contains Sm, La, Ce, Nd, and Pr as rare earth elements, as shown in Table 5. ing. The reason why some alloy compositions do not add up to 100 is because they contain residues.

第  5  表 これらの電池K、0、P、Qを用い、電池のサイクル寿
命を調べた。この時のサイクル条件は、前記第1実験例
に準じた。
Table 5 Using these batteries K, 0, P, and Q, the cycle life of the batteries was investigated. The cycle conditions at this time were similar to those in the first experimental example.

この結果を、第5表に示す。The results are shown in Table 5.

これよりSmの含有量が10重量%以上になると、Sm
がアルカリ電解液中で腐食され難いことに起因して水素
吸蔵合金の耐食性が向上し、合金の不活性化を抑制する
ことができる。その結果、電池のサイクル寿命が向上す
る。
From this, when the Sm content becomes 10% by weight or more, Sm
Because it is difficult to corrode in an alkaline electrolyte, the corrosion resistance of the hydrogen storage alloy is improved, and deactivation of the alloy can be suppressed. As a result, the cycle life of the battery is improved.

[第5実験例] 水素吸蔵合金の合金組成において、AB5型合金より化
学量論比がずれた場合について検討する。
[Fifth Experimental Example] In the alloy composition of the hydrogen storage alloy, a case where the stoichiometric ratio deviates from that of the AB5 type alloy will be considered.

前記第1実験例に同一の希土類元素の混合物及び市販の
Mmを用い、第6表に示す合金組成を有する水素吸蔵合
金電極を作製した。そして前記第1実験例と同様にして
各種電池を得た。
Using the same mixture of rare earth elements and commercially available Mm as in the first experimental example, a hydrogen storage alloy electrode having the alloy composition shown in Table 6 was produced. Various batteries were obtained in the same manner as in the first experimental example.

以下余白 第  6 表 これらの本発明電池R,S、13、T、及び比較電池r
、s、b、tを用い、電池のサイクル寿命を調べた。こ
の時のサイクル条件は、前記第1実験例に準じた。
Table 6: These inventive batteries R, S, 13, T, and comparative battery r
, s, b, and t were used to examine the cycle life of the battery. The cycle conditions at this time were similar to those in the first experimental example.

この結果を、第6表及び第2図に示す。The results are shown in Table 6 and FIG.

この結果より、AB、型合金よりも化学量論比がずれた
水素吸蔵合金を使用する電池r、s、tは、サイクル寿
命が短かくなることがわかる。しかしながら、Ndを多
く含有した合金を有する本発明電池R,S、Tは、その
低下の割合が極めて小さく抑えられ、合金組成が化学量
論比からすノまた場合であっても、優れたサイクル特性
が発揮される。
From this result, it can be seen that batteries r, s, and t that use a hydrogen storage alloy whose stoichiometric ratio is different from that of the AB type alloy have a shorter cycle life. However, in the batteries R, S, and T of the present invention, which have alloys containing a large amount of Nd, the rate of decrease is suppressed to an extremely low level, and even when the alloy composition is different from the stoichiometric ratio, the batteries R, S, and T of the present invention have excellent cycle performance. Characteristics are demonstrated.

尚、希土類元素中のNdの含有量が60重量%の場合に
ついて例示したが、前記傾向は、Ndの含有量が30重
量%以」二において観察された。
Although the case where the Nd content in the rare earth element was 60% by weight was exemplified, the above-mentioned tendency was observed when the Nd content was 30% by weight or more.

また、P rを20重量%以上含有させた場合及びSm
を10重量%以」二含有させた場合においても、やはり
同様の傾向が観察された。その結果、本発明の構成とす
ることにより、この種水素吸蔵合金を用いたアルカリ蓄
電池のサイクル寿命の低下が抑制できる。
In addition, when Pr is contained in an amount of 20% by weight or more and Sm
A similar tendency was also observed when the content of 10% by weight or more. As a result, with the configuration of the present invention, it is possible to suppress a decrease in the cycle life of an alkaline storage battery using this type of hydrogen storage alloy.

(ト)発明の効果 上述した如く、少なくとも希土類元素を含む水素吸蔵合
金を電極とするアルカリ蓄電池において、前記希土類元
素の総重量に対して、Nd、Pr或いはSmの含有量を
、それぞれ30重量%以上、20重量%以上、或いは1
0重量%以上と限定することにより、11j記合金のア
ルカリ電解液中における耐食性が向上し、サイクル特性
に優れたアルカリ蓄電池が得られるので、その工業的価
値は極めて大きい。
(g) Effects of the invention As described above, in an alkaline storage battery using a hydrogen storage alloy containing at least a rare earth element as an electrode, the content of Nd, Pr, or Sm is 30% by weight each with respect to the total weight of the rare earth element. or more, 20% by weight or more, or 1
By limiting the amount to 0% by weight or more, the corrosion resistance of the alloy No. 11j in an alkaline electrolyte is improved, and an alkaline storage battery with excellent cycle characteristics can be obtained, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素吸蔵合金中のNclの含有量と電池のサイ
クル寿命との関係を示す図、第2図は水素吸蔵合金を化
学量論比からずらしたときの電池のサイクル寿命を示す
図である。 B、F、G、H,I、J、R,S、T・・本発明電池、 b、r、s、t・・・比較電池。
Figure 1 is a diagram showing the relationship between the Ncl content in the hydrogen storage alloy and the cycle life of the battery, and Figure 2 is a diagram showing the cycle life of the battery when the hydrogen storage alloy is shifted from the stoichiometric ratio. be. B, F, G, H, I, J, R, S, T...battery of the present invention, b, r, s, t... comparative battery.

