JPH02185984A - Production of wear resistant sealing member - Google Patents

Production of wear resistant sealing member

Info

Publication number
JPH02185984A
JPH02185984A JP400289A JP400289A JPH02185984A JP H02185984 A JPH02185984 A JP H02185984A JP 400289 A JP400289 A JP 400289A JP 400289 A JP400289 A JP 400289A JP H02185984 A JPH02185984 A JP H02185984A
Authority
JP
Japan
Prior art keywords
alloy powder
base material
cast iron
iron base
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP400289A
Other languages
Japanese (ja)
Inventor
Shigezo Osaki
茂三 大崎
Satoshi Nanba
智 南場
Yoshifumi Yamamoto
義史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP400289A priority Critical patent/JPH02185984A/en
Publication of JPH02185984A publication Critical patent/JPH02185984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a sealing member having superior wear resistance by adhering an alloy powder sheet having a specified compsn. and a specified thickness to the upper face and the upper parts of both side faces of a cast iron base material, remelting the sheet with high energy beams and carrying out chilling. CONSTITUTION:An alloy powder sheet 2 having 0.1-1.0mm thickness is formed with eutectic alloy powder consisting of at least one among 0.5-3.0wt.% P, 25-15wt.% Mo and 0.5-3.0wt.% B, 1.5-5.0wt.% C and the balance Fe and a binder resin. The sheet 2 is adhered to the upper face and the upper parts of both side faces of a cast iron base material 1 with an adhesive tape and dewaxed by holding at a prescribed temp. in an H2 atmosphere, etc. The sheet 2 is remelted with high energy beams such as laser beams 3 to form a highly alloyed hardened layer 4 at the upper part of the cast iron base material 1. Strain relieving annealing and mechanical working are then carried out to obtain a wear resistant sealing member.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ロータリピストンエンジン用のアペックスシ
ール等の耐摩性シール部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a wear-resistant seal member such as an apex seal for a rotary piston engine.

(従来の技術) ロータリピストンエンジンにおいては、ロータによりロ
ータハウジング内に画成される作動空間をシールするた
め、ロータの頂部に保持されたアペックスシールの先端
部をロータハウジングの内周面に摺接させている。この
ため、アペックスシールの先端部つまり摺動部を硬質化
して耐摩耗性を付与する必要がある。
(Prior art) In a rotary piston engine, in order to seal the working space defined in the rotor housing by the rotor, the tip of an apex seal held at the top of the rotor is slid into contact with the inner peripheral surface of the rotor housing. I'm letting you do it. For this reason, it is necessary to harden the tip portion, that is, the sliding portion, of the apex seal to impart wear resistance.

従来は、アペックスシールの摺動部を電子ビーム等で再
溶融した後、急冷凝固させて、この摺動部に耐摩耗性を
有するチル層を形成していたが、近時のエンジンの高出
力化に伴い、従来の方法によって得られるアペックスシ
ールでは耐摩性及び強度面で満足できなくなってきた。
Conventionally, the sliding part of the apex seal was remelted using an electron beam, etc., and then rapidly solidified to form a wear-resistant chill layer on the sliding part.However, with the high output of modern engines, As a result, apex seals obtained by conventional methods have become unsatisfactory in terms of wear resistance and strength.

そこで、特開昭60−230986号公報に例示される
ように、鋳鉄基材の上面にFe−M−C(MはPSMo
及びBのうちの一種)からなる合金粉末とアクリル樹脂
とよりなる合金粉末シートを接着した後、鉄系基材及び
合金粉末シートの上面を高エネルギービームのビーム熱
で再溶融してチル化することにより、耐摩性シール部材
の摺動部に高合金よりなる硬化層を得る方法が提案され
ている。
Therefore, as exemplified in JP-A No. 60-230986, Fe-M-C (M is PSMo) is applied to the upper surface of the cast iron base material.
After adhering an alloy powder sheet made of an alloy powder made of acrylic resin and an alloy powder made of acrylic resin, the iron-based base material and the upper surface of the alloy powder sheet are remelted and chilled with beam heat of a high-energy beam. Accordingly, a method has been proposed for obtaining a hardened layer made of a high alloy on the sliding portion of a wear-resistant seal member.

