JPH02185966A - Method for generating sheet plasma current uniform in its crosswise direction - Google Patents

Method for generating sheet plasma current uniform in its crosswise direction

Info

Publication number
JPH02185966A
JPH02185966A JP379289A JP379289A JPH02185966A JP H02185966 A JPH02185966 A JP H02185966A JP 379289 A JP379289 A JP 379289A JP 379289 A JP379289 A JP 379289A JP H02185966 A JPH02185966 A JP H02185966A
Authority
JP
Japan
Prior art keywords
holes
hollow cathode
sheet plasma
plasma
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP379289A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Yasuhiro Kobayashi
康宏 小林
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP379289A priority Critical patent/JPH02185966A/en
Publication of JPH02185966A publication Critical patent/JPH02185966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a wide coating film uniform in its crosswise direction by providing the through holes of the hollow cathode of an HCD gun in parallel and specifying the flow rate of a plasma source gas to be led to the hole and/or the magnetic field for widening a sheet plasma current. CONSTITUTION:The hollow cathode 1 of the hollow cathode gun (HCD gun) is a rectangular plate, and plural through holes 2-1 to 2-7 extending in the short-side direction are formed in parallel in the long-side direction. A plasma source gas passes through each through hole, a current is energized, and the flow rate of the gas is independently controlled with respect to the holes 2-1 and 2-2, the holes 2-3, 2-4 and 2-5, and the holes 2-6 and 2-7 to generate the sheet plasma uniform in its crosswise direction. Alternatively, the sheet plasma is led to the gap between the magnets 6A and 6B opposed at a specified interval, the intensity of the magnetic field between the magnets 6A(B)-1 at the center and the magnets 6A(B)-2,3 at both ends is adjusted, and a sheet plasma 7 having a uniform electron density in its cross direction is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、HCD (Hollow Cathode
 Discharge)法にてイオンブレーティングを
行う際に用いるホローカソードガン(以下HCDガンと
いう)にて幅の広いプラズマ流、いわゆるシートプラズ
マ流を発生させる方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention is directed to HCD (Hollow Cathode)
The present invention relates to a method of generating a wide plasma flow, a so-called sheet plasma flow, in a hollow cathode gun (hereinafter referred to as an HCD gun) used when performing ion blating using the Discharge method.

プラズマを利用したイオンブレーティング法がTiN 
、 TiC、Tt(CN)等のセラミックコーティング
に適用されている。イオンブレーティング法としては、
HCD法、E B (Electron Beam) 
+ RF(Radio Frequency)法、マル
テイ・アーク法およびアーク放電法等の手法が実施され
ている。
Ion blating method using plasma is TiN
, TiC, Tt(CN), and other ceramic coatings. As for the ion brating method,
HCD method, EB (Electron Beam)
+ Techniques such as the RF (Radio Frequency) method, the Marutei arc method, and the arc discharge method have been implemented.

これらの手法の中でHCD法はイオン化率が20〜60
%と高く、また成膜速度も0.05〜0.5 tt m
/winと比較的速いため、TiN 5Tic 5Ti
(CN)あるいはCrNなとのセラミックコーティング
に広く利用されている。特にHCD法はN2ガス流量、
真空度、バイアス電圧、基板温度、基板の前処理などの
要件が少々変化しても容易かつスムーズにセラミックコ
ーティングを行うことができる利点がある。
Among these methods, the HCD method has an ionization rate of 20 to 60
%, and the film formation rate is 0.05 to 0.5 tt m
/win is relatively fast, so TiN 5Tic 5Ti
It is widely used for ceramic coatings such as (CN) or CrN. In particular, in the HCD method, the N2 gas flow rate,
It has the advantage that ceramic coating can be easily and smoothly performed even if the requirements such as degree of vacuum, bias voltage, substrate temperature, and substrate pretreatment change slightly.

HCD法イオンブレーティングに関しては、例えば金属
表面技術、35 (1) P、16〜24 (1984
)、粉末および粉末冶金32 (1985) P、55
〜60に開示がある。
Regarding HCD method ion blating, for example, Metal Surface Technology, 35 (1) P, 16-24 (1984
), Powder and Powder Metallurgy 32 (1985) P, 55
There is a disclosure in ~60.

