JPH02186243A - Thermal shock tester - Google Patents

Thermal shock tester

Info

Publication number
JPH02186243A
JPH02186243A JP659489A JP659489A JPH02186243A JP H02186243 A JPH02186243 A JP H02186243A JP 659489 A JP659489 A JP 659489A JP 659489 A JP659489 A JP 659489A JP H02186243 A JPH02186243 A JP H02186243A
Authority
JP
Japan
Prior art keywords
time
preparatory
high temperature
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP659489A
Other languages
Japanese (ja)
Inventor
Noriyasu Kawakatsu
川勝 紀育
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP659489A priority Critical patent/JPH02186243A/en
Publication of JPH02186243A publication Critical patent/JPH02186243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To eliminate waste of energy during a preparatory operation and during a cycle operation by calculating required time of a preparatory heating operation and a preparatory cooling operation based on a target high temperature, a target low temperature and the current temperature to determine a starting time of the preparatory heating operation and the preparatory cooling operation. CONSTITUTION:A preparatory operation time calculating means 6 calculates time required for a preparatory heating operation and time required for preparatory cooling operation from a target high temperature, a target low temperature and the current temperature. A preference operation judging means 7A compares a preparatory cooling operation time with a preparatory heating operation time and a high temperature exposure time and outputs a heating preference signal or a cooling preference signal depending on the results. On the other hand, an operation control means 8A works to perform the preparatory heating operation by the heating preference signal and to perform the preparatory cooling operation by the cooling preference signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種部品が高・低温間の大きい温度差が存する
環境の下での熱衝撃に対し何の程度の耐性を持っている
かを試験するのに用いる熱衝撃試験装置の改良に関する
[Detailed Description of the Invention] (Industrial Application Field) The present invention tests the degree of resistance of various parts to thermal shock in an environment where there is a large temperature difference between high and low temperatures. The present invention relates to improvements in thermal shock testing equipment used for testing.

(従来の技術) この種の試験装置としては特開昭59−73752号公
報等によって公知のものがあり、電気・電子部品などの
性能検査に多用されている。
(Prior Art) This type of testing device is known from Japanese Patent Application Laid-Open No. 73752/1984, and is widely used for performance testing of electrical and electronic components.

上記公知例にも見られるように熱衝撃試験装置は、試験
槽、高温槽及び低温槽の3槽を備えていて、試験槽を高
温槽と低温槽とに交互に連通させることによって高温と
低温とに反転する如き繰り返し運転(以下サイクル運転
と称している)を行わせるのであるが、このサイクル運
転の開始に先立って高温槽と低温槽の両槽を目標温度に
熱処理しておく準備運転が当然必要で試験運転効率を高
めるためには、この準備運転の管理も重要な要素である
ことは当然である。
As can be seen in the above-mentioned known example, the thermal shock test device is equipped with three tanks: a test tank, a high temperature tank, and a low temperature tank. A repeated operation (hereinafter referred to as cycle operation) in which the cycle operation is reversed is carried out, but before the start of this cycle operation, a preparatory operation is carried out in which both the high-temperature bath and the low-temperature bath are heat-treated to the target temperature. It goes without saying that management of this preparatory operation is also an important element in order to improve test operation efficiency.

(発明が解決しようとする課題) ところで準備運転の完了後にサイクル運転を行わせるの
に、高温槽が目標高温度(TH)に達するまでの準備加
熱運転時間(t□)、低温槽が目標低温度(TL )に
達するまでの準備冷却運転時間(tL、)、試験槽をサ
イクル運転時に高温にさらす単位時間((□)同じく低
温にさらす単位時間(tLP−tL)の関係によっては
、準備運転中あるいはサイクル運転中の熱処理のための
消費エネルギーが無駄になっており、準備運転の時間を
無駄に費やすことになる。
(Problem to be Solved by the Invention) By the way, in order to perform a cycle operation after the completion of the preparatory operation, the preparatory heating operation time (t□) until the high temperature tank reaches the target high temperature (TH), and the Depending on the relationship between the preparatory cooling operation time (tL, ) to reach the temperature (TL), the unit time of exposing the test chamber to high temperature during cycle operation ((□), and the unit time of exposing it to low temperature (tLP - tL), the preparatory operation may be delayed. The energy consumed for heat treatment during medium or cycle operation is wasted, and the time for preparatory operation is wasted.

例えば具体的に示すと、サイクル運転は高温さらし運転
を先行させ、かつtHP≦tLPで、しかも1L ≦t
NP+ tHの条件が成立するものにおいては、高温さ
らし運転の開始は高温槽が目標高温度(T)l )に到
達した時点で可能ではあるが、低温槽が目標低温度(T
t )に到達するまで準備運転を続けるようにするのが
一般的であることから、第6図に示される如(、準備運
転の際におけるtcp−tNPの時間の無駄があり、ま
た、準備運転中において高温槽が目標高温度(1,)に
なってから以降の高温槽に消費される熱エネルギーの無
駄があり、さらに高温さらし運転中の低温槽に消費され
る熱エネルギーの一部の無駄があって、綜合的に運転時
間が長く、かつ熱エネルギーの消失による運転経済性の
低下が問題であった。
For example, specifically, cycle operation is preceded by high temperature exposure operation, and tHP≦tLP, and 1L≦t
In cases where the NP + tH condition is met, high-temperature exposure operation can be started when the high-temperature bath reaches the target high temperature (T), but when the low-temperature bath reaches the target low temperature (T)
Since it is common practice to continue the preparatory operation until the preparatory operation reaches t, as shown in Fig. 6, there is a waste of time for tcp-tNP during the preparatory operation. There is a waste of thermal energy consumed in the high temperature bath after the high temperature bath reaches the target high temperature (1,), and a part of the thermal energy consumed in the low temperature bath during high temperature exposure operation is also wasted. The overall problem was that the operating time was long, and the economical efficiency of operation was reduced due to the loss of thermal energy.

また、TL7><hpに比して十分に長いときに、低温
さらし運転中の高温槽の温度維持を行うのはエネルギー
の無駄につながり、さらにt8がtLFに比べて十分長
いときも高温さらし運転中の低温槽の温度維持に費やさ
れるエネルギーの一部の無駄につながることになる。
In addition, maintaining the temperature of the high temperature bath during low temperature exposure operation when it is sufficiently long compared to TL7><hp leads to waste of energy, and furthermore, when t8 is sufficiently long compared to tLF, high temperature exposure operation Some of the energy spent on maintaining the temperature of the cryostat will be wasted.