(発明が解決しようとする課題) ところが、鋳鉄基材及び合金粉末シートの上面を高エネ
ルギービームのビーム熱で再溶融すると、鋳鉄基材の上
面端部では入熱量が多くなるので、液相が垂れ落ちて、
鋳鉄基材に肩垂れ現象が発生する。そして、肩垂れ現象
が発生した耐摩性シール部材を加工すると、摺動部にお
いて十分な硬化層が確保できないため、シール部材の耐
摩性が不足してしまう。
(Problem to be Solved by the Invention) However, when the upper surface of the cast iron base material and the alloy powder sheet are remelted by the beam heat of a high-energy beam, the amount of heat input increases at the upper end of the cast iron base material, so that the liquid phase dripping down,
A sagging phenomenon occurs in the cast iron base material. If a wear-resistant seal member in which shoulder sag occurs is processed, a sufficient hardened layer cannot be secured in the sliding portion, resulting in a lack of wear resistance of the seal member.

前記に鑑みて、本発明は、摺動部に高合金よりなる硬化
層が十分に形成され、これにより耐摩性に優れたシール
部材が得られるようにすることを目的とする。
In view of the above, it is an object of the present invention to provide a sealing member that has a hardened layer made of a high alloy sufficiently formed in the sliding portion and has excellent wear resistance.

(課題を解決するための手段) 前記の目的を達成するため、本発明は、鋳鉄基材の上面
及び側面上部に所定の組成及び厚さを有する合金粉末シ
ートを接着した後、高エネルギービームで再溶融してチ
ル化するものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention adheres an alloy powder sheet having a predetermined composition and thickness to the top and side surfaces of a cast iron base material, and then adheres the alloy powder sheet with a high energy beam. It is remelted and chilled.

具体的に本発明の講じた解決手段は、鋳鉄基材の上面及
び側面上部に、0.5〜3.0重量%のP、2.5〜1
5重量%のMo及び0.5〜3゜0重量%のBのうちの
少なくとも一種と、1.5〜5.0重量%のCと、残部
のFeとからなる共晶合金粉末及びバインダー樹脂より
なる厚さ0゜1〜1.0mmの合金粉末シートを接着し
、しかる後、前記鋳鉄基材及び合金粉末シートの上面を
高エネルギービームにより再溶融してチル化する構成と
するものである。
Specifically, the solution taken by the present invention is that 0.5 to 3.0% by weight of P, 2.5 to 1
A eutectic alloy powder and a binder resin consisting of at least one of 5% by weight of Mo and 0.5 to 3.0% by weight of B, 1.5 to 5.0% by weight of C, and the balance Fe An alloy powder sheet with a thickness of 0.1 to 1.0 mm made of the following materials is bonded together, and then the upper surfaces of the cast iron base material and the alloy powder sheet are remelted and chilled using a high-energy beam. .

(作用) 前記の構成により、鋳鉄基材の上面及び側面上部に合金
粉末シートを接着した後、高エネルギービームで再溶融
するので、再溶融時に鋳鉄基材の上面の端部において液
相が垂れ落ちない。このため、鋳鉄基材の上面を機械加
工して耐摩性シール部材を得ると、耐摩性シール部材の
上面である摺動部には、硬化層が十分に形成されている
(Function) With the above configuration, after the alloy powder sheet is bonded to the upper surface and side surfaces of the cast iron base material, it is remelted with a high energy beam, so that the liquid phase drips at the edge of the upper surface of the cast iron base material during remelting. It doesn't fall. Therefore, when the wear-resistant seal member is obtained by machining the upper surface of the cast iron base material, a hardened layer is sufficiently formed on the sliding portion, which is the upper surface of the wear-resistant seal member.

また、鋳鉄基材に接着される合金粉末シートが前記の所
定の組成を有しているので、耐摩性シール部材の摺動部
に形成される硬化層は耐摩性に優れた高合金層であり、
また、合金粉末シートが前記の所定の厚さを有している
ので、再溶融時に適度の液相が得られ硬化層の高合金化
が促進される。
In addition, since the alloy powder sheet adhered to the cast iron base material has the above-mentioned predetermined composition, the hardened layer formed on the sliding part of the wear-resistant seal member is a high alloy layer with excellent wear resistance. ,
Further, since the alloy powder sheet has the above-mentioned predetermined thickness, an appropriate liquid phase is obtained during remelting, and high alloying of the hardened layer is promoted.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