(従来の技術) ところで現行のHCDガンはTa製の円筒からなる中空
陰極を用いており、サブストレイト上の蒸着領域は円形
状になるため、被蒸着面が広い広幅鋼板などにコーティ
ングを施すには板幅方向にHCDガンを移動させなくて
はならず、板幅方向に均一な被膜を得ることが難しい。
(Prior art) By the way, current HCD guns use a hollow cathode made of Ta cylinder, and the deposition area on the substrate is circular, so it is difficult to coat a wide surface to be deposited, such as a wide steel plate. In this case, the HCD gun must be moved in the width direction of the board, making it difficult to obtain a uniform coating in the width direction of the board.

幅の広い大面積のサブストレイト上へのコーティング処
理について、特開昭63−57767号、同63−50
463号および同63−50473号各広報には、複数
のるつぼに磁界を作用させ、圧力勾配型のプラズマガン
にて発生させたプラズマを複数のるつぼに分岐収束させ
て蒸着する方法が開示されている。
JP-A-63-57767 and JP-A-63-50 regarding coating treatment on wide and large-area substrates.
Publications No. 463 and No. 63-50473 disclose a method for vapor deposition by applying a magnetic field to multiple crucibles and branching and converging plasma generated by a pressure gradient type plasma gun to multiple crucibles. There is.

しかしながらいずれの方法も複数のガンおよびるつぼが
それぞれ独立に存在するため、各るつぼからの蒸気流を
同一雰囲気にすることは難しく、かつ複数のガンをそな
えるため高価な装置となることから、実際に適用するに
は多くの問題が残されている。
However, in both methods, multiple guns and crucibles exist independently, so it is difficult to create the same atmosphere for the vapor flow from each crucible, and the equipment required is expensive due to the multiple guns, so it is difficult to achieve this in practice. Many problems remain before its application.

(発明が解決しようとする課題) そこでこの発明は、幅の広い大面積のサブストレイト上
での均一なコーティング処理を実現するのに最適なシー
トプラズマ流の有利な発生方法について提案することを
目的とする。
(Problems to be Solved by the Invention) Therefore, the purpose of this invention is to propose an advantageous method for generating a sheet plasma flow that is optimal for achieving uniform coating treatment on a wide, large-area substrate. shall be.

(課題を解決するための手段) すなわちこの発明は、 長方形の板状体に、短辺方向に延びるプラズマ発生用の
貫通孔を、長辺方向へ並列に設けた中空陰極をそなえる
ホローカソードガンを用いて、該貫通孔にプラズマソー
スガスを流しながら通電することによってシートプラズ
マ流を発生させるに当たり、貫通孔列の中央部とその両
端部とで異なる流量のプラズマソースガスを各貫通孔に
導くことを特徴とする幅方向に均一なシートプラズマ流
の発生方法(第1発明)および、 長方形の板状体に、短辺方向に延びるプラズマ発生用の
貫通孔を、長辺方向へ並列に設けた中空陰極をそなえる
ホローカソードガンにて発生させたシートプラズマ流の
幅を磁場によって拡げるに当たり、ホローカソードガン
出側のシートプラズマ流の幅中央部とその両端部とに分
割した磁場を、相異なる強さで作用させることを特徴と
する幅方向に均一なシートプラズマ流の発生方法(第2
発明)である。
(Means for Solving the Problems) That is, the present invention provides a hollow cathode gun having a hollow cathode in which a rectangular plate-like body is provided with through holes for plasma generation extending in the direction of the short side and parallel to each other in the direction of the long side. When generating a sheet plasma flow by applying electricity while flowing a plasma source gas through the through-holes, plasma source gases having different flow rates at the center and both ends of the through-hole row are introduced into each through-hole. A method for generating a sheet plasma flow uniform in the width direction (first invention) characterized by In order to widen the width of the sheet plasma flow generated by a hollow cathode gun equipped with a hollow cathode using a magnetic field, the magnetic field divided into the central part of the width of the sheet plasma flow on the exit side of the hollow cathode gun and its opposite ends is divided into different strengths. Method for generating a sheet plasma flow uniform in the width direction (Second method)
invention).