このような問題点に鑑みて、準備運転時間の無駄を省く
とともに、準備運転中及びサイクル運転中のエネルギー
の無駄の解消を果たし得る運転システムを本発明は確立
せしめたものであって、運転効率の向上ならびに運転経
済性の改善を果たすことを目的とする。
In view of these problems, the present invention has established an operation system that can eliminate waste of preparatory time and waste of energy during preparatory operation and cycle operation, and improve operational efficiency. The objective is to improve the performance and operating economy of the vehicle.

(課題を解決するための手段) しかして本発明は上記目的を達成するべく、添付図面に
示す実施例によって明らかなように、請求項1の発明に
関しては、試験槽(1)、この試M槽(1)に対し連通
と遮断との切換え可能に夫々配設した高温槽(2)及び
低温槽【3)、前記高温槽(2)を加熱する加熱装置(
4)、前記低温槽(3)を冷却する冷却装置(5)を備
え、高温槽(2)及び低温槽(3)を目標高温度(TH
)及び目標低温度(TL)まで予め熱処理する準備加熱
運転及び準備冷却運転と、その後、高温槽(2)及び低
温槽(3)を目標高温度(TH)及び目標低温度(Tt
 )に夫々保持せしめる加熱運転及び冷却運転と、高温
さらし時間(t+r)及び低温さらし時間(tL )を
単位時間として高温槽(2)及び低温槽(3)を試験槽
(1)に対し交互に連通せしめる高温さらし運転及び低
温さらし運転からなり、かつ、高温さらし運転を先行さ
せてなるサイクル運転とを行わせる熱衝撃試験装置にお
いて、 前記準備加熱運転及び前記準備冷却運転の各所要時間(
tap)、 (tLP)を目標高温度(TH)及び目標
低温度(TL )と現在温度(T)とにもとづいて算出
する準備運転時間算出手段(6)と、 前記準備冷却運転時間(tLP)を前記準備加熱運転時
間(tHP)及び高温さらし時間(tH)と比較して、
LLP≧tMPで、かつ、ttp≦tllF+ t、l
であるか、又はtLF < tllFであれば加熱優先
信号を出力し、tLP≧tllFで、かつ、LP> t
Hr + L、Iであれば冷却優先信号を出力する優先
運転判別手段(7A)と、 前記加熱優先信号が出力されると準備加熱運転を直ちに
行わせ、準備冷却運転を比較差時間(△tt = hr
+ t++ −ttr)の経過に伴って行わせ、さらに
、前記サイクル運転を準備加熱運転時間(tHP)の経
過に伴って行わせる一方、前記冷却優先信号が出力され
ると準備冷却運転を直ちに行わせ、準備加熱運転を比較
差時間(△tH= ttp  tHrLM )の経過に
伴って行わせ、さらに、前記サイクル運転を準備冷却運
転時間(tLP)と高温さらし時間(t、l)との差に
対応する時間経過に伴って行わせる運転制御手段(8A
)とを設けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention, as is clear from the embodiments shown in the accompanying drawings, provides a test chamber (1), a test M A high-temperature tank (2) and a low-temperature tank [3] are respectively arranged so as to be able to communicate with and shut off the tank (1), and a heating device for heating the high-temperature tank (2) (
4), a cooling device (5) for cooling the low temperature tank (3), and the high temperature tank (2) and the low temperature tank (3) are heated to a target high temperature (TH).
) and a preparatory cooling operation in which heat treatment is performed in advance to a target low temperature (TL), and then a high temperature tank (2) and a low temperature tank (3) are heated to a target high temperature (TH) and a target low temperature (Tt).
), and the high temperature bath (2) and low temperature bath (3) are alternately applied to the test chamber (1) using the high temperature exposure time (t+r) and low temperature exposure time (tL) as unit time. In a thermal shock test apparatus that performs a cycle operation consisting of a high-temperature exposure operation and a low-temperature exposure operation that are connected to each other, and a cycle operation that is preceded by the high-temperature exposure operation, the time required for each of the preparatory heating operation and the preparatory cooling operation (
(tLP) based on the target high temperature (TH), target low temperature (TL), and current temperature (T); and the preparatory cooling operation time (tLP). compared with the preparatory heating operation time (tHP) and high temperature exposure time (tH),
LLP≧tMP and ttp≦tllF+ t, l
or if tLF < tllF, a heating priority signal is output, and if tLP≧tllF and LP>t
If Hr + L, I, a priority operation determining means (7A) outputs a cooling priority signal, and when the heating priority signal is output, a preparatory heating operation is performed immediately, and a preparatory cooling operation is performed by comparing the difference time (△tt = hr
+ t++ -ttr), and furthermore, the cycle operation is performed as the preparatory heating operation time (tHP) elapses, while the preparatory cooling operation is performed immediately when the cooling priority signal is output. The preparatory heating operation is performed as the comparison difference time (ΔtH=ttp tHrLM) elapses, and the cycle operation is performed according to the difference between the preparatory cooling operation time (tLP) and the high temperature exposure time (t, l). Operation control means (8A
).