Claims (1)

【特許請求の範囲】 [1]少なくとも希土類元素を含む水素吸蔵合金よりな
り、前記希土類元素の総重量に対して、Ndが30重量
%以上含有されていることを特徴とするアルカリ蓄電池
用水素吸蔵合金電極。 [2]前記水素吸蔵合金は、組成式ANixMy(組成
式中、AはNd、或いはNdとその他の希土類元素との
混合物、MはCo、Al、Cu、Fe、Mn、Cr、Z
n、Ti、Zrよりなる群より選ばれた少なくとも1種
の元素)で表わされ、3.5≦x+y≦6.0であるこ
とを特徴とする請求項[1]記載の水素吸蔵合金電極。 [3]少なくとも希土類元素を含む水素吸蔵合金よりな
り、前記希土類元素の総重量に対して、Prが20重量
%以上含有されていることを特徴とするアルカリ蓄電池
用水素吸蔵合金電極。 [4]前記水素吸蔵合金は、組成式ANixMy(組成
式中、AはPr、或いはPrとその他の希土類元素との
混合物、MはCo、Al、Cu、Fe、Mn、Cr、Z
n、Ti、Zrよりなる群より選ばれた少なくとも1種
の元素)で表わされ、3.5≦x+y≦6.0であるこ
とを特徴とする請求項[3]記載の水素吸蔵合金電極。 [5]少なくとも希土類元素を含む水素吸蔵合金よりな
り、前記希土類元素の総重量に対して、Smが10重量
%以上含有されていることを特徴とするアルカリ蓄電池
用水素吸蔵合金電極。 [6]前記水素吸蔵合金は、組成式ANixMy(組成
式中、AはSm、或いはSmとその他の希土類元素との
混合物、MはCo、Al、Cu、Fe、Mn、Cr、Z
n、Ti、Zrよりなる群より選ばれた少なくとも1種
の元素)で表わされ、3.5≦x+y≦6.0であるこ
とを特徴とする請求項[5]記載の水素吸蔵合金電極。
[Scope of Claims] [1] Hydrogen storage for an alkaline storage battery, characterized in that it is made of a hydrogen storage alloy containing at least a rare earth element, and contains 30% by weight or more of Nd based on the total weight of the rare earth element. Alloy electrode. [2] The hydrogen storage alloy has a composition formula ANixMy (in the composition formula, A is Nd or a mixture of Nd and other rare earth elements, and M is Co, Al, Cu, Fe, Mn, Cr, Z
At least one element selected from the group consisting of n, Ti, and Zr), and 3.5≦x+y≦6.0, the hydrogen storage alloy electrode according to claim . [3] A hydrogen storage alloy electrode for an alkaline storage battery, which is made of a hydrogen storage alloy containing at least a rare earth element, and contains 20% by weight or more of Pr based on the total weight of the rare earth element. [4] The hydrogen storage alloy has a composition formula ANixMy (in the composition formula, A is Pr or a mixture of Pr and other rare earth elements, and M is Co, Al, Cu, Fe, Mn, Cr, Z
At least one element selected from the group consisting of n, Ti, and Zr), and 3.5≦x+y≦6.0, the hydrogen storage alloy electrode according to claim . [5] A hydrogen storage alloy electrode for an alkaline storage battery, which is made of a hydrogen storage alloy containing at least a rare earth element, and contains 10% by weight or more of Sm based on the total weight of the rare earth element. [6] The hydrogen storage alloy has a composition formula ANixMy (in the composition formula, A is Sm or a mixture of Sm and other rare earth elements, and M is Co, Al, Cu, Fe, Mn, Cr, Z
At least one element selected from the group consisting of n, Ti, and Zr), and 3.5≦x+y≦6.0, the hydrogen storage alloy electrode according to claim [5]. .
JP1006536A 1989-01-13 1989-01-13 Hydrogen storage alloy electrode for alkaline storage battery Pending JPH02186559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006536A JPH02186559A (en) 1989-01-13 1989-01-13 Hydrogen storage alloy electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006536A JPH02186559A (en) 1989-01-13 1989-01-13 Hydrogen storage alloy electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH02186559A true JPH02186559A (en) 1990-07-20

Family

ID=11641072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006536A Pending JPH02186559A (en) 1989-01-13 1989-01-13 Hydrogen storage alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH02186559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608646A1 (en) * 1992-12-04 1994-08-03 Saft Hydridable material for nickel-hydride accumulator negative electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS61168870A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS61168870A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608646A1 (en) * 1992-12-04 1994-08-03 Saft Hydridable material for nickel-hydride accumulator negative electrode

Similar Documents

Publication Publication Date Title
JPS6191863A (en) Sealed alkaline storage battery
JPH0790435A (en) Hydrogen storage alloy, its manufacture and electrode using this alloy
US5389333A (en) Hydrogen storage alloys
JPH0719599B2 (en) Storage battery electrode
JPS62271349A (en) Hydrogen occlusion electrode
JPH02186559A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPS63284758A (en) Hydrogen-storing electrode
JPS62249358A (en) Hydrogen storage electrode
JPS62271348A (en) Hydrogen occlusion electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JP2680566B2 (en) Hydrogen storage electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH0642367B2 (en) Alkaline storage battery
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JPS61176067A (en) Hydrogen occlusion electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
US6074783A (en) Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0393158A (en) Hydrogen storage alloy electrode
JP2680620B2 (en) Method of manufacturing alkaline storage battery and hydrogen storage alloy for alkaline storage battery
JPH0729570A (en) Hydrogen storage alloy for nickel/hydrogen battery
JPH0794176A (en) Hydrogen storage electrode