まず、粉末粒径100メツシュ以下であって、0.5〜
3.0重量%のP、2.5〜15重量%のMo及び0,
5〜3.0重量%のBのうちの少なくとも一種と、1,
5〜5.0重量26のCと、残部のFeとからなるFe
−M−C系の共晶合金粉末94〜99重量%及び溶剤で
希釈したアクリル樹脂6〜1fflE1%とを混練した
後、ドクターブレード法によって厚さ0.1〜1.0m
mにシート化した合金粉末シートを4備する。
First, the powder particle size is 100 mesh or less, and 0.5 to
3.0 wt% P, 2.5-15 wt% Mo and 0,
5 to 3.0% by weight of at least one of B; 1,
Fe consisting of 5 to 5.0 weight 26 C and the balance Fe
- After kneading 94-99% by weight of M-C based eutectic alloy powder and 6-1fflE1% of acrylic resin diluted with a solvent, a thickness of 0.1-1.0 m is obtained by the doctor blade method.
Four alloy powder sheets formed into sheets are provided.

Fe−M−C系の共晶合金粉末に含有される元素の組成
を前記のように限定する理由は以下の通りである。
The reason why the composition of the elements contained in the Fe-MC-based eutectic alloy powder is limited as described above is as follows.

MがPの場合について説明すると、Fe−P−Cの三元
共晶合金において、PはFe、Cと結合してリン共晶を
形成し、耐摩耗性を向上させると共に融点を下げる元素
である。配合率については、0、 5重−%未満では液
相量が少なくなり合金化に寄与せず、また、3.0重量
%を超えると液相過多となって形状を保持し難くなるの
で、0. 5〜3.0重量%の範囲に設定する。
To explain the case where M is P, in the Fe-P-C ternary eutectic alloy, P is an element that combines with Fe and C to form a phosphorus eutectic, improving wear resistance and lowering the melting point. be. Regarding the blending ratio, if it is less than 0.5% by weight, the amount of liquid phase will be small and will not contribute to alloying, and if it exceeds 3.0% by weight, there will be too much liquid phase and it will be difficult to maintain the shape. 0. It is set in a range of 5 to 3.0% by weight.

MがMoの場合について説明すると、Fe−Mo−Cの
三元共晶において、Moは基地の強化及び硬質相の形成
に寄与し、特にFe、Cと結合して融点を下げる役割を
する元素である。配合率については、2.5重量%未満
では硬質tOが少なくなり、また、液相も少なくなるた
め合金化し難(、逆に15重量%を超えると液相が多く
なり過ぎるため脆くなって靭性を低下させるので、2.
5〜15重量%の範囲に設定する。
To explain the case where M is Mo, in the Fe-Mo-C ternary eutectic, Mo is an element that contributes to strengthening the matrix and forming a hard phase, and especially combines with Fe and C to lower the melting point. It is. Regarding the blending ratio, if it is less than 2.5% by weight, hard tO will be small and the liquid phase will also be small, making it difficult to form an alloy (on the contrary, if it exceeds 15% by weight, the liquid phase will be too large, resulting in brittleness and poor toughness. 2.
It is set in a range of 5 to 15% by weight.

MがBの場合について説明すると、Fe−B−Cの三元
共晶において、BはFe、Cと結合して硬質相を形成す
ると共に融点を下げる元素である。
To explain the case where M is B, in the Fe-B-C ternary eutectic, B is an element that combines with Fe and C to form a hard phase and lowers the melting point.

配合率については、0,5重量%未満では液相が少なく
なり耐摩耗性に寄与せず、また、3.0重量%を超える
と非常に脆くなって実用的でなくなるので、0,5〜3
.0重量%の範囲に設定する。
Regarding the blending ratio, if it is less than 0.5% by weight, the liquid phase will be too small and it will not contribute to wear resistance, and if it exceeds 3.0% by weight, it will become very brittle and will not be practical. 3
.. Set in the range of 0% by weight.

CはFe、P、Mo及びBと結合して基地の強化及び硬
質相の形成をすると共に、リン共晶、モリブデン共晶、
ボロン共晶を形成して合金化に役立つ元素である。配合
率については、1.5重量%未満では低融点品出物の生
成が少なくなり、また、5,0重量%を超えると晶出す
る液相が多くなり過ぎて形状が保持できないので、1.
5〜5゜0重量%の範囲に設定する。
C combines with Fe, P, Mo and B to strengthen the base and form a hard phase, and also forms phosphorus eutectic, molybdenum eutectic,
It is an element that forms a boron eutectic and is useful for alloying. Regarding the blending ratio, if it is less than 1.5% by weight, the formation of low melting point products will be reduced, and if it exceeds 5.0% by weight, there will be too much liquid phase to crystallize and the shape cannot be maintained. ..
It is set in the range of 5 to 5.0% by weight.

