JPH02185070A - Photodetector and manufacture thereof - Google Patents

Photodetector and manufacture thereof

Info

Publication number
JPH02185070A
JPH02185070A JP1005243A JP524389A JPH02185070A JP H02185070 A JPH02185070 A JP H02185070A JP 1005243 A JP1005243 A JP 1005243A JP 524389 A JP524389 A JP 524389A JP H02185070 A JPH02185070 A JP H02185070A
Authority
JP
Japan
Prior art keywords
light
refractive index
substrate
light receiving
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1005243A
Other languages
Japanese (ja)
Other versions
JP2650389B2 (en
Inventor
Nobuyuki Otsuka
信之 大塚
Kenichi Matsuda
賢一 松田
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1005243A priority Critical patent/JP2650389B2/en
Publication of JPH02185070A publication Critical patent/JPH02185070A/en
Application granted granted Critical
Publication of JP2650389B2 publication Critical patent/JP2650389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photodetector having a high speed operation and a wide photodetection area by condensing an optical signal to the photodetecting area through condenser lens formed by laminating insulating films whose refractive indices are sequentially varied in a recess formed on the rear of a substrate. CONSTITUTION:A condenser lens is not formed on a part directly above a photodetection region, but so formed as to surround the upper part directly above the photodetecting region. An SiO2 film is, for example, so deposited initially on the side face of a recess as to enhance its refractive index toward the center of its lens, X of Si3N4XO6(1-X) is sequentially increased to form an Si3N4 film at the center. The relationship between the refractive index and a composition X satisfies a linear relation and its composition is so varied that a square distribution is provided with respect to the thickness of an insulating film in the refractive index to obtain a distributed refractive index type condenser lens. The composition X of the Si3N4XO6(1-X) is controlled easily by altering the flowrate ratio of N2O to NH3 of SiH4, N2O, NH3 of doping gases. Thus, coupling with a fiber is facilitated, the photodetecting region can be reduced, and a high speed photodetector can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集光レンズを内蔵した受光素子の構造及びその
製造方法に関するものであり、光信号を凹型の集光レン
ズにより集光することによりファイバーとの結合が容易
でかつ受光領域を小さくでき高速動作の可能な受光素子
として応用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a light receiving element with a built-in condensing lens and its manufacturing method. can be easily combined and the light-receiving area can be made small, so it can be applied as a light-receiving element capable of high-speed operation.

従来の技術 受光素子と集光レンズを同一チップ内に集積化している
受光装置は、例えば基板裏面にイオンビームエツチング
法によりマイクロレンズを作成するものとして第4図に
示すものがある。(熊井次男他 昭和62年秋期応物予
稿 18a−ZK−6)n”−1nP基板ll上にn−
−1nPFj12、i −1nGaAsFj 13、お
よびi −1nGaAs N l 3上の一部にp”−
InPFi15が積層されており、受光領域16となっ
ている。また1−1nGaAs層13上の一部には、n
−1nP層14も積層されており、n−1nP層14上
にはn側電極17としてAuGeが、p”−1nPFj
15上にはp側電極18としてAuZnが蒸着されてい
る。基板11裏面にイオンビームエチング法によりマイ
クロレンズ18が形成されている。すなわち、光ファイ
バーから出射した光は、マイクロレンズ18により集光
され、受光領域内で焦点を結ぶ。その結果光信号に対応
した電気信号をn側電極17と、p側電極18より得る
ことができる。
2. Description of the Related Art An example of a light receiving device in which a light receiving element and a condensing lens are integrated in the same chip is shown in FIG. 4, in which a microlens is formed on the back surface of a substrate by ion beam etching. (Tsuo Kumai et al. 1986 Autumn Biological Materials Proceedings 18a-ZK-6)
-1nPFj12, i-1nGaAsFj 13, and part of i-1nGaAs Nl3 have p”-
InPFi 15 is laminated to form a light receiving area 16. In addition, a part of the 1-1nGaAs layer 13 has n
A -1nP layer 14 is also laminated, and AuGe is formed as an n-side electrode 17 on the n-1nP layer 14, and p''-1nPFj
AuZn is deposited on the p-side electrode 15 as a p-side electrode 18 . Microlenses 18 are formed on the back surface of the substrate 11 by ion beam etching. That is, the light emitted from the optical fiber is collected by the microlens 18 and focused within the light receiving area. As a result, an electrical signal corresponding to the optical signal can be obtained from the n-side electrode 17 and the p-side electrode 18.