次に請求項2の発明は、サイクル運転において低温さら
し運転を先行させる点が請求項1の発明と区別され、ま
た、優先運転判別手段(78)が、前記加熱運転時間(
t□)を前記準備冷却運転時間(tLr)及び低温さら
し時間(tL)と比較して、を肝≧LLPで、かつ、1
.≦tLP+tLであるか、又はt□< tcpであれ
ば冷却優先信号を出力し、tHP≧ttrで、かつ、L
sP> ttp +LLであれば加熱優先信号を出力す
る構成であり、さらに運転制御手段(8B)が、前記冷
却優先信号が出力されると準備冷却運転を直ちに行わせ
、準備加熱運転を比較差時間(△tH= tLr+ k
   t、Ip)の経過に伴って行わせ、さらに、前記
サイクル運転を準備冷却運転時間(tLP)の経過に伴
って行わせる一方、前記加熱優先信号が出力されると準
備加熱運転を直ちに行わせ、準備冷却運転を比較差時間
(△LL = t□−tt、p−tt )の経過に伴っ
て行わせ、さらに、前記サイクル運転を準備加熱運転時
間(tHP)と低温さらし時間(tL)との差に対応す
る時間経過に伴って行わせる構成である点が請求項1の
発明と区別されてなる特徴とされるところである。
Next, the invention of claim 2 is distinguished from the invention of claim 1 in that the low-temperature exposure operation is preceded in the cycle operation, and the preferential operation determination means (78) is configured such that the heating operation time (
t□) with the preparatory cooling operation time (tLr) and low temperature exposure time (tL).
.. If ≦tLP+tL or t□<tcp, a cooling priority signal is output, and if tHP≧ttr and L
If sP > ttp +LL, the configuration is such that a heating priority signal is output, and further, when the cooling priority signal is output, the operation control means (8B) immediately performs the preparatory cooling operation, and performs the preparatory heating operation with a comparative time difference. (△tH=tLr+k
Further, the cycle operation is performed as the preparatory cooling operation time (tLP) elapses, while the preparatory heating operation is performed immediately when the heating priority signal is output. , the preparatory cooling operation is performed with the passage of the comparison difference time (ΔLL = t□-tt, p-tt), and the cycle operation is further performed with the preparatory heating operation time (tHP) and the low temperature exposure time (tL). The feature that distinguishes this from the invention of claim 1 is that the process is performed as time passes corresponding to the difference in .

(作用) 請求項1は、準備加熱運転時間(to)と準備冷却運転
時間(tt、p)の長短関係によって、さらに高温さら
し時間(LH)と低温さらし時間(t、)との各値から
、準備加熱運転と準備冷却運転との各開始時点を、優先
運転判別手段(7A)と運転制御手段(8A)との作動
により適切な条件に合致し得るよう定めて運転に入らせ
ることが可能となり、高温槽(2)が目標高温度CTs
 )に達したときに高温さらし運転からのサイクル運転
が開始されるとともに、高温さらし運転が終了するのに
同期して低温槽(3)が目標低温度(TL)に達してい
るために早過ぎあるいは遅過ぎることなく低温さらし運
転に切換えることができる。
(Function) Claim 1 is based on the length relationship between the preparatory heating operation time (to) and the preparatory cooling operation time (tt, p), and further from the respective values of the high temperature exposure time (LH) and the low temperature exposure time (t, ). It is possible to set the starting points of the preparatory heating operation and the preparatory cooling operation so that appropriate conditions can be met by the operation of the priority operation determining means (7A) and the operation control means (8A). Therefore, the high temperature tank (2) reaches the target high temperature CTs
), the cycle operation from the high temperature exposure operation is started, and the low temperature chamber (3) reaches the target low temperature (TL) at the same time as the high temperature exposure operation ends, which is too early. Alternatively, it is possible to switch to low-temperature exposure operation without too much delay.

一方、請求項2についてもサイクル運転の順序が低温さ
らし運転を先行させる点が請求項1と異なるのみであっ
て、同じ様に準備冷却運転及び準備加熱運転のタイミン
グが適切にとれることになりサイクル運転にスムースに
移行できる。
On the other hand, as for claim 2, the only difference from claim 1 is that the order of the cycle operation is that the low temperature exposure operation is preceded, and similarly, the timing of the preparatory cooling operation and the preparatory heating operation can be taken appropriately, so that the cycle You can smoothly transition to driving.

かくして準備運転時間が最少の時間で済むことになり、
エネルギー消失を最低限に止めることが可能である。
In this way, the preparation time is reduced to a minimum, and
It is possible to minimize energy loss.

(実施例) 以下、本発明の実施例を添付図面にもとづいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図において、+1)は周壁が断熱材によって形成さ
れた試験槽であって、熱衝撃試験を行わせる各種部品を
扉(9)から槽内に収納せしめる。
In FIG. 1, +1) is a test tank whose peripheral wall is made of a heat insulating material, and various parts to be subjected to a thermal shock test are housed in the tank through a door (9).

(2)及び(3)は試験槽+1)を挟み両側に近接して
配設した高温槽及び低温槽であって周壁が断熱材により
形成されている。
(2) and (3) are a high temperature tank and a low temperature tank that are disposed close to each other on both sides of the test tank +1), and their peripheral walls are formed of a heat insulating material.

試験槽(1)と高温槽(2)とは、2つの空気流通路0
呻。
The test chamber (1) and the high temperature chamber (2) have two air flow passages.
Groan.

QDによって循環的に連通せしめてなり、また、試験槽
(1)と低温槽(3)とは、2つの空気流通路03. 
Q3)によって循環的に連通せしめてなり、そして前記
各流通路OI〜α濁には断熱性を有するダンパー0す〜
0ηを流通路の開閉可能に夫々介設している。
The test chamber (1) and the cryostat (3) are connected through two air flow passages 03.
Q3), and each of the flow passages OI~α is provided with a damper 0~ having heat insulating properties.
0η are interposed so that the flow passages can be opened and closed.

なお、(22) 、 (23)は給・排気通路に夫々設
けた給気用ダンパー、排気用ダンパーである。
Note that (22) and (23) are an air supply damper and an exhaust damper provided in the supply and exhaust passages, respectively.

しかして高温槽(2)内には、加熱装置(4)例えば電
気ヒータと、熱風用ファン12鴫とを収設しており、一
方、低温槽(3)内には、冷凍ユニ7)α咎及び蒸発器
OIにより形成される冷却装置(5)の前記蒸発器O1
と、冷風用ファン(21)とを収設していて、高温槽(
2)は電気ヒータ(4)の加熱運転によって例えば17
0℃の雰囲気が醸成され、低温槽(3)は冷却装置(5
)の冷却運転によって例えば−60℃の雰囲気が醸成さ
れるようになっている。
In the high temperature tank (2), a heating device (4) such as an electric heater and a hot air fan 12 are housed, while in the low temperature tank (3), a freezing unit 7) α The evaporator O1 of the cooling device (5) formed by the evaporator and the evaporator OI
and a cold air fan (21), and a high temperature tank (
2), for example, 17 by heating operation of the electric heater (4).
A 0°C atmosphere is created, and the low temperature chamber (3) is equipped with a cooling device (5
) A cooling operation of, for example, creates an atmosphere of -60°C.