さて第1図に、この発明に用いて好適なHCDガンの中
空陰極を示す。中空陰極1は長方形の板状体に、その短
辺方向に延びる貫通孔2−1〜2−7を長辺方向へ、複
数、並列に形成したものである。また中空陰極1の材質
は一般に用いられているTaでもよいが、高融点のW又
はLaB6が有利に適合する。とくにLaB、は、初期
加熱が容易なこと、放電特性が良好であること、150
0°C以上の高温に耐えることおよび焼結処理にて複雑
な成形が実現できること等の利点がある。さらに中空陰
極の低温部がTa製に、高温部がWあるいはLaB6製
になる複合材としてもよい。
Now, FIG. 1 shows a hollow cathode of an HCD gun suitable for use in the present invention. The hollow cathode 1 is a rectangular plate-like body in which a plurality of through holes 2-1 to 2-7 extending in the short side direction are formed in parallel in the long side direction. The material of the hollow cathode 1 may be Ta, which is commonly used, but W or LaB6, which have a high melting point, are advantageously suitable. In particular, LaB is characterized by easy initial heating, good discharge characteristics, and 150
It has advantages such as being able to withstand high temperatures of 0°C or higher and being able to form complex shapes through sintering. Furthermore, a composite material may be used in which the low temperature part of the hollow cathode is made of Ta and the high temperature part is made of W or LaB6.

上記した中空陰極をそなえるHCDガンにてプラズマ流
を発生させるには、各貫通孔内にプラズマソースガス、
例えばAr、 Heまたはそれらの混合ガスを流しなが
ら通電する。各貫通孔にて発生したプラズマ流は貫通孔
の出側で全体としてシート状のプラズマ流になるが、中
空陰極における位置によって、例えば長辺方向の中央部
とその両端部との温度に差があるとシートプラズマ流の
中央部とその両端部との間にも電子密度の差異が生じる
ため、プラズマ流の均一化を図らなくてはならない。
In order to generate a plasma flow in the HCD gun equipped with the above-mentioned hollow cathode, a plasma source gas,
For example, electricity is applied while flowing Ar, He, or a mixed gas thereof. The plasma flow generated in each through-hole becomes a sheet-like plasma flow as a whole on the exit side of the through-hole, but depending on the position on the hollow cathode, for example, there is a difference in temperature between the central part in the long side direction and the both ends thereof. If this happens, there will be a difference in electron density between the center of the sheet plasma flow and both ends thereof, so it is necessary to make the plasma flow uniform.

そこで貫通孔に導くプラズマソースガスの流量を、貫通
孔2−1.2と2−3.4.5と2−6.7とで、それ
ぞれ独立に制御することによって幅方向にわたって均一
なシートプラズマ流とする。
Therefore, by independently controlling the flow rate of the plasma source gas introduced into the through holes in the through holes 2-1.2, 2-3, 4.5, and 2-6.7, uniform sheet plasma can be generated across the width. Flow.

なお上記したプラズマソースガスの流量制御は、例えば
マスフローコントローラーを用いて行う。
Note that the above-described flow rate control of the plasma source gas is performed using, for example, a mass flow controller.

マスフローコントローラーは、従来から常用されている
流量計と異なり、管内の流量を電気的に制御することを
基本としているので、わずかなガス量の制御でも正確に
行うことが出来る。
Unlike conventional flowmeters, mass flow controllers are based on electrically controlling the flow rate in pipes, so they can accurately control even small amounts of gas.

次に第2発明に使用するHCDガンをそなえたイオンブ
レーティング装置について、第2図に示す。
Next, FIG. 2 shows an ion brating device equipped with an HCD gun used in the second invention.