また、屈折率を順次変化させることで集光効果を持つも
のとして肉付CVD法をはじめ外付CVD法、VAD法
などにより作成した分布屈折率型光ファイバーが知られ
ている。ここでは特に光CVD法と同様に、囲まれた空
間にガスを流すことで絶縁膜、の堆積を行なうものとし
て肉付CVD法を第5図に示す。(内田長志他 光デバ
イス技術入門 9.39)肉付CVD法とは高純度の石
英管21中に光ファイバーの主材料であるSiのハロゲ
ン化物5iC1n22.  ドープ剤のハロゲン化物G
 e Cl m 23 、その他24 (POC13,
8c 13)などをガス状にして送り込み、石英管21
を回転させながら外部から約1500℃にバーナー25
などによって加熱して化学反応を起こさせ、原材料の石
英管への送出量制御によって屈折率の異なる石英ガラス
を管内に堆積させた後、その石英管を押しつぶすことで
半径方向に屈折率の異なる光ファイバーを得る方法であ
る。このようにして得られた分布屈折率形の光ファイバ
ー またはこの光ファイバーを短く切り出した分布屈折
率形のレンズ単体として集光効果を示すものがある。
Furthermore, distributed index optical fibers are known that have a light condensing effect by sequentially changing the refractive index, and are made by a thick CVD method, an external CVD method, a VAD method, or the like. In particular, FIG. 5 shows a thickening CVD method in which an insulating film is deposited by flowing gas into an enclosed space, similar to the photo-CVD method. (Nagashi Uchida et al. Introduction to Optical Device Technology 9.39) What is the fleshed CVD method? Si halide 5iC1n22, which is the main material of the optical fiber, is placed in a high-purity quartz tube 21. Doping agent halide G
e Cl m 23, other 24 (POC13,
8c 13) etc. in a gaseous state and send it into the quartz tube 21.
While rotating the burner 25, heat it to approximately 1500℃ from the outside.
By heating the raw material to cause a chemical reaction, controlling the amount of raw material delivered to the quartz tube, and depositing silica glass with different refractive indexes inside the tube, the quartz tube is then crushed to create optical fibers with different refractive indexes in the radial direction. This is the way to obtain. The thus obtained distributed index optical fiber or a single distributed index lens obtained by cutting this optical fiber into a short length can exhibit a light focusing effect.

発明が解決しようとする課題 集光レンズを集積化した受光素子はすでに報告されてい
る。しかしながら、第4図に示す受光素子は、集光レン
ズとして凸レンズを用いているために集光レンズと光フ
ァイバーが接した場合光ファイバーのコア部を偏つける
可能性がある。このように凸レンズを用いているため光
ファイバーとの光軸合わせなど実装が難しいという問題
がある。
Problems to be Solved by the Invention Light-receiving elements with integrated condensing lenses have already been reported. However, since the light-receiving element shown in FIG. 4 uses a convex lens as a condensing lens, there is a possibility that the core portion of the optical fiber may be biased when the condensing lens and the optical fiber come into contact with each other. Since a convex lens is used in this way, there is a problem in that it is difficult to implement such things as aligning the optical axis with the optical fiber.

本発明は、このような従来の問題を解決するものである
。すまわち光ファイバーからの光が集光レンズのいずれ
の位置に入射した場合でも受光領域内に集光可能なもの
であり、かつ集光レンズを凹型としたため、絶縁膜表面
は平面になっており光ファイバーを密着することができ
る。また終端を球状に加工した光ファイバーを用いた場
合その先端の一部を凹部に挿入することも可能であり光
軸合わせが非常に容易になる。
The present invention solves these conventional problems. In other words, the light from the optical fiber can be focused within the light-receiving area no matter where the light enters the condenser lens, and since the condenser lens is concave, the surface of the insulating film is flat. Optical fibers can be attached closely. Furthermore, when an optical fiber whose terminal end is processed into a spherical shape is used, it is also possible to insert a portion of the tip into the recess, which greatly facilitates alignment of the optical axis.

また、分布屈折率型の集光効果を示すレンズとしては、
光ファイバーを初めとして従来より多くの報告がある。
In addition, as a lens that exhibits a distributed refractive index type light focusing effect,
There have been many reports in the past, including optical fibers.

しかしながら、第5図に示したような分布屈折率型光フ
ァイバーは、1000℃以上にガスを加熱することで石
英ガラス上に屈折率が順次変化した絶縁膜を堆積するも
のであり、化合物基板の特に凹部の垂直面に対しても水
平面と同様な膜厚の絶縁膜を堆積することは、不可能で
あるという問題点があった。また、第5図に示した分布
屈折率型光ファイバーを切断するなどして分布屈折率型
集光レンズを作成することは可能であるがこれを化合物
半導体基板の的確な位置に実装することは非常な困難を
伴う。本発明は、このような従来の問題を解決するもの
であり、凹部を有する化合物半導体基板上に、例えば基
板に対して垂直面と水平面に同じ厚みの絶縁膜を堆積す
ることの可能な光CVD法を用いて絶縁膜を積層するこ
とで、容易に分布屈折率型の集光レンズを作成すること
ができる。
However, the distributed index optical fiber shown in Figure 5 deposits an insulating film with a sequentially changing refractive index on quartz glass by heating gas to 1000°C or higher, and is particularly suitable for compound substrates. There is a problem in that it is impossible to deposit an insulating film of the same thickness on the vertical surfaces of the recesses as on the horizontal surfaces. Furthermore, although it is possible to create a distributed index condenser lens by cutting the distributed index optical fiber shown in Figure 5, it is extremely difficult to mount it at the correct location on a compound semiconductor substrate. accompanied by great difficulties. The present invention solves such conventional problems, and uses a photo-CVD method that enables the deposition of an insulating film of the same thickness on a compound semiconductor substrate having a recessed portion, for example, on a surface perpendicular to the substrate and on a surface horizontally to the substrate. By stacking insulating films using the method, it is possible to easily create a gradient index condenser lens.