以上述べた構造を有する気相式の熱衝撃試験装置は、ま
ず加熱装置(4)と冷却装置(5)とを作動させて、高
温槽(2)と低温槽(3)とを試験槽(1)に対し熱的
に遮断させた状態下で、目標高温度(TH=170℃)
と目標低温度(TL=−60℃)とに達するまで加熱、
冷却させる。
The gas phase thermal shock test apparatus having the structure described above first operates the heating device (4) and the cooling device (5), and connects the high temperature chamber (2) and the low temperature chamber (3) to the test chamber ( Target high temperature (TH = 170℃) under thermally isolated conditions for 1)
and the target low temperature (TL=-60°C).
Allow to cool.

この加熱、冷却運転を準備加熱運転、準備冷却運転と称
している。
This heating and cooling operation is called a preparatory heating operation and a preparatory cooling operation.

上記運転が完了して高温槽(2)が170℃、低温槽(
3)が−60℃に達するとサイクル運転に移行するが、
このサイクル運転はダンパーae、asを開放し、かつ
熱風用ファン(2鴎を運転させて試験槽(11と高温槽
(2)とを連通ずることにより、試験槽(11内に高温
度例えば150℃に昇温させる高温さらし運転と、ダン
パーα1. Qηを開放し、かつ冷風用ファン(21)
を運転させて試験槽(1)内を低温槽(3)に連通ずる
ことにより低温度例えば−40℃に降温させる低温さら
し運転とからなっている。
After the above operation is completed, the temperature of the high temperature tank (2) is 170℃, and the temperature of the low temperature tank (
When 3) reaches -60°C, it shifts to cycle operation, but
This cycle operation is performed by opening the dampers ae and as, and by operating a hot air fan (2 fans) to connect the test tank (11 and the high temperature tank (2)). High-temperature exposure operation to raise the temperature to ℃, open damper α1.Qη, and cool air fan (21)
This consists of a low-temperature exposure operation in which the inside of the test chamber (1) is brought into communication with the low-temperature chamber (3) to lower the temperature to a low temperature, for example, -40°C.

そしてこの場合のサイクル運転は必要に応じて高温さら
し運転と低温さらし運転の何れか一方を先行させて高温
さらし時間(1* )及び低温さらし時間(t、)とを
単位時間として交互に繰り返させて何回か行うものであ
る。
In this case, the cycle operation is such that either the high-temperature exposure operation or the low-temperature exposure operation is preceded as necessary, and the high-temperature exposure time (1*) and the low-temperature exposure time (t,) are alternately repeated as a unit time. This is done several times.

上述する熱衝撃試験運転は、中央演算処理装置(CPU
)を要素とした制御系によって、運転指令を人為的に行
った後は自動的に成されるものであるから、前述する如
く、準備運転時間算出手段(6)と、優先運転判別手段
(7,)又は(7,)と、運転制御手段(8A)又は(
86)とによって制御系が形成される。
The thermal shock test operation described above was performed using the central processing unit (CPU).
) is automatically performed after the operation command is given manually by the control system that includes the elements (6) and (7). , ) or (7,) and the operation control means (8A) or (
86) to form a control system.

まず準備運転時間算出手段(6)は外部データを取り込
んだり、また、メモリーとの間でデータの授受を行った
りして所要の演算処理を成した後、処理データを出力す
るよう形成されてなり、目標高温度(Tll )と目標
低温度(TL)と現在温度(T)とから準備加熱運転に
要する時間(tllF)及び準備冷却運転に要する時間
(kr)を算出するようになっている。
First, the preparation operation time calculation means (6) is configured to take in external data, exchange data with the memory, perform necessary arithmetic processing, and then output the processed data. , the time required for the preparatory heating operation (tllF) and the time required for the preparatory cooling operation (kr) are calculated from the target high temperature (Tll), the target low temperature (TL), and the current temperature (T).

この場合、準備加熱運転時間(txr)は、加熱装置(
4)が電気ヒータからなるものでは、目標高温度(TL
 ) 200℃程度までのものであるならば、tHp=
aT、、 + b ・・・・・(A)但し、a、bは定
数、 の−次間数式によって求めることが可能である。
In this case, the preparatory heating operation time (txr) is the heating device (
4) consists of an electric heater, the target high temperature (TL
) If the temperature is up to about 200℃, tHp=
aT,, + b...(A) However, a and b are constants, and can be determined by the -order formula.

一方、準備冷却運転時間(by )は圧縮冷凍装置から
冷却装置(5)が構成されているものでは、目標低温度
(TL )がO〜−80℃程度の条件であるならば、 −C,TL tLp=  e     +C□・ ・ ・ ・ ・(
B)但し、C,、CZは定数、 の指数関数で求めることが可能である。
On the other hand, in the case where the cooling device (5) is composed of a compression refrigeration device, the preparatory cooling operation time (by) is -C, TL tLp= e +C□・ ・ ・ ・ ・(
B) However, C, and CZ are constants, and can be determined by an exponential function of.

従って、前記(A)式(第4図参照)及び前記(B)式
(第5図参照)を表すグラフとしてメモリーに記憶させ
ておくことにより、前記両運転時間(thp) 、 (
tLP)を算出することができる。
Therefore, by storing in the memory a graph representing the formula (A) (see Figure 4) and the formula (B) (see Figure 5), the operating time (thp), (
tLP) can be calculated.

次ぎに優先運転判別手段(7A)は和算要素と比較要素
とを備えてなる演算回路であって、高温さらし運転を先
行するサイクル運転が成されるものに適用されるもので
あり、準備冷却運転時間(tLP)を準備加熱運転時間
(to)及び高温さらし時間(t8)と比較してその結
果により加熱優先信号又は冷却優先信号を出力するよう
形成している。
Next, the preferential operation determination means (7A) is an arithmetic circuit comprising a summation element and a comparison element, and is applied to those in which cycle operation precedes high-temperature exposure operation, and preparatory cooling The operating time (tLP) is compared with the preparatory heating operating time (to) and the high temperature exposure time (t8), and a heating priority signal or a cooling priority signal is output based on the results.

この場合の比較演算は3種類に区別して行うものであっ
て、まず、準備冷却運転時間(tt、r)と準備加熱運
転時間(to)の長短比較を行って、LL。
Comparison calculations in this case are performed in three different ways: First, the length of the preparatory cooling operation time (tt, r) and the preparatory heating operation time (to) is compared, and LL is calculated.