また、合金粉末シートの厚さについては、0゜1〜1.
0mmの範囲に設定することにより、再溶融に適度の液
相量が得られ、ビーム熱エネルギーによる凝固肌の粒状
化等が防止されて高合金化が促進されるので、前記の範
囲に設定する。
The thickness of the alloy powder sheet is 0°1~1.
By setting it in the range of 0 mm, an appropriate amount of liquid phase can be obtained for remelting, preventing granulation of the solidified skin due to beam thermal energy and promoting high alloying, so it is set in the above range. .

次に、前記の合金粉末シートを鋳鉄基材の上面及び側面
上部に接着した後、非酸化性雰囲気中における300℃
の温度下で5分間以上保持して脱ろうする。
Next, after adhering the alloy powder sheet to the top and side surfaces of the cast iron base material, the sheet was heated to 300°C in a non-oxidizing atmosphere.
Dewax by holding at a temperature of 5 minutes or more.

その後、鋳鉄基材及び合金粉末シートの上面をレーザー
、電子ビーム又はTrG等の高エネルギービームで再溶
融して、耐摩性シール部材の摺動部に十分な高合金より
なる硬化層を形成する。
Thereafter, the cast iron base material and the upper surface of the alloy powder sheet are remelted with a laser, an electron beam, or a high energy beam such as TrG to form a hardened layer made of a sufficiently high alloy on the sliding portion of the wear-resistant seal member.

以下、本発明の具体例及び比較例を第1図及び第2図に
基づいて悦明する。
Hereinafter, specific examples and comparative examples of the present invention will be explained based on FIGS. 1 and 2.

まず、具体例1の耐摩性シール部材は次のようにして得
た。
First, the wear-resistant seal member of Example 1 was obtained as follows.

すなわち、重量比でC:3.5%、S i : 2゜3
%、Mn:0.2%、P:0.09%、S:0゜01%
、Mg:0.031%、残部かFeよりなる組成の球状
黒鉛鋳鉄を、第1図(イ)及び(ロ)に示すような4m
mx9mmx95mmの直方体の鋳鉄基材1に加工した
That is, C: 3.5%, Si: 2°3 by weight
%, Mn: 0.2%, P: 0.09%, S: 0°01%
, Mg: 0.031%, the balance consisting of Fe.
A cast iron base material 1 having a rectangular parallelepiped size of m x 9 mm x 95 mm was processed.

次に、重量比でC:4.O%、P:2.3%、Mo:1
0%、残部がFeよりなる組成であって粉末粒度100
メツシユ以下の共晶合金粉末955重量と、アセトンで
希釈したアクリル樹脂5重量%とよりなる厚さ0.9m
mの合金粉末シート2を4mmX95mmの大きさに切
断したものを3枚準備した。
Next, the weight ratio is C:4. O%, P: 2.3%, Mo: 1
0%, the balance is Fe, and the powder particle size is 100.
A thickness of 0.9 m consisting of 955 weight of eutectic alloy powder of mesh size or less and 5 weight % of acrylic resin diluted with acetone.
Three sheets of alloy powder sheet 2 having a size of 4 mm x 95 mm were prepared.

次に、第1図(ロ)に示すように、この合金粉末シート
2を前記の鋳鉄基材1の上面及び側面の上部に30μm
の接着テープを介して接着した後、H2雰囲気中におけ
る300℃の温度下で60分間保持して脱ろうした。
Next, as shown in FIG.
After adhering through the adhesive tape, it was held at a temperature of 300° C. in an H2 atmosphere for 60 minutes to dewax.

次に、同じく第1図(ロ)に示すように、鋳鉄基材1及
び合金粉末シート2の上面を、レーザービーム3により
、出力3,5KW、加工速度02m/分、ビーム径5m
mの照射条件で再溶融して、第1図(ハ)に示すように
鋳鉄基材1の上面部に高合金化された硬化層4を得た後
、550℃の温度下で歪取り焼鈍を行なった。その結果
、この耐摩性摺動部材の断面硬さはHv762であった
。その後、鋳鉄基材1の上面部を機械加工して第1図(
ニ)に示すような耐摩性シール部材を得た。
Next, as shown in FIG. 1 (b), the upper surfaces of the cast iron base material 1 and the alloy powder sheet 2 are processed using a laser beam 3 at an output of 3.5 KW, a processing speed of 02 m/min, and a beam diameter of 5 m.
After remelting under the irradiation conditions of m to obtain a highly alloyed hardened layer 4 on the upper surface of the cast iron base material 1 as shown in FIG. I did it. As a result, the cross-sectional hardness of this wear-resistant sliding member was Hv762. Thereafter, the upper surface of the cast iron base material 1 is machined as shown in Fig. 1 (
A wear-resistant seal member as shown in (d) was obtained.