図中3は第1図に示した中空陰極をそなえるHCDガン
、4は第1電極、5は第2電極、6は磁石、7はHCD
ガンからのシートプラズマ流、8は例えばTiなどの蒸
発源、9はるつぼ、10は磁石、11は蒸発物質の経路
となる集束コイル、12は計などの反応ガスの導入管、
13はサブストレイトとなる銅帯、14は巻き戻しリー
ル、15は巻き取りリール、16は排気口、そして17
は真空槽である。
In the figure, 3 is an HCD gun equipped with the hollow cathode shown in Figure 1, 4 is a first electrode, 5 is a second electrode, 6 is a magnet, and 7 is an HCD gun.
Sheet plasma flow from the gun, 8 is an evaporation source such as Ti, 9 is a crucible, 10 is a magnet, 11 is a focusing coil that serves as a path for the evaporated substance, 12 is a reaction gas introduction tube such as a meter,
13 is a copper strip serving as a substrate, 14 is a rewinding reel, 15 is a take-up reel, 16 is an exhaust port, and 17
is a vacuum chamber.

このイオンブレーティング装置において、低電圧、大電
流の条件下にてHCDガン3から発生させたプラズマビ
ーム7は、第3図に示すように、磁石6による磁場(以
下刃ブス磁場という)にてさらに幅広のシートプラズマ
流とする。ついでこのシートプラズマ流を、磁石10に
よって真空槽17内のるつぼ9へと導き、蒸発源8の溶
解およびイオン化をはかる。イオン化した蒸発物質は集
束コイル11内の高プラズマ雰囲気中を通って反応ガス
と反応し、鋼帯13上に蒸着される。
In this ion brating device, the plasma beam 7 generated from the HCD gun 3 under the conditions of low voltage and large current is generated by the magnetic field (hereinafter referred to as the blade bus magnetic field) generated by the magnet 6, as shown in FIG. A wider sheet plasma flow is created. This sheet plasma flow is then guided by a magnet 10 to a crucible 9 in a vacuum chamber 17 to melt and ionize the evaporation source 8. The ionized evaporated material passes through the high plasma atmosphere within the focusing coil 11, reacts with the reactant gas, and is deposited on the steel strip 13.

ここでシートプラズマ流の幅をより広げる磁石6は、磁
石6Aと6Bとを所定の間隔を置いて対向配置したもの
で、この間隙にシートプラズマ流を導いてより幅広のプ
ラズマ流とする。さらに磁石6八および6Bは幅方向に
3分割され、すなわち中央部に磁石6A−1および6B
−1、そして両端部に磁石6A−2,3および6B−2
,3をそれぞれ配してなり、磁石6A−1および6B−
1、同6A−2および6B=2、同6A−3および6B
−3の間の磁場強さを調整して幅方向に電子密度の均一
なシートプラズマ流とする。具体的には磁石と電磁石と
を組合わせることによって達成できる。
Here, the magnet 6 that further widens the width of the sheet plasma flow is composed of magnets 6A and 6B that are arranged facing each other at a predetermined interval, and guides the sheet plasma flow into this gap to make the sheet plasma flow wider. Further, the magnets 68 and 6B are divided into three parts in the width direction, that is, the magnets 6A-1 and 6B are placed in the center.
-1, and magnets 6A-2, 3 and 6B-2 at both ends.
, 3 respectively, and magnets 6A-1 and 6B-
1, 6A-2 and 6B = 2, 6A-3 and 6B
-3 by adjusting the magnetic field strength to produce a sheet plasma flow with uniform electron density in the width direction. Specifically, this can be achieved by combining a magnet and an electromagnet.

上記の操作によって、幅方向にわたって均一なシートプ
ラズマ流をるつぼ9へ向けて照射でき、したがって幅方
向に広いサブストレイトであっても幅方向に均一な蒸着
被膜を被成することが可能になる。
By the above operation, it is possible to irradiate the crucible 9 with a sheet plasma flow that is uniform in the width direction, and therefore it is possible to form a uniform vapor deposition film in the width direction even on a substrate that is wide in the width direction.