< tNrであれば、準備加熱運転を先行させるための
加熱優先信号を出力させ、一方、LLP≧t)IFであ
ればさらに準備冷却運転時間(tLP)を準備加熱運転
時間(t□)と高温さらし時間(tH)との和と比較し
て、tLr≦tNF+ titであると準備加熱運転を
先行させるための前記加熱優先信号を出力させ、tLp
 > ttp + hであると準備冷却運転を先行さ、
せるための冷却優先信号を出力させる。
If < tNr, a heating priority signal is output to advance the preparatory heating operation, while if LLP≧t)IF, the preparatory cooling operating time (tLP) is further set to the preparatory heating operating time (t□) and the high temperature. Compared with the sum of the exposure time (tH), if tLr≦tNF+tit, the heating priority signal for preceding the preparatory heating operation is output, and tLp
> ttp + h, preparatory cooling operation is preceded,
Outputs a cooling priority signal to

一方、運転制御手段(8A)は電子タイマー要素と出力
トランジスタとから形成してなる出力回路であって、前
記加熱優先信号が出力されてなることにより、加熱値W
(4)及び熱風用7179時を作動させる準備加熱運転
を直ちに行わせ、これより遅れた冷却装置(5)及び冷
却用ファン(21)を作動させる準備冷却運転を行わせ
、さらに遅れて高温さらし運転を先行させるサイクル運
転を行わせるよう形成してなり、また、前記冷却優先信
号が出力されてなることにより、準備冷却運転、準備加
熱運転、サイクル運転の順序で運転させるよう形成して
なるものである。
On the other hand, the operation control means (8A) is an output circuit formed from an electronic timer element and an output transistor, and by outputting the heating priority signal, the heating value W
(4) and 7179 hours for hot air are activated, a preparatory heating operation is performed immediately, a delayed cooling device (5) and a cooling fan (21) are activated, a preparatory cooling operation is performed, and a further delay is performed for high temperature exposure. The device is configured to perform a cycle operation that precedes the operation, and is configured to operate in the order of preparatory cooling operation, preparatory heating operation, and cycle operation by outputting the cooling priority signal. It is.

しかして順序運転のタイミングは以下述べる容量で行わ
せる。
Therefore, the timing of sequential operation is performed at the capacity described below.

即ち、加熱優先信号が出力されている場合は、準備加熱
運転を直ちにスタートさせ、次いで、スタート時点から
高温さらし運転の終了までの時間(111,+ 1□)
より準備冷却運転時間(tLP)を差し引いた比較差時
間(△1. = 1Hデ+1.−1LP)が経過すると
準備冷却運転を開始させ、一方、スタート時点から準備
加熱運転時間(tNP)経過して高温槽(2)が目標高
温度(Tイー1フ0℃)に達するとダンパーQ4)、Q
!9を開放させる高温さらし運転を開始させる。
That is, when the heating priority signal is output, the preparatory heating operation is started immediately, and then the time from the start point to the end of the high temperature exposure operation (111, + 1□)
When the comparative difference time (△1.=1Hde+1.-1LP), which is obtained by subtracting the preparatory cooling operation time (tLP), has elapsed, the preparatory cooling operation is started, while the preparatory heating operation time (tNP) has elapsed from the start point. When the high temperature tank (2) reaches the target high temperature (T1F 0℃), damper Q4), Q
! 9 is opened to start high temperature exposure operation.

その後、ダンパー04J、α〜を高温さらし時間(t。After that, damper 04J, α~ is exposed to high temperature for a time (t).

)開放さセるとダンパー00.αηを低温さらし時間(
tL)開放させ、以下、この繰り返しを行わせてサイク
ル運転を続行させればよく、かくして最初の高温さらし
運転、低温さらし運転が開始される時期に合致して高温
槽(2)及び低温槽(3)は所定の目標温度に達するこ
とになる。
) When opened, damper 00. αη is the low temperature exposure time (
tL) and then repeat this process to continue the cycle operation. Thus, the high temperature tank (2) and the low temperature tank ( 3) will reach a predetermined target temperature.

一方、冷却運転信号が出力されている場合は、準備冷却
運転を直ちにスタートさせ、次いで準備冷却運転時間(
tLP)から準備加熱運転時間(tHP)と高温さらし
時間(tN)との和を差し引いた比較差時間(△tH=
 tLp  tHp  tH)が経過すると準備加熱運
転を開始させ、一方、準備冷却運転時間(tLP)から
高温さらし時間(tH)を差し引いた時間の経過によっ
てサイクル運転を開始させればよい。
On the other hand, if the cooling operation signal is output, the preparatory cooling operation is started immediately, and then the preparatory cooling operation time (
Comparison difference time (△tH=
When tLp tHp tH) elapses, the preparatory heating operation is started, and on the other hand, the cycle operation is started when the time obtained by subtracting the high temperature exposure time (tH) from the preparatory cooling operation time (tLP) has elapsed.

以上説明した運転の態様は第2図に経時線図として示さ
れる通りである。
The mode of operation described above is as shown as a time course diagram in FIG.

ところでサイクル運転を低温さらし運転の先行によって
実行させる場合に適用される請求項2の発明については
優先運転判別手段(7,)及び運転制御手段(8,)の
作動が低温さらし運転と高温さらし運転の順序の違いに
合わせて異らしめているだけで制御の基本形態は変わり
が無い。
By the way, regarding the invention of claim 2 which is applied to the case where the cycle operation is executed by preceding the low temperature exposure operation, the operation of the priority operation determination means (7,) and the operation control means (8,) is performed in the low temperature exposure operation and the high temperature exposure operation. The basic form of control remains the same, only that it is different according to the difference in the order of.