課題を解決するための手段 本発明は上記問題点を解決するために、化合物半導体基
板と、前記基板上に積層された光吸収層と、前記光吸収
層の一部領域に形成され前記光吸収層と伝導型の異なる
受光領域と、前記基板裏面に形成された凹部と、前記凹
部に屈折率の順次変化した絶縁膜を積層することで形成
した集光レンズを含み、前記集光レンズにより光信号が
前記受光領域に集光されることを特徴とした受光素子を
提供するものであり、また、化合物半導体基板上に光吸
収層をエピタキシャル成長する工程と、前記光吸収層の
一部領域に前記光吸収層と伝導型の異なる受光領域を形
成する工程と前記基板裏面を円筒形にエツチングする工
程と前記凹部に屈折率を順次変化させて絶縁膜を堆積す
る工程を含むことを特徴とした受光素子の製造方法を提
案しようとするものである。
Means for Solving the Problems In order to solve the above problems, the present invention includes a compound semiconductor substrate, a light absorption layer laminated on the substrate, and a light absorption layer formed in a partial area of the light absorption layer. It includes a light-receiving region with different layers and conductivity types, a concave portion formed on the back surface of the substrate, and a condensing lens formed by laminating insulating films with sequentially changed refractive indexes on the concave portion, and the condensing lens collects light. The present invention provides a light receiving element characterized in that a signal is focused on the light receiving region, and further includes a step of epitaxially growing a light absorption layer on a compound semiconductor substrate, and a step of epitaxially growing a light absorption layer on a part of the light absorption layer. A light-receiving method comprising the steps of forming a light-receiving region having a conductivity type different from that of a light-absorbing layer, etching the back surface of the substrate into a cylindrical shape, and depositing an insulating film in the concave portion while sequentially changing the refractive index. This paper attempts to propose a method for manufacturing devices.

作用 本発明の受光素子は、基板裏面に集光レンズを内蔵した
もので、従来より多く提案されている集光を目的とした
マイクロレンズと受光素子をディスクリートに集積化す
るものに対して光軸の調整が不用である点で大量生産に
適した構造となっている。
Function The light-receiving element of the present invention has a condensing lens built into the back surface of the substrate, and the optical axis is different from that which has been proposed in the past, in which a microlens for the purpose of condensing light and a light-receiving element are discretely integrated. The structure is suitable for mass production since no adjustment is required.

この集光レンズの作成方法としては、例えば、レンズの
中心部はど屈折率が高くなるように、凹部側面に最初に
例えばSiO2膜を堆積し5i3Naxoa++−x+
のXを順次増加させて中心部に於いてはS i3N4膜
とする。屈折率と組成Xの関係が直線関係を満たしてい
るとして、屈折率が絶縁膜の厚みに対して2乗分布をと
るように組成を変化させることで分布屈折率型の集光レ
ンズを得ることカテキル。S 13Nixoat+−x
+(D組成xの制御は、ドーピングガスであるS i 
Ha、  N20.  NH3のうちN20とNH3の
流量比を変えることで容易に可能となる。
A method for producing this condensing lens is, for example, by first depositing, for example, a SiO2 film on the side surfaces of the concave portion so that the center of the lens has a high refractive index.
By increasing X in sequence, a Si3N4 film is formed at the center. Assuming that the relationship between the refractive index and the composition X satisfies a linear relationship, a distributed refractive index condensing lens can be obtained by changing the composition so that the refractive index takes a square distribution with respect to the thickness of the insulating film. Catequil. S 13Nixoat+-x
+(D composition x is controlled by doping gas S i
Ha, N20. This can be easily achieved by changing the flow rate ratio of N20 and NH3 in NH3.

絶縁膜の堆積方法としては、凹部の垂直面と水平面に対
して等しい膜厚の絶縁膜を堆積するために例えば光CV
D法を用いると良い。加えて光CVD法では、基板を約
200℃に加熱する程度で絶縁膜の堆積が可能となり絶
縁膜を厚く積層することによるクラックの発生の危険性
が少ない。
As a method of depositing the insulating film, for example, photoCVD is used to deposit an insulating film of equal thickness on the vertical and horizontal surfaces of the recess.
It is better to use method D. In addition, in the photo-CVD method, it is possible to deposit an insulating film by heating the substrate to about 200° C., and there is less risk of cracks occurring due to thickly laminated insulating films.