なお磁石6Aおよび6Bは通常永久磁石を用いるが、こ
の発明のように幅方向にわたって磁場の強さを制御する
場合には電磁石を適用することが、高精度制御の上で望
ましい。
Although permanent magnets are normally used for the magnets 6A and 6B, when controlling the strength of the magnetic field across the width direction as in the present invention, it is desirable to use electromagnets for high precision control.

(作°用) この発明は、プラズマの発生部となる貫通孔が複数、並
列しているHCDガンを用いることによって貫通孔から
放出されるプラズマビームの束を幅方向に拡げかつ各貫
通孔内に導(Ar、He等のガス量を調整して幅方向に
わたって電子密度の均一なシートプラズマ流の発生を実
現している。
(Function) This invention uses an HCD gun in which a plurality of through holes, which serve as plasma generation areas, are arranged in parallel to spread a bundle of plasma beams emitted from the through holes in the width direction and By adjusting the amount of gases such as Ar and He, it is possible to generate a sheet plasma flow with uniform electron density across the width.

また上記のHCDガンにて発生させたシートプラズマ流
をカブス磁場によってさらに幅広にすることが可能で、
この場合に各貫通孔内に導くガス量の調整を併用するこ
とが有利である。
In addition, the sheet plasma flow generated by the above HCD gun can be made wider by the Cubs magnetic field.
In this case, it is advantageous to simultaneously adjust the amount of gas introduced into each through hole.

以上のように発生させたシートプラズマ流をイオンブレ
ーティング処理に適用することによって、幅方向に長い
蒸着源に対応したビームスポットが得られ、よって茶着
流は幅方向に長くなって幅方向における均一蒸着が可能
となる。
By applying the sheet plasma flow generated as described above to the ion blating process, a beam spot corresponding to the evaporation source that is long in the width direction can be obtained. Uniform vapor deposition becomes possible.

なおこの磁場によるプラズマ流形状の幅広化を従来の円
筒状の中空陰極からのプラズマビームに適用すると、ビ
ーム強度は低下し薄着速度が遅くなる不利をまねく。し
たがって磁場によるプラズマビーム形状の最適化は、こ
の発明に従うHCDガンの適用によって初めて実現され
得るものとなる。
If this widening of the plasma flow shape by the magnetic field is applied to a conventional plasma beam from a cylindrical hollow cathode, the beam intensity will be reduced and the deposition speed will be slow. Therefore, optimization of the plasma beam shape by a magnetic field can be realized for the first time by applying the HCD gun according to the present invention.

(実施例) C: 0.031 wt%、Cr:18.7 wt%、
Mn:0.01 wt%、P : 0.013 wt%
およびS : 0.011 wt%を含有するステンレ
ス銅板(厚さ: 0.25mm、幅:500mn+)の
表面に、第2・図に示したイオンブレーティング装置を
用いて、TiN膜を1.5 mm厚で被成するに当たり
、中空陰極の各貫通孔に導入した計ガス流量を下表のよ
うに調整し、また第3図に示したカブス磁場の調整も下
表のように行った。
(Example) C: 0.031 wt%, Cr: 18.7 wt%,
Mn: 0.01 wt%, P: 0.013 wt%
and S: 0.011 wt% on the surface of a stainless steel copper plate (thickness: 0.25 mm, width: 500 mm+) using the ion blating apparatus shown in Figure 2. When depositing the film with a thickness of mm, the flow rate of the gas introduced into each through hole of the hollow cathode was adjusted as shown in the table below, and the Cubs magnetic field shown in FIG. 3 was also adjusted as shown in the table below.

さらに比較として、Arガス流量やカプス磁場を調整し
ないでのイオンブレーティング処理も行った。
Furthermore, as a comparison, ion blating processing was also performed without adjusting the Ar gas flow rate or the Caps magnetic field.

かくして得られた製品の被膜の色調、均一性および密着
性について調べた結果を、下表に併記する。
The results of examining the color tone, uniformity, and adhesion of the film of the thus obtained product are also listed in the table below.