また、具体例2の耐摩性シール部材は次のようにして得
た。
Moreover, the wear-resistant seal member of Specific Example 2 was obtained as follows.

すなわち、重量比でC:3.6%、Si:2゜2%、M
n:0.35%、P:0.15%、S:0.03%、C
r:0.45%、Cu:0.97%、Mo:1.51%
、Ni:0.99%、Mg :0.009%、V:0.
15%、残部がFeよりなる組成の合金鋳鉄を、具体例
1と同様4mmX9mmX95mmの直方体の鋳鉄基材
1に加工した。
That is, in terms of weight ratio, C: 3.6%, Si: 2°2%, M
n: 0.35%, P: 0.15%, S: 0.03%, C
r: 0.45%, Cu: 0.97%, Mo: 1.51%
, Ni: 0.99%, Mg: 0.009%, V: 0.
An alloyed cast iron having a composition of 15% Fe and the balance Fe was processed into a rectangular parallelepiped cast iron base material 1 of 4 mm x 9 mm x 95 mm in the same manner as in Example 1.

次に、具体例1と同様の合金粉末シート2を準備し、こ
の合金粉末シート2を具体例1と同様に鋳鉄基材1の上
面及び側面の上部に接着した後、H2雰囲気中で脱ろう
し、しかる後、具体例1と同様に再溶融して高合金化し
、さらに、歪取り焼鈍を行なった。その結果、この耐摩
性シール部材の断面硬さはHv789であった。
Next, an alloy powder sheet 2 similar to that in Example 1 is prepared, and this alloy powder sheet 2 is adhered to the top and side surfaces of the cast iron base material 1 in the same manner as in Example 1, and then dewaxed in an H2 atmosphere. Thereafter, in the same manner as in Example 1, it was remelted to form a high alloy, and then subjected to strain relief annealing. As a result, the cross-sectional hardness of this wear-resistant seal member was Hv789.

また、比較例1の耐摩性シール部材は次のようにして得
た。
Moreover, the wear-resistant seal member of Comparative Example 1 was obtained as follows.

すなわち、重量比でC:3.5%、Si:2゜3%、M
ロ二0.4%、P:0,2%、S : O。
That is, in terms of weight ratio, C: 3.5%, Si: 2°3%, M
Roni 0.4%, P: 0.2%, S: O.

02%、Cr:0.5%、Cu:1.0%、MO=1.
5%、Ni:1.0%、Mg:0.01%、V:0.2
9g、残部がFeよりなる組成の合金鋳鉄を、具体例1
と同様に4mmX9mmX95mmの直方体の鋳鉄基材
に加工する。
02%, Cr: 0.5%, Cu: 1.0%, MO=1.
5%, Ni: 1.0%, Mg: 0.01%, V: 0.2
Specific example 1: 9g of alloy cast iron with a composition of
Similarly, a rectangular parallelepiped cast iron base material of 4 mm x 9 mm x 95 mm is processed.

次に、合金粉末シートを接着しないで、合金鋳鉄基材の
上面を電子ビームにより、ビーム電流55mA、送り速
度150mm/分、レンズ電流1.3Aの照射条件で再
溶融し、その後、550℃の温度下で歪取り焼鈍を行な
った。その結果、この耐摩性シール部材の断面硬さはH
v780であった。 さらに、比較例2の耐摩性シール
部材は次のようにして得た。
Next, without adhering the alloy powder sheet, the upper surface of the alloy cast iron base material was remelted using an electron beam under irradiation conditions of beam current 55 mA, feed rate 150 mm/min, and lens current 1.3 A, and then heated to 550°C. Strain relief annealing was performed at high temperature. As a result, the cross-sectional hardness of this wear-resistant seal member is H
It was v780. Furthermore, a wear-resistant seal member of Comparative Example 2 was obtained as follows.