実施例 まず、絶縁膜の構造としては、第3図(a)に斜線で示
したように受光領域直上部には集光レンズを作成せず基
板と平行に絶縁膜を堆積する。これは平行光線が入射す
るとして受光領域の範囲以内に入射する光まで集光する
必要がないためである。従って集光レンズは受光領域直
上部を取り囲むように形成される。第3図(a)中に矢
印で光路を示している。いま、説明を簡単にするために
第3図(b)に示したように左右のレンズ領域を接合し
て考える。ここで、集光レンズの屈折率が2乗分布をと
るようにすると、集光レンズは分布屈折率型光ファイバ
ーの一部とみなされる。分布屈折率型光ファイバー中の
光の軌跡はcos閏数で示され、第3図(b)に点線で
示したようになる。ここで、光の軌跡が一点に収束しな
いのは、光ファイバーの先端を集光レンズと同様に円錐
形としたためである。集光レンズを通過した光は基板表
面で回折したのち直進して第3図(b)に示した矢印の
実線となる。ここで第3図(b)において凹部に積層す
る絶縁膜を凹部の周辺から中心部に向けTS i 3N
axosu−x+(D組成xttOからlへと変化させ
る。集光レンズの外径と内径との差を2a−20μmと
し、レンズの厚みをa=10μmとしたときレンズの最
も外周部を通過する光は、L+=44.8μmのところ
で集光することになる。
Embodiment First, as for the structure of the insulating film, as shown by diagonal lines in FIG. 3(a), no condensing lens is formed directly above the light receiving area, and the insulating film is deposited parallel to the substrate. This is because even if parallel light rays are incident, there is no need to condense the light that falls within the range of the light receiving area. Therefore, the condenser lens is formed so as to surround the area directly above the light receiving area. The optical path is indicated by an arrow in FIG. 3(a). Now, to simplify the explanation, let's consider that the left and right lens regions are cemented together as shown in FIG. 3(b). Here, if the refractive index of the condenser lens has a square distribution, the condenser lens is considered to be part of a distributed index optical fiber. The trajectory of light in a distributed index optical fiber is expressed by a cosine leap number, as shown by the dotted line in FIG. 3(b). Here, the reason why the light trajectory does not converge to one point is because the tip of the optical fiber is shaped conically like the condenser lens. The light that has passed through the condenser lens is diffracted on the substrate surface and then travels straight to become the solid line of the arrow shown in FIG. 3(b). Here, in FIG. 3(b), the insulating film to be laminated in the recess is directed from the periphery of the recess to the center.
axosu-x+ (D composition changed from xttO to l. When the difference between the outer diameter and inner diameter of the condensing lens is 2a - 20 μm, and the thickness of the lens is a = 10 μm, the light that passes through the outermost part of the lens The light will be focused at L+=44.8 μm.

光が屈折率が二乗分布をとるレンズの最外周部に入射し
た場合の計算方法を以下に示す。
The calculation method when light is incident on the outermost periphery of a lens where the refractive index has a square distribution is shown below.

A:第3図(a)において光がB”BCC’の範囲を進
む場合の光の軌跡は y=aニエos(gx) g=  2Δ/a Δ” (nsi311i  n5i02) / ns+
3Naとなる。ところで、光が直線ABに到達する場所
は  x=yより a=10μm、  ns;3Nm=2.0b  ns+
o2=1.45とすると xs=8. 20μm、  ye=8. 20μm。
A: In Fig. 3(a), when the light travels in the range B"BCC', the trajectory of the light is y = anie os (gx) g = 2Δ/a Δ" (nsi311i n5i02) / ns+
It becomes 3Na. By the way, the place where the light reaches straight line AB is from x=y, a=10μm, ns; 3Nm=2.0b ns+
If o2=1.45, xs=8. 20μm, ye=8. 20 μm.

dy/dx=−0,424となる。dy/dx=-0,424.

B:第3図において光がABBCの範囲を進む場合、光
の通過する距離が短いとして光の軌跡は次式に近似され
る。
B: When light travels in the range ABBC in FIG. 3, the trajectory of the light is approximated by the following equation, assuming that the distance the light travels is short.

x=xlIIICO8(gy)十g@dyldxlIS
in(gy)いま、K:a−XlIとすると 3F+ニア、43μm、dy/dx=−0,4300+
=0.406radとなる。
x=xlIIICO8(gy) 10g@dyldxlIS
in(gy) Now, if K: a-XlI, 3F+near, 43μm, dy/dx=-0,4300+
=0.406 rad.

C:直線ACにおいてSiO2とInPの屈折率差によ
り次式で示す屈折を生ずる。
C: In the straight line AC, the difference in refractive index between SiO2 and InP causes refraction expressed by the following equation.

sinθ2     n1nP      a、  3
5その結果 θ2=Q、164rad dy/dx=tanθ2=0.166 その後、光は直進するとして L+=V+/ (dy/dx):44.8nmL2: 
(y++157zm) / (dy/dx) =135
μmとなる。
sinθ2 n1nP a, 3
5 Result θ2=Q, 164 rad dy/dx=tan θ2=0.166 After that, assuming that the light travels straight, L+=V+/ (dy/dx): 44.8 nm L2:
(y++157zm) / (dy/dx) =135
It becomes μm.