上表から明らかなように、この発明に従って得られたシ
ートプラズマ流を用いたイオンブレーティング処理によ
る被膜は、色調および膜厚ともに均一で、また密着性も
良好であった。
As is clear from the above table, the coating obtained by the ion blating treatment using the sheet plasma flow obtained according to the present invention was uniform in both color tone and film thickness, and had good adhesion.

(発明の効果) この発明に従って得られたシートプラズマ流をイオンブ
レーティング処理に用いれば、幅方向に均一な被膜をと
くにサブストレイトが広幅の場合であっても形成するこ
とができ、したがってサブストレイトの幅に影響されな
い被膜処理を実現し得る。
(Effects of the Invention) If the sheet plasma flow obtained according to the present invention is used for ion blating treatment, it is possible to form a uniform coating in the width direction, especially when the substrate is wide. It is possible to realize coating treatment that is not affected by the width of the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に用いるHCDガンを示す斜視図、 第2図はこの発明の実施に好適なイオンブレーティング
装置を示す模式図、 第3図はシートプラズマ流のカプス磁場による広幅化を
説明する斜視図である。 1・・・中空陰極 2−1〜2−7・・・貫通孔 3・・・HCDガン     4・・・第1電極5・・
・第2電極 6.6A−1〜6A−3,6B−1〜6B−3・・・磁
石7・・・シートプラズマ流  8・・・蒸発源9・・
・るつぼ       10・・・磁石11・・・集束
コイル     12・・・導入管13・・・鋼帯  
      14・・・巻き戻しリール15・・・巻き
取りリール   16  排気口17・・・真空槽
Fig. 1 is a perspective view showing the HCD gun used in this invention, Fig. 2 is a schematic diagram showing an ion brating device suitable for carrying out this invention, and Fig. 3 explains how the width of a sheet plasma flow is widened by a caps magnetic field. FIG. 1... Hollow cathode 2-1 to 2-7... Through hole 3... HCD gun 4... First electrode 5...
・Second electrode 6.6A-1 to 6A-3, 6B-1 to 6B-3...Magnet 7...Sheet plasma flow 8...Evaporation source 9...
・Crucible 10...Magnet 11...Focusing coil 12...Introduction tube 13...Steel strip
14... Rewinding reel 15... Take-up reel 16 Exhaust port 17... Vacuum chamber

Claims (1)

【特許請求の範囲】 1、長方形の板状体に、短辺方向に延びるプラズマ発生
用の貫通孔を、長辺方向へ並列に設けた中空陰極をそな
えるホローカソードガンを用いて、該貫通孔にプラズマ
ソースガスを流しながら通電することによってシートプ
ラズマ流を発生させるに当たり、 貫通孔列の中央部とその両端部とで異なる流量のプラズ
マソースガスを各貫通孔に導くことを特徴とする幅方向
に均一なシートプラズマ流の発生方法。 2、長方形の板状体に、短辺方向に延びるプラズマ発生
用の貫通孔を、長辺方向へ並列に設けた中空陰極をそな
えるホローカソードガンにて発生させたシートプラズマ
流の幅を磁場によって拡げるに当たり、 ホローカソードガン出側のシートプラズマ流の幅中央部
とその両端部とに分割した磁場を、相異なる強さで作用
させることを特徴とする幅方向に均一なシートプラズマ
流の発生方法。
[Claims] 1. Using a hollow cathode gun, which is equipped with a hollow cathode in which through holes for plasma generation extending in the short side direction are provided in parallel in the long side direction in a rectangular plate-like body, the through holes are When generating a sheet plasma flow by applying electricity while flowing a plasma source gas through the through holes, plasma source gas having different flow rates at the center and both ends of the through hole array is guided to each through hole in the width direction. How to generate a uniform sheet plasma flow. 2. The width of the sheet plasma flow generated by a hollow cathode gun, which has a rectangular plate with a hollow cathode in which through-holes for plasma generation extending in the short side direction are provided in parallel in the long side direction, is determined by a magnetic field. A method for generating a sheet plasma flow that is uniform in the width direction, which is characterized by applying magnetic fields with different strengths to the central part of the width of the sheet plasma flow on the outlet side of a hollow cathode gun and the opposite ends of the sheet plasma flow when expanding. .
JP379289A 1989-01-12 1989-01-12 Method for generating sheet plasma current uniform in its crosswise direction Pending JPH02185966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP379289A JPH02185966A (en) 1989-01-12 1989-01-12 Method for generating sheet plasma current uniform in its crosswise direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379289A JPH02185966A (en) 1989-01-12 1989-01-12 Method for generating sheet plasma current uniform in its crosswise direction