すなわち、第2図(イ)及び(ロ)に示すように、具体
例1と同様の鋳鉄基材1及び合金粉末シート2を準備し
、鋳鉄基材1の上面に合金粉末シート2を接着した後、
具体例1と同様に脱ろうし、しかる後、具体例]と同様
にレーザービームで再溶融した。その結果、第2図(ハ
)に示すように、鋳鉄基材1の上面の端部に肩垂れが発
生した。その後、この鋳鉄基材1の上面部を機械加工し
て第2図(ニ)に示すような耐摩性シール部材を得たが
、前記のように肩垂れが発生したため、耐摩性シール部
材の摺動部に十分な硬化層が得られなかった。
That is, as shown in FIGS. 2(a) and 2(b), a cast iron base material 1 and an alloy powder sheet 2 similar to those in Example 1 were prepared, and the alloy powder sheet 2 was adhered to the upper surface of the cast iron base material 1. rear,
It was dewaxed in the same manner as in Example 1, and then remelted with a laser beam in the same manner as in Example 1. As a result, as shown in FIG. 2(c), shoulder sagging occurred at the end of the upper surface of the cast iron base material 1. Thereafter, the upper surface of the cast iron base material 1 was machined to obtain a wear-resistant seal member as shown in FIG. A sufficient hardened layer could not be obtained on the moving parts.

以下、本発明を評価するために行なったテストについて
説明する。
Tests conducted to evaluate the present invention will be described below.

このテストは、前記の具体例1.2及び比較例1の耐摩
性シール部材を摩耗テスト用のテストピースに加工し、
Crめっきをした相手材との間で乾式摩耗テストを行な
ったものであって、加重=5Kg、摺動速度:15m/
秒、テスト時間:10分間、潤滑条件ニドライのテスト
条件で行なった。
In this test, the wear-resistant seal members of Specific Example 1.2 and Comparative Example 1 were processed into test pieces for wear tests.
A dry abrasion test was conducted with a Cr-plated mating material, load = 5 kg, sliding speed: 15 m/
Test time: 10 minutes, lubricated conditions, dry test conditions.

その結果は、第1表に示すとおりであって、相手材の摩
耗量については大差は無いが、耐摩性シール部材の摩耗
量については具体例1及び2のものは、比較例1のもの
と比べて摩耗量が著しく少なかった。
The results are shown in Table 1, and although there is no significant difference in the amount of wear on the mating material, the amount of wear on the wear-resistant seal members in Specific Examples 1 and 2 is different from that in Comparative Example 1. The amount of wear was significantly less compared to the previous one.

(以下、余白) (発明の効果) 以上説明したように、本発明に係る耐摩性シール部材の
製造方法によると、鋳鉄基材の上面及び側面上部に合金
粉末シートを接着した後、高エネルギービームで再溶継
するため、再溶融時に鋳鉄基材の上面端部から液相が垂
れ落ちず、また、前記合金粉末シートが所定の組成及び
厚さを有しているため、シール部材の摺動部に耐摩性に
優れた高合金よりなる硬化層が十分に形成されるので、
耐摩性の向上したシール部材が確実に得られる。
(Hereinafter, blank space) (Effects of the invention) As explained above, according to the method for manufacturing a wear-resistant seal member according to the present invention, after adhering an alloy powder sheet to the upper surface and upper side surface of a cast iron base material, a high-energy beam Since the liquid phase is not dripped from the upper end of the cast iron base material during remelting, and since the alloy powder sheet has a predetermined composition and thickness, the sliding of the sealing member is prevented. Since a hardened layer made of a high alloy with excellent wear resistance is sufficiently formed in the
A sealing member with improved wear resistance can be reliably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)〜(ニ)は具体例1の耐摩性シール部材の
製造方法の工程を説明する図であって、(イ)は側面図
、(ロ)は斜視図、(ハ)及び(ニ)は断面図、第2図
(イ)〜(ニ)は比較例2の耐摩性シール部材の製造方
法の工程を示す図であって、(イ)は側面図、(ロ)は
斜視図、(ハ)及び(ニ)は断面図である。 1・・・鋳鉄基材、2・・合金粉末シート、3・・・レ
ーザービーム。
1 (a) to (d) are diagrams for explaining the steps of the manufacturing method of the wear-resistant seal member of specific example 1, in which (a) is a side view, (b) is a perspective view, (c) and (D) is a sectional view, and FIGS. 2(A) to 2(D) are views showing the steps of the manufacturing method of the wear-resistant seal member of Comparative Example 2, (A) is a side view, and (B) is a perspective view. Figures (C) and (D) are cross-sectional views. 1... Cast iron base material, 2... Alloy powder sheet, 3... Laser beam.