受光領域と集光レンズとの距離は受光領域の大きさを1
5μmとすると第3図(a)中に示したように基板裏面
からL+=44. 8nmとL2=135μmの間にあ
る必要がある。この場合光ファイバーの位置が、集光レ
ンズのどの位置にあっても光は受光領域に集光すること
ができる。
The distance between the light-receiving area and the condensing lens is the size of the light-receiving area by 1.
If it is 5 μm, L+=44. It needs to be between 8 nm and L2=135 μm. In this case, light can be focused on the light receiving area no matter where the optical fiber is located on the focusing lens.

以E述へてきたように、本発明の集光レンズ付き受光素
子を用いて、受光領域を15μmφとしレンズの外径と
内径の差を20μmとすれば、従来の受光素子において
35μmφの受光径をもち15μmφの受光径を持つ受
光素子と同様な動作速度を得ることができる。また、光
ファイバーとの結合において15μmφの受光径をもつ
受光素子に対して35μmの合わせ余裕をうろことがで
きる。
As mentioned above, if the light receiving element with a condensing lens of the present invention is used, and the light receiving area is 15 μmφ and the difference between the outer diameter and the inner diameter of the lens is 20 μm, then the conventional light receiving element has a light receiving diameter of 35 μmφ. It is possible to obtain an operating speed similar to that of a light receiving element having a light receiving diameter of 15 μmφ. Further, in coupling with an optical fiber, an adjustment margin of 35 μm can be provided for a light receiving element having a light receiving diameter of 15 μmφ.

第1図は本発明による受光素子の一実施例を示す断面図
である。n−1nP基板l上にn−−InGaAs光吸
収N2とn−InP光透過N3が積層されており、Zn
の気相拡散等によって形成されたP型費光領域4ととも
にPINホトダイオードを構成している。PINホトダ
イオードには、リング状のp側電極6およびn側電極5
が蒸着されている。p側電極6として例えばCr/Pt
/Auを用いn側電極5としては例えばAu  Snを
用いる。基板lの裏面に凹部7を形成しておりその下に
絶縁膜8を屈折率を変えながら堆積している。
FIG. 1 is a sectional view showing an embodiment of a light receiving element according to the present invention. An n--InGaAs light-absorbing layer N2 and an n-InP light-transmitting layer N3 are stacked on an n-1nP substrate l, and a Zn
Together with a P-type light-emitting region 4 formed by vapor phase diffusion or the like, a PIN photodiode is configured. The PIN photodiode has a ring-shaped p-side electrode 6 and an n-side electrode 5.
is deposited. For example, Cr/Pt is used as the p-side electrode 6.
/Au, and the n-side electrode 5 is made of, for example, AuSn. A recess 7 is formed on the back surface of the substrate 1, and an insulating film 8 is deposited therebelow while changing its refractive index.

第2図は本発明による受光素子の製造方法の一実施例に
ついて示す断面図である。n−1nP基板l(キャリア
濃度5X10”Cm”  基板厚さ300μm)上にn
−−1nGaAs光吸収層2(キャリア濃度lXl01
5 膜厚3um)、n−1nP光透過層3(キャリア濃
度1xlOI7 膜厚1μm)をエピタキシャル成長さ
せる。(第2図a)0次に光透過層と光吸収層にZnを
500℃にて6分間拡散を行い、直径15μm深さ2μ
mのp型拡散領域を形成し受光領域4とする。(第2図
b)、光透過層3上にリフトオフによりAu−5n  
n側電極5を形成したのち、受光領域4上にCr/Pt
/Au  f)側電極6をリフトオフにより形成しシン
ター処理を行なう(第2図C)。
FIG. 2 is a sectional view showing an embodiment of the method for manufacturing a light receiving element according to the present invention. n-1nP substrate l (carrier concentration 5X10"Cm" substrate thickness 300μm)
--1nGaAs light absorption layer 2 (carrier concentration lXl01
5 (film thickness: 3 um) and an n-1nP light transmitting layer 3 (carrier concentration: 1xlOI7, film thickness: 1 um). (Figure 2a) Next, Zn was diffused into the light transmitting layer and the light absorbing layer at 500°C for 6 minutes to form a layer with a diameter of 15 μm and a depth of 2 μm.
A p-type diffusion region of m is formed to serve as a light receiving region 4. (Fig. 2b), Au-5n is deposited on the light transmitting layer 3 by lift-off.
After forming the n-side electrode 5, Cr/Pt is deposited on the light receiving area 4.
/Au f) side electrode 6 is formed by lift-off and sintered (FIG. 2C).

次に基板lX面にAr−Br系のりアクティブイオンエ
チングにより垂直性良く高速エツチングを行なう。エツ
チングにより形成された凹部7は直径35 /A mφ
、深さ10μmとする(第3図d)。
Next, high-speed etching with good perpendicularity is performed on the IX surface of the substrate by active ion etching using Ar--Br based glue. The recess 7 formed by etching has a diameter of 35/A mφ
, and the depth is 10 μm (Fig. 3d).