すなわち、優先運転判別手段(7m)は、加熱優先信号
と冷却優先信号との間の読み替え、計算過程における準
備冷却運転時間(tt、r) 、準備加熱運転時間(t
Hp)と高温さらし時間(tN)及び低温さらし時間(
tL)に対して準備加熱運転時間(tNr)、準備冷却
運転時間(tLr) 、低温さらし時間(11)及び高
温さらし時間(tH)の読み替えを行わせることによっ
て、適正な優先運転判別が可能である。
That is, the priority operation determination means (7m) converts between the heating priority signal and the cooling priority signal, and determines the preparation cooling operation time (tt, r) and the preparation heating operation time (t
Hp), high temperature exposure time (tN) and low temperature exposure time (
Appropriate priority operation can be determined by replacing the preparatory heating operation time (tNr), preparatory cooling operation time (tLr), low temperature exposure time (11), and high temperature exposure time (tH) with respect to tL). be.

一方、運転制御手段(8m)についても、前記優先運転
判別手段(7□)と同じ要領の読み替えを行わせるとと
もに、さらに準備加熱運転と準備冷却運転との読み替え
を行わせることによって、同様に適正な運転制御が可能
となる。
On the other hand, the operation control means (8m) is also changed in the same manner as the priority operation determination means (7□), and is also read as preparatory heating operation and preparatory cooling operation in the same manner. This enables effective operation control.

この場合の運転例を第3図に示しているが、この例は高
温さらし時間(to )が1時間で試験槽+1)の温度
が150℃であり、低温さらし時間(tL ’Jが2時
間で試験槽(11の温度が一40℃であり、さらに高温
槽(2)を常温から目標高温度(Tイー1フ0℃)に昇
温するのに0.5時間を要し、低温槽(3)を常温から
目標低温度(↑L=60℃)に降温するのに1時間を要
する装置の場合である。
An example of operation in this case is shown in Figure 3. In this example, the high temperature exposure time (to) is 1 hour, the temperature of the test chamber +1) is 150°C, and the low temperature exposure time (tL 'J) is 2 hours. The temperature of the test chamber (11) was 140℃, and it took 0.5 hours to raise the temperature of the high temperature chamber (2) from room temperature to the target high temperature (T1F 0℃). (3) This is the case of an apparatus that requires one hour to lower the temperature from room temperature to the target low temperature (↑L=60°C).

以上、各実施例について説明したが、サイクル運転にお
いて低温さらし時間(11)が準備加熱運転時間(to
r)に比べて十分に長いとき、あるいは高温さらし時間
(tH)がf$備冷却運転時間(tLP)に比べて十分
に長いときは、高温槽(2)又は低温槽(3)の温度保
持運転を一時的に中断して適当な時点で再び加熱又は冷
却を夫々始めるようにしても勿論差し支えなく、また、
高温さらし運転と低温さらし運転との何れを先行させる
かを制御系によって判断させるようにすることも可能で
ある。
As mentioned above, each example has been explained, but in the cycle operation, the low temperature exposure time (11) is the preparatory heating operation time (to
r) or when the high temperature exposure time (tH) is sufficiently long compared to the cooling operation time (tLP), the temperature of the high temperature tank (2) or low temperature tank (3) is maintained. Of course, there is no problem even if the operation is temporarily interrupted and heating or cooling is restarted at an appropriate point.
It is also possible to have the control system determine which of the high-temperature exposure operation and the low-temperature exposure operation should be carried out first.

(発明の効果) 本発明は請求項1,2の何れにおいても、サイクル運転
における最初の高温さらし運転及び低温さらし運転を行
わせる時点では、高温槽(2)及び低温槽(3)がこの
時点にタイミングを合致するように目標高温度(丁イ)
及び目標低温度(TL)に到達する如き準備加熱運転及
び準備冷却運転が成されることになるので、加熱、冷却
が遅過ぎあるいは早過ぎることがなくなり、従って準備
運転時間の無駄が解消されるとともに試験温度を設計値
通り正確に保たせることが可能となり、準備運転の適正
化ならびに全運転期間を通じて熱エネルギーの無駄をな
くすることによる有効活用が果たされる。
(Effects of the Invention) In both claims 1 and 2 of the present invention, at the time when the first high temperature exposure operation and low temperature exposure operation in the cycle operation are performed, the high temperature bath (2) and the low temperature bath (3) are operated at this point. Target high temperature to match timing (Ding Yi)
Since the preparatory heating operation and the preparatory cooling operation are performed to reach the target low temperature (TL), heating and cooling are neither too slow nor too early, and therefore, wasted preparation operation time is eliminated. At the same time, it becomes possible to maintain the test temperature accurately as designed, making it possible to optimize preparatory operations and effectively utilize heat energy by eliminating waste throughout the entire operation period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る概要示構造図、第2図は
請求項1の例に係る運転経時線図、第3図は同じく請求
項2の例に係る運転状態説明図、第4図及び第5図は高
温槽の準備加熱温度−時間関係図及び低温槽の準備冷却
温度−時間関係図、第6図は従来装置の運転経時線図で
ある。 (11・・・試験槽、 (2)・・・高温槽、(3)・
・・低温槽、 (4)・・・加熱装置、(5)・・・冷
却装置、 (6)・・・準備運転時間算出手段、(7A
)、(71)・・・優先運転判別手段、(8A )、(
8m ”)・・・運転制御手段、(丁)・・・現在温度
、 (TH)・・・目標高温度、 (TL)・・・目標低温度、 (tH)・・・高温さらし時間、 (11)・・・低温さらし時間、 (tHp)・・・準備加熱運転時間、 (tLP)・・・準備冷却運転時間、 第1 図
FIG. 1 is a schematic structural diagram according to an embodiment of the present invention, FIG. 2 is an operation time chart according to the example of claim 1, and FIG. 3 is an explanatory diagram of the operating state according to the example of claim 2. 4 and 5 are a preparatory heating temperature-time relation diagram of the high temperature tank and a preparatory cooling temperature-time relation diagram of the low temperature tank, and FIG. 6 is an operation time chart of the conventional apparatus. (11...Test tank, (2)...High temperature tank, (3)...
...Cold temperature tank, (4)...Heating device, (5)...Cooling device, (6)...Preparation operation time calculation means, (7A
), (71)...priority operation determination means, (8A), (
8m'')...Operation control means, (D)...Current temperature, (TH)...Target high temperature, (TL)...Target low temperature, (tH)...High temperature exposure time, ( 11)...Low temperature exposure time, (tHp)...Preparation heating operation time, (tLP)...Preparation cooling operation time, Fig. 1

Claims (1)