Publications (1)

Publication Number Publication Date
JPH02185966A true JPH02185966A (en) 1990-07-20

Family

ID=11567038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379289A Pending JPH02185966A (en) 1989-01-12 1989-01-12 Method for generating sheet plasma current uniform in its crosswise direction

Country Status (1)

Country Link
JP (1) JPH02185966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224673A (en) * 1990-12-26 1992-08-13 Sumitomo Heavy Ind Ltd Ion-plating device
JPH04268073A (en) * 1991-02-21 1992-09-24 Chugai Ro Co Ltd Plasma generator by pressure gradient type plasma gun
WO2007049454A1 (en) * 2005-10-25 2007-05-03 Canon Anelva Corporation Sheet-like plasma generator, and film deposition method and equipment employing such sheet-like plasma generator
WO2008136130A1 (en) * 2007-04-24 2008-11-13 Canon Anelva Corporation Plasma generation device, and method and apparatus for forming film using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224673A (en) * 1990-12-26 1992-08-13 Sumitomo Heavy Ind Ltd Ion-plating device
JPH04268073A (en) * 1991-02-21 1992-09-24 Chugai Ro Co Ltd Plasma generator by pressure gradient type plasma gun
WO2007049454A1 (en) * 2005-10-25 2007-05-03 Canon Anelva Corporation Sheet-like plasma generator, and film deposition method and equipment employing such sheet-like plasma generator
JP2007119804A (en) * 2005-10-25 2007-05-17 Canon Anelva Corp Sheet-like plasma generator, and film deposition apparatus
JP4728089B2 (en) * 2005-10-25 2011-07-20 キヤノンアネルバ株式会社 Sheet plasma generator and film forming apparatus
WO2008136130A1 (en) * 2007-04-24 2008-11-13 Canon Anelva Corporation Plasma generation device, and method and apparatus for forming film using the same

Similar Documents

Publication Publication Date Title
CA1321772C (en) Apparatus for the application of thin layers to a substrate by means of cathode sputtering
US4919968A (en) Method and apparatus for vacuum vapor deposition
US5000834A (en) Facing targets sputtering device
US5215638A (en) Rotating magnetron cathode and method for the use thereof
JPH02185966A (en) Method for generating sheet plasma current uniform in its crosswise direction
KR20080049135A (en) Sheet-like plasma generator, and film deposition method and equipment employing such sheet-like plasma generator
US20100003423A1 (en) Plasma generating apparatus and film forming apparatus using plasma generating apparatus
JP2021528815A (en) Single beam plasma source
US4911784A (en) Method and apparatus for etching substrates with a magnetic-field supported low-pressure discharge
JP3903509B2 (en) Sputtering equipment
US6302056B1 (en) Device for coating substrates with a material vapor in negative pressure or vacuum
JPH02133569A (en) Hollow cathode gun for ion plating
JP3399570B2 (en) Continuous vacuum deposition equipment
JPS60251269A (en) Method and apparatus for ionic plating
JPS6233764A (en) Sputtering device
KR20010021341A (en) Arc type ion plating apparatus
JPS58199862A (en) Magnetron type sputtering device
JPH06340967A (en) Vapor deposition device
RU111138U1 (en) CATHODE-SPRAY ASSEMBLY OF MAGNETRON (OPTIONS)
JP2898652B2 (en) Evaporator for ion plating
JPH04268073A (en) Plasma generator by pressure gradient type plasma gun
JPH0368764A (en) Plasma treating device for forming thin film
JPH0470392B2 (en)
JPH0688222A (en) Sputter ion plating device
JPH04254583A (en) Film quality controller in ion plating device