最後に集光レンズを作成するために絶縁膜8を堆積する
。堆積中の基板温度は200℃とし、2000 ごとに
10μm積層するまで5i3NaxOe(1−Xlの組
成Xを屈折率が2乗分布をとるように0から0.20ま
で変化させる。絶縁膜8の凹部の内径は15μmである
(第2図e)。
Finally, an insulating film 8 is deposited to create a condenser lens. The substrate temperature during deposition is 200°C, and the composition The inner diameter of the tube is 15 μm (Fig. 2e).

本実施例に示した受光素子はS i 3N4XO611
−X)の組成xt?oから0.20までとした。その結
果受光領域の位置はL+=155μm、L2=507μ
mの問となり基板の厚さすなわち受光領域と集光レンズ
の距離をその中間であるL = 300 It mとし
た。これはSiO2を積層した後には残留02により純
粋な5iaNaの積層が難しいためであるが組成Xを2
0%程度変化させるだけで十分な効果を得ることができ
た。
The light receiving element shown in this example is S i 3N4XO611
-X) composition xt? o to 0.20. As a result, the position of the light receiving area is L+=155μm, L2=507μm
The thickness of the substrate, that is, the distance between the light-receiving area and the condensing lens was determined to be L = 300 It m, which is the middle of the thickness of the substrate. This is because it is difficult to stack pure 5iaNa due to residual O2 after stacking SiO2, but the composition
A sufficient effect could be obtained with a change of about 0%.

本実施例に示した集光レンズ付き受光素子を用いること
で35μmφの受光径をもち15μmφの受光径を持つ
受光素子と同様な動作速度を得ることができる。また、
光ファイバーとの結合において1571mφの受光径を
もつ受光素子に対して35μmの合わせ余裕をうろこと
ができる。さらに球状に終端された光ファイバーを用い
た場合その一部を凹部に挿入することで光ファイバーの
位置決めを容易にすることができる。
By using the light-receiving element with a condensing lens shown in this embodiment, it is possible to obtain an operation speed similar to that of a light-receiving element having a light-receiving diameter of 35 μmφ and 15 μmφ. Also,
When coupled to an optical fiber, an alignment margin of 35 μm can be provided for a light receiving element having a light receiving diameter of 1571 mφ. Furthermore, when an optical fiber with a spherical termination is used, positioning of the optical fiber can be facilitated by inserting a portion of the optical fiber into the recess.

本発明による受光素子の実施例において集光レンズを基
板裏面に形成したが基板表面に形成してもよい、この場
合p側電極は受光領域を覆い隠さないような構造にする
か、透明電極として例えばITOを用いることで、電極
による光の遮断領域をなくす必要がある。さらに本受光
素子の製造1の利点としては、全体がブレーナ構造にな
っているという点があげられるが、0EICとして他の
電気素子と集積化して光集積回路を構成しようとすると
電気的分離の問題が生じてくるため例えばInP基板を
半絶縁性として受光素子をメサ構造とするか、素子間に
誘電帯を埋め込み誘電分離を行ってもよい。
Although the condenser lens was formed on the back surface of the substrate in the embodiment of the light receiving element according to the present invention, it may be formed on the surface of the substrate. For example, by using ITO, it is necessary to eliminate the light blocking area caused by the electrode. Furthermore, an advantage of manufacturing 1 of this photodetector is that the entire structure has a brainer structure, but if you try to integrate it with other electrical elements as an 0EIC to form an optical integrated circuit, you will have problems with electrical isolation. Therefore, for example, the InP substrate may be semi-insulating and the light receiving element may have a mesa structure, or a dielectric band may be embedded between the elements to provide dielectric isolation.

ところで本実施例においては絶11Hの凹部の内径を1
5μmとしたが、凹部の内径をさらに大きくするこンで
凹部内に光ファイバーを挿入して位置決めをさらに容易
にすることができる。また絶縁膜としてSi3N4膜と
SiO2膜及びその中m組成をもつ膜を用いたが、それ
以外の絶縁膜または絶縁膜以外でも屈折率差を変化させ
ながら堆積できるものならば有機質膜なとでもよい、絶
縁膜の堆積法において光CVD法を用いたが、これ以外
の堆積法を用いてもよい。
By the way, in this embodiment, the inner diameter of the recess of 11H is set to 1.
Although the diameter of the recess is set to 5 μm, by increasing the inner diameter of the recess, it is possible to insert an optical fiber into the recess and further facilitate positioning. In addition, as the insulating films, we used Si3N4 films, SiO2 films, and films with m composition among them, but other insulating films or organic films may also be used as long as they can be deposited while changing the refractive index difference. Although the photo-CVD method was used to deposit the insulating film, other deposition methods may be used.