【特許請求の範囲】 1、試験槽(1)、この試験槽(1)に対し連通と遮断
との切換え可能に夫々配設した高温槽(2)及び低温槽
(3)、前記高温槽(2)を加熱する加熱装置(4)、
前記低温槽(3)を冷却する冷却装置(5)を備え、高
温槽(2)及び低温槽(3)を目標高温度(T_H)及
び目標低温度(T_L)まで予め熱処理する準備加熱運
転及び準備冷却運転と、その後、高温槽(2)及び低温
槽(3)を目標高温度(T_H)及び目標低温度(T_
L)に夫々保持せしめる加熱運転及び冷却運転と、高温
さらし時間(t_H)及び低温さらし時間(t_L)を
単位時間として高温槽(2)及び低温槽(3)を試験槽
(1)に対し交互に連通せしめる高温さらし運転及び低
温さらし運転からなり、かつ、高温さらし運転を先行さ
せてなるサイクル運転とを行わせる熱衝撃試験装置にお
いて、 前記準備加熱運転及び前記準備冷却運転の各所要時間(
t_H_P)、(t_L_P)を目標高温度(T_H)
及び目標低温度(T_L)と現在温度(T)とにもとづ
いて算出する準備運転時間算出手段(6)と、 前記準備冷却運転時間(t_L_P)を前記準備加熱運
転時間(t_H_P)及び高温さらし時間(L_H)と
比較して、t_L_P≧t_H_Pで、かつ、t_L_
P≦t_H_P+t_Hであるか、又はt_L_P<t
_H_Pであれば加熱優先信号を出力し、t_L_P≧
t_H_Pで、かつ、t_L_P>T_H_P+t_N
であれば冷却優先信号を出力する優先運転判別手段(7
_A)と、 前記加熱優先信号が出力されると準備加熱運転を直ちに
行わせ、準備冷却運転を比較差時間(Δt_L=t_H
_P+t_H−t_L_P)の経過に伴って行わせ、さ
らに、前記サイクル運転を準備加熱運転時間(t_H_
P)の経過に伴って行わせる一方、前記冷却優先信号が
出力されると準備冷却運転を直ちに行わせ、準備加熱運
転を比較差時間(Δt_N=t_L_P−t_H_P−
t_H)の経過に伴って行わせ、さらに、前記サイクル
運転を準備冷却運転時間(t_L_P)と高温さらし時
間(t_N)との差に対応する時間経過に伴って行わせ
る運転制御手段(8_A)とを設けたことを特徴とする
熱衝撃試験装置。 2、試験槽(1)、この試験槽(1)に対し連通と遮断
との切換え可能に夫々配設した高温槽(2)及び低温槽
(3)、前記高温槽(2)を加熱する加熱装置(4)、
前記低温槽(3)を冷却する冷却装置(5)を備え、高
温槽(2)及び低温槽(3)を目標高温度(T_H)及
び目標低温度(T_L)まで予め熱処理する準備加熱運
転及び準備冷却運転と、その後、高温槽(2)及び低温
槽(3)を目標高温度(T_H)及び目標低温度(T_
L)に夫々保持せしめる加熱運転及び冷却運転と、高温
さらし時間(t_H)及び低温さらし時間(t_L)を
単位時間として高温槽(2)及び低温槽(3)を試験槽
(1)に対し交互に連通せしめる高温さらし運転及び低
温さらし運転からなり、かつ、低温さらし運転を先行さ
せてなるサイクル運転とを行わせる熱衝撃試験装置にお
いて、 前記準備加熱運転及び前記準備冷却運転の各所要時間(
t_H_P)、(t_L_P)を目標高温度(T_H)
及び目標低温度(T_L)と現在温度(T)とにもとづ
いて算出する準備運転時間算出手段(6)と、 前記準備加熱運転時間(t_H_P)を前記準備冷却運
転時間(t_L_P)及び低温さらし時間(t_L)と
比較して、t_H_P≧t_L_Pで、かつ、t_H_
P≦t_L_P+t_Lであるか、又はt_H_P<t
_L_Pであれば冷却優先信号を出力し、t_H_P≧
t_L_Pで、かつ、t_H_P>t_L_P+t_L
であれば加熱優先信号を出力する優先運転判別手段(7
_B)と、 前記冷却優先信号が出力されると準備冷却運転を直ちに
行わせ、準備加熱運転を比較差時間(ΔT_H=t_L
_P+t_L−t_H_P)の経過に伴って行わせ、さ
らに、前記サイクル運転を準備冷却運転時間(t_L_
P)の経過に伴って行わせる一方、前記加熱優先信号が
出力されると準備加熱運転を直ちに行わせ、準備冷却運
転を比較差時間(Δt_L=t_H_P−t_L_P−
t_L)の経過に伴って行わせ、さらに、前記サイクル
運転を準備加熱運転時間(t_H_P)と低温さらし時
間(t_L)との差に対応する時間経過に伴って行わせ
る運転制御手段(8_B)とを設けたことを特徴とする
熱衝撃試験装置。
[Scope of Claims] 1. A test tank (1), a high temperature tank (2) and a low temperature tank (3) which are respectively arranged so as to be able to communicate with and shut off the test tank (1), the high temperature tank ( 2) a heating device (4) for heating the
A preparatory heating operation that includes a cooling device (5) that cools the low temperature tank (3) and heat-treats the high temperature tank (2) and the low temperature tank (3) to a target high temperature (T_H) and a target low temperature (T_L) in advance; A preparatory cooling operation is performed, and then the high temperature tank (2) and the low temperature tank (3) are heated to the target high temperature (T_H) and the target low temperature (T_H).
A heating operation and a cooling operation are performed in which the test chamber (1) is alternately operated in the high temperature chamber (2) and the low temperature chamber (3) using the high temperature exposure time (t_H) and the low temperature exposure time (t_L) as unit times. In a thermal shock test apparatus that performs a cycle operation consisting of a high-temperature exposure operation and a low-temperature exposure operation that are connected to a high-temperature exposure operation, and a cycle operation that is preceded by a high-temperature exposure operation, the time required for each of the preparatory heating operation and the preparatory cooling operation (
t_H_P), (t_L_P) as the target high temperature (T_H)
and a preparation operation time calculation means (6) that calculates the preparation operation time based on the target low temperature (T_L) and the current temperature (T), and the preparation cooling operation time (t_L_P) is calculated based on the preparation heating operation time (t_H_P) and the high temperature exposure time. (L_H), t_L_P≧t_H_P and t_L_
P≦t_H_P+t_H or t_L_P<t
If _H_P, a heating priority signal is output, and t_L_P≧
t_H_P, and t_L_P>T_H_P+t_N
If so, the priority operation determining means (7) outputs a cooling priority signal.
_A) When the heating priority signal is output, the preparatory heating operation is performed immediately, and the preparatory cooling operation is performed for a comparison difference time (Δt_L=t_H
_P+t_H-t_L_P), and furthermore, the cycle operation is performed as the preparatory heating operation time (t_H_
P), while when the cooling priority signal is output, the preparatory cooling operation is performed immediately, and the preparatory heating operation is performed for the comparative difference time (Δt_N=t_L_P−t_H_P−
an operation control means (8_A) for causing the cycle operation to be performed as time elapses over time (t_H), and further causing the cycle operation to be performed as time elapses corresponding to the difference between the preparatory cooling operation time (t_L_P) and the high temperature exposure time (t_N); A thermal shock test device characterized by being provided with. 2. A test tank (1), a high temperature tank (2) and a low temperature tank (3) which are respectively arranged so as to be able to communicate and cut off the test tank (1), and heating for heating the high temperature tank (2). device (4),
A preparatory heating operation that includes a cooling device (5) that cools the low temperature tank (3) and heat-treats the high temperature tank (2) and the low temperature tank (3) to a target high temperature (T_H) and a target low temperature (T_L) in advance; A preparatory cooling operation is performed, and then the high temperature tank (2) and the low temperature tank (3) are heated to the target high temperature (T_H) and the target low temperature (T_H).
A heating operation and a cooling operation are performed in which the test chamber (1) is alternately operated in the high temperature chamber (2) and the low temperature chamber (3) using the high temperature exposure time (t_H) and the low temperature exposure time (t_L) as unit times. In a thermal shock test apparatus that performs a cycle operation consisting of a high temperature exposure operation and a low temperature exposure operation that are connected to each other, and a cycle operation that is preceded by a low temperature exposure operation,
t_H_P), (t_L_P) as the target high temperature (T_H)
and a preparation operation time calculation means (6) that calculates the preparation operation time based on the target low temperature (T_L) and the current temperature (T), and the preparation heating operation time (t_H_P) is calculated based on the preparation cooling operation time (t_L_P) and the low temperature exposure time. (t_L), t_H_P≧t_L_P, and t_H_
P≦t_L_P+t_L or t_H_P<t
If _L_P, a cooling priority signal is output, and t_H_P≧
t_L_P, and t_H_P>t_L_P+t_L
If so, the priority operation determining means (7) outputs a heating priority signal.
_B) When the cooling priority signal is output, the preparatory cooling operation is performed immediately, and the preparatory heating operation is performed for a comparison difference time (ΔT_H=t_L
_P+t_L-t_H_P), and furthermore, the cycle operation is performed as the pre-cooling operation time (t_L_
P), while when the heating priority signal is output, the preparatory heating operation is performed immediately, and the preparatory cooling operation is performed for the comparison difference time (Δt_L=t_H_P−t_L_P−
an operation control means (8_B) for causing the cycle operation to be performed as time elapses over time (t_L), and further causing the cycle operation to be performed as time elapses corresponding to the difference between the preparatory heating operation time (t_H_P) and the low temperature exposure time (t_L); A thermal shock test device characterized by being provided with.
JP659489A 1989-01-13 1989-01-13 Thermal shock tester Pending JPH02186243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP659489A JPH02186243A (en) 1989-01-13 1989-01-13 Thermal shock tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP659489A JPH02186243A (en) 1989-01-13 1989-01-13 Thermal shock tester