Claims (1)

【特許請求の範囲】[Claims] (1) 鋳鉄基材の上面及び側面上部に、0.5〜3.
0重量%のP、2.5〜15重量%のMo及び0.5〜
3.0重量%のBのうちの少なくとも一種と、1.5〜
5.0重量%のCと、残部のFeとからなる共晶合金粉
末及びバインダー樹脂よりなる厚さ0.1〜1.0mm
の合金粉末シートを接着し、しかる後、前記鋳鉄基材及
び合金粉末シートの上面を高エネルギービームにより再
溶融してチル化することを特徴とする耐摩性シール部材
の製造方法。
(1) 0.5 to 3.
0 wt.% P, 2.5-15 wt.% Mo and 0.5-15 wt.%
3.0% by weight of at least one of B, and 1.5~
A eutectic alloy powder consisting of 5.0% by weight of C and the balance of Fe and a binder resin with a thickness of 0.1 to 1.0 mm.
A method for producing a wear-resistant sealing member, which comprises adhering the alloy powder sheets, and then remelting and chilling the cast iron base material and the upper surface of the alloy powder sheet using a high-energy beam.
JP400289A 1989-01-10 1989-01-10 Production of wear resistant sealing member Pending JPH02185984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP400289A JPH02185984A (en) 1989-01-10 1989-01-10 Production of wear resistant sealing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP400289A JPH02185984A (en) 1989-01-10 1989-01-10 Production of wear resistant sealing member

Publications (1)

Publication Number Publication Date
JPH02185984A true JPH02185984A (en) 1990-07-20

Family

ID=11572789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP400289A Pending JPH02185984A (en) 1989-01-10 1989-01-10 Production of wear resistant sealing member

Country Status (1)

Country Link
JP (1) JPH02185984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266881B1 (en) * 1997-07-29 2000-10-02 이종훈 Process for surface-alloying on plated metal or alloy substkates, or for the surface-repairing of damaged(or failed) metal or alloy substrates by using a laser beam
CN110184600A (en) * 2019-06-20 2019-08-30 中北大学 The preparation method of titanium alloy surface low stress high-temperature oxidation resistant coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266881B1 (en) * 1997-07-29 2000-10-02 이종훈 Process for surface-alloying on plated metal or alloy substkates, or for the surface-repairing of damaged(or failed) metal or alloy substrates by using a laser beam
CN110184600A (en) * 2019-06-20 2019-08-30 中北大学 The preparation method of titanium alloy surface low stress high-temperature oxidation resistant coating

Similar Documents

Publication Publication Date Title
DE2637443C2 (en)
US4135922A (en) Metal article and powder alloy and method for producing metal article from aluminum base powder alloy containing silicon and manganese
DE2208070C2 (en) Composite body and process for its manufacture
CN114411067B (en) Medium-carbon hot work die steel material and additive manufacturing method based on same
US5911949A (en) Abrasion resistant copper alloy
IE47334B1 (en) Sintered metal articles and processes for their manufacture
US3552898A (en) Method of joining metal parts
CA2892986C (en) Imparting high-temperature wear resistance to turbine blade z-notches
JPH02185984A (en) Production of wear resistant sealing member
EP0090887B1 (en) Method of joining by diffusion high temperature materials
JPS5815529B2 (en) Setsusaku Kougu Oyobi Sonoseizouhou
EP0079773B1 (en) Method of forming strengthened assemblies of titanium-containing iron based alloys
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
US4820484A (en) Method in producing a molding of an iron alloy
JPH07179997A (en) High speed steel type powder alloy
JPH08325636A (en) Production of structural part equipped with element brazed to base material
JPS58144456A (en) Powder high speed tool steel
US4854978A (en) Manufacturing method for high hardness member
JP3894373B2 (en) High hardness and corrosion resistant steel for blades
JPH04124242A (en) Aluminum alloy excellent in wear resistance and its manufacture
JPS634905B2 (en)
JPH01104747A (en) High-hardness member
JPH03188281A (en) Production of high-alloy remelted camshaft
JPH01211603A (en) Manufacture of apex seal
JPH0521989B2 (en)