また、実施例では受光領域をZnの気相拡散により形成
しているが、例えばイオンインプランテーション法によ
り受光領域を形成することが可能であるし、エツチング
により受光領域を分離することも可能である。なお、以
上の実施例の説明においては半導体材料をjnP系とし
てきたが、他の半導体材料を用いてもよい。また、PI
Nホトダイオードを例えばアバランシェホトダイオード
、MSMホトダイオードなどとすることも可能である。
Further, in the embodiment, the light receiving region is formed by vapor phase diffusion of Zn, but it is also possible to form the light receiving region by, for example, an ion implantation method, or it is also possible to separate the light receiving region by etching. . Note that in the description of the above embodiments, jnP-based semiconductor materials have been used, but other semiconductor materials may be used. Also, P.I.
It is also possible for the N photodiode to be, for example, an avalanche photodiode, an MSM photodiode, etc.

発明の効果 以上述べてきたように、本発明によれば受光素子に絶縁
膜を堆積することで高速動作、広受光面積の受光素子を
得ることができかつ製造も容易で大量生産に適している
。プレーナー構造であるため実装も容易である。また、
受光素子の動作速度を大きくするために受光領域の小径
化が進み光ファイバーとの結合が難しくなってきている
が本発明の受光素子を用いることで光ファイバーとの大
きな合わせ余裕をもつ受光素子を得ることができる。
Effects of the Invention As described above, according to the present invention, by depositing an insulating film on the light receiving element, it is possible to obtain a light receiving element that operates at high speed and has a wide light receiving area, and is easy to manufacture and suitable for mass production. . Since it has a planar structure, it is easy to implement. Also,
In order to increase the operating speed of a light receiving element, the diameter of the light receiving area is becoming smaller and coupling with an optical fiber is becoming difficult, but by using the light receiving element of the present invention, it is possible to obtain a light receiving element that has a large margin for alignment with an optical fiber. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の受光素子の構造の断面図、
第2図は本発明の一実施例の受光素子の製造方法の断面
図、第3図は本発明の動作を示す原理図、第4図は従来
の受光素子の断N図、第5図は光ファイバーの作成方法
の説明図である。 1・・・InP基板、2・・・光吸収層、3・・・光透
過層、4・・・受光領域、δ・・・n側電極、6・・・
n側電極、7・・・口部、8・・・!@縁膜。 代理人の氏名 弁理士 粟野重孝 はか】名第1図 入射尤 第 図 第 図 先 第 図 光
FIG. 1 is a cross-sectional view of the structure of a light-receiving element according to an embodiment of the present invention;
Fig. 2 is a cross-sectional view of a method of manufacturing a light-receiving element according to an embodiment of the present invention, Fig. 3 is a principle diagram showing the operation of the present invention, Fig. 4 is a cross-sectional view of a conventional light-receiving element, and Fig. 5 is FIG. 3 is an explanatory diagram of a method for producing an optical fiber. DESCRIPTION OF SYMBOLS 1... InP substrate, 2... Light absorption layer, 3... Light transmission layer, 4... Light receiving area, δ... N side electrode, 6...
N-side electrode, 7... mouth, 8...! @ Membrane limbus. Name of agent: Patent attorney Shigetaka Awano

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体基板と、前記基板上に積層された光
吸収層と、前記光吸収層の一部領域内に形成され前記光
吸収層と伝導型の異なる受光領域と、前記基板裏面に形
成された凹部と、前記凹部に屈折率の順次変化した絶縁
膜を積層することで形成した集光レンズを含み、前記集
光レンズにより光信号が前記受光領域に集光されること
を特徴とした受光素子。
(1) A compound semiconductor substrate, a light-absorbing layer laminated on the substrate, a light-receiving region formed in a part of the light-absorbing layer and having a different conductivity type from the light-absorbing layer, and a light-receiving region formed on the back surface of the substrate. and a condensing lens formed by laminating an insulating film with a sequentially changed refractive index on the concave portion, and the condensing lens condenses an optical signal onto the light receiving area. Light receiving element.
(2)化合物半導体基板上に光吸収層をエピタキシャル
成長する工程と、前記光吸収層の一部領域に前記光吸収
層と伝導型の異なる受光領域を形成する工程と前記基板
裏面を凹型にエッチングする工程と前記凹型部に屈折率
を順次変化させて絶縁膜を堆積する工程を含むことを特
徴とした受光素子の製造方法。
(2) A step of epitaxially growing a light absorption layer on a compound semiconductor substrate, a step of forming a light receiving region of a conductivity type different from that of the light absorption layer in a partial region of the light absorption layer, and a step of etching the back surface of the substrate into a concave shape. A method for manufacturing a light receiving element, comprising the steps of depositing an insulating film on the concave portion while sequentially changing the refractive index.
JP1005243A 1989-01-12 1989-01-12 Light receiving element and manufacturing method thereof Expired - Fee Related JP2650389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005243A JP2650389B2 (en) 1989-01-12 1989-01-12 Light receiving element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005243A JP2650389B2 (en) 1989-01-12 1989-01-12 Light receiving element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02185070A true JPH02185070A (en) 1990-07-19
JP2650389B2 JP2650389B2 (en) 1997-09-03