Publications (1)

Publication Number Publication Date
JPH02186243A true JPH02186243A (en) 1990-07-20

Family

ID=11642662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP659489A Pending JPH02186243A (en) 1989-01-13 1989-01-13 Thermal shock tester

Country Status (1)

Country Link
JP (1) JPH02186243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055688A (en) * 1991-06-04 1993-01-14 Daikin Ind Ltd Cold heat shock test device
JP2001066237A (en) * 1999-08-26 2001-03-16 Tabai Espec Corp Method for controlling energy conservation of cold heat impact tester
JP2012013420A (en) * 2010-06-29 2012-01-19 Espec Corp Thermal shock testing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055688A (en) * 1991-06-04 1993-01-14 Daikin Ind Ltd Cold heat shock test device
JP2001066237A (en) * 1999-08-26 2001-03-16 Tabai Espec Corp Method for controlling energy conservation of cold heat impact tester
JP2012013420A (en) * 2010-06-29 2012-01-19 Espec Corp Thermal shock testing device

Similar Documents

Publication Publication Date Title
KR900008901B1 (en) Air conditioner for vehicle and refrigeration system for refrigerator
US5787718A (en) Method for controlling quick cooling function of refrigerator
JP2020134277A (en) Environment test device and environment test method
JPH02186243A (en) Thermal shock tester
JP2000249643A (en) Cold impact-testing device
JP2003302323A (en) Heat shock tester
CN100549586C (en) The method and the refrigerating plant of evaporator defrost in the control refrigerating plant
JPH02257036A (en) Cold/hot impact tester
JPH087128B2 (en) Thermal shock test equipment
JPH06182235A (en) Thermal environment testing equipment
JPH08200843A (en) Superheat controlling apparatus for refrigeration cycle
JPH05157287A (en) Electric instrument box
JPH06288985A (en) Method for controlling thermal shock testing device
JP2661384B2 (en) Defrost controller for thermal shock test equipment
JP2910849B1 (en) Air conditioner defrost control device
JP2661405B2 (en) Air tank type thermal shock test equipment
JP3724619B2 (en) Thermal shock test equipment with neutralization control function
JPH0814527B2 (en) Thermal shock test equipment
JP2827673B2 (en) Refrigerator control device
JPS6039573A (en) Temperature testing device of electronic parts
JPH055688A (en) Cold heat shock test device
JP4100640B2 (en) Electronic expansion valve controller for refrigerator for cold shock equipment
JP2786705B2 (en) Target frost point generator
JPH0341751B2 (en)
JPH03248037A (en) Thermal shock testing apparatus