Family

ID=11605762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005243A Expired - Fee Related JP2650389B2 (en) 1989-01-12 1989-01-12 Light receiving element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2650389B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086504A1 (en) 2003-03-27 2004-10-07 Hamamatsu Photonics K.K. Photodiode array and production method thereof, and radiation detector
WO2005008788A1 (en) * 2003-07-23 2005-01-27 Hamamatsu Photonics K.K. Backside-illuminated photodetector
WO2005011004A1 (en) * 2003-07-29 2005-02-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
WO2005011005A1 (en) * 2003-07-29 2005-02-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector and method for manufacturing same
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device
EP1608020A1 (en) * 2003-03-27 2005-12-21 Hamamatsu Photonics K.K. Photodiode array and production method thereof, and radiation detector
US7888766B2 (en) 2003-03-27 2011-02-15 Hamamatsu Photonics K.K. Photodiode array and radiation detector having depressions of predetermined depth formed in regions corresponding to the regions where the photodiodes are formed in the semiconductor substrate
EP1608020A4 (en) * 2003-03-27 2007-04-18 Hamamatsu Photonics Kk Photodiode array and production method thereof, and radiation detector
WO2004086504A1 (en) 2003-03-27 2004-10-07 Hamamatsu Photonics K.K. Photodiode array and production method thereof, and radiation detector
EP1648036A1 (en) * 2003-07-23 2006-04-19 Hamamatsu Photonics K.K. Backside-illuminated photodetector
US7420257B2 (en) 2003-07-23 2008-09-02 Hamamatsu Photonics K.K. Backside-illuminated photodetector
WO2005008788A1 (en) * 2003-07-23 2005-01-27 Hamamatsu Photonics K.K. Backside-illuminated photodetector
JP2005045073A (en) * 2003-07-23 2005-02-17 Hamamatsu Photonics Kk Backface incident photo detection element
EP1648036A4 (en) * 2003-07-23 2007-03-21 Hamamatsu Photonics Kk Backside-illuminated photodetector
WO2005011005A1 (en) * 2003-07-29 2005-02-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector and method for manufacturing same
WO2005011004A1 (en) * 2003-07-29 2005-02-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
JP2005051078A (en) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk Backside incident photodetector
US7560790B2 (en) 2003-07-29 2009-07-14 Hamamatsu Photonics K.K. Backside-illuminated photodetector
JP4499386B2 (en) * 2003-07-29 2010-07-07 浜松ホトニクス株式会社 Manufacturing method of back-illuminated photodetector
JP4499385B2 (en) * 2003-07-29 2010-07-07 浜松ホトニクス株式会社 Back-illuminated photodetecting element and manufacturing method of back-illuminated photodetecting element
US7768086B2 (en) 2003-07-29 2010-08-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
JP2005051080A (en) * 2003-07-29 2005-02-24 Hamamatsu Photonics Kk Backside incident photodetector and its manufacturing method
US7964898B2 (en) 2003-07-29 2011-06-21 Hamamatsu Photonics K.K. Back illuminated photodetector

Also Published As

Publication number Publication date
JP2650389B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP5232592B2 (en) Formation of optical elements in light emitting devices to improve light extraction rate
JP4391497B2 (en) COLOR SENSOR, COLOR SENSOR MANUFACTURING METHOD, SENSOR, AND ELECTRONIC DEVICE
US20050145965A1 (en) Light receiving element and method of manufacturing the same
US3569997A (en) Photoelectric microcircuit components monolythically integrated with zone plate optics
US4640585A (en) Semiconductor thin film lens
TW201143055A (en) Nanowire photo-detector grown on a back-side illuminated image sensor
CN105070779A (en) Surface incident silicon-based germanium photoelectric detector with sub-wavelength grating structure, and preparation method thereof
CN110082845B (en) Method for preparing micro lens
CN111668324A (en) Optical detector integrated with grating reflection structure
CN106848829A (en) A kind of vertical-cavity surface-emitting coaxial packaging photoelectric device and its method for packing
JP2011124450A (en) Semiconductor light reception element
JP3917140B2 (en) Photocoupler capable of integrating photodetectors
CN111524994A (en) Back incidence high-speed indium gallium arsenic photoelectric detector based on mixed absorption layer and preparation method
JPH02185070A (en) Photodetector and manufacture thereof
KR20050005357A (en) Method for fabricating microlens and method for fabricating optical module using the same
JPH04246868A (en) P-i-n photodiode and method of improving efficiency thereof
CN110133800B (en) Waveguide type photonic crystal heterostructure capable of realizing wide-band unidirectional high transmission
US3704377A (en) Laser comprising fresnel optics
JPH0653537A (en) Semiconductor light receiving element
CN115188854A (en) Photoelectric detector and preparation method thereof
CN114068752B (en) Photoelectric detector with light splitting structure
CN114068762B (en) Preparation method of photoelectric detector with light splitting structure
JP2568506B2 (en) Semiconductor light receiving device
CN109801983A (en) Back incident-type coplanar electrodes photoelectric chip and preparation method thereof
CN108511468A (en) Light-sensitive device and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees