JPH02184586A - Silicon carbide-based composite material - Google Patents

Silicon carbide-based composite material

Info

Publication number
JPH02184586A
JPH02184586A JP168989A JP168989A JPH02184586A JP H02184586 A JPH02184586 A JP H02184586A JP 168989 A JP168989 A JP 168989A JP 168989 A JP168989 A JP 168989A JP H02184586 A JPH02184586 A JP H02184586A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
boron nitride
based composite
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP168989A
Other languages
Japanese (ja)
Inventor
Takeyuki Katou
丈幸 加藤
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP168989A priority Critical patent/JPH02184586A/en
Publication of JPH02184586A publication Critical patent/JPH02184586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To utilize a silicon carbide-based composite material having a high strength as bearings, mechanical seal sliding members, etc., without losing lubricity even within high-temperature ranges by providing a structure in which boron nitride is filled in open cells of a cellular silicon carbide calcined compact. CONSTITUTION:Boron nitride is filled in open cells of a cellular silicon carbide calcined compact (open porosity; 10-40vol.% and average pore diameter; 0.1-100mum) to provide a silicon carbide-based composite material.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は炭化珪素質複合材料に関し、特にたとえば軸
受やメカニカルシールの摺動部材などとして用いられる
、炭化珪素質複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon carbide composite material, and particularly to a silicon carbide composite material used, for example, as a sliding member of a bearing or a mechanical seal.

(従来技術) 従来、軸受やメカニカルシールなどの摺動部材として、
たとえば炭化珪素質セラミックなどが用いられていた。
(Prior art) Conventionally, as sliding members such as bearings and mechanical seals,
For example, silicon carbide ceramics were used.

この炭化珪素質セラミックは、硬度が大きくかつ耐摩耗
性が大きいという摺動部材の材料として優れた特性を有
している。
This silicon carbide ceramic has excellent properties as a material for sliding members, such as high hardness and high wear resistance.

しかしながら、炭化珪素質セラミックは潤滑性に乏しい
ため、摺動部材として用いる場合、潤滑剤が併用される
。ところが、高温域においては、通常の潤滑剤を使用す
ることができない、そこで、高温域で摺動部材として使
用することができる材料が、特開昭60−21864号
公報に開示されている。ここに開示された材料は、st
c、st、N4またはサイアロンに対して、窒化ほう素
または炭素を3〜50重量%添加したセラミックである
。このような材料では、窒化ほう素や炭素が潤滑剤とし
て働くため、高温域においても摺動部材として使用する
ことができる。
However, silicon carbide ceramics have poor lubricity, so when used as a sliding member, a lubricant is used together. However, in a high temperature range, ordinary lubricants cannot be used. Therefore, a material that can be used as a sliding member in a high temperature range is disclosed in JP-A-60-21864. The materials disclosed herein are st
It is a ceramic in which 3 to 50% by weight of boron nitride or carbon is added to c, st, N4 or sialon. In such materials, boron nitride and carbon act as lubricants, so they can be used as sliding members even in high temperature ranges.

(発明が解決しようとする課題) しかしながら、特開昭60−21864号公報に開示さ
れた材料は、窒化ほう素や炭素を出発原料に混入し成形
して焼成されるため、セラミ、りの粒子間に窒化ほう素
や炭素が介在する。このようなセラミック材料と潤滑剤
としての窒化ほう素や炭素とを混合したものでは、焼結
が困難であり、特に強度の大きいセラミックを得ること
が困難である。
(Problem to be Solved by the Invention) However, the material disclosed in JP-A No. 60-21864 is mixed with boron nitride or carbon as a starting material, molded and fired, Boron nitride and carbon are present in between. It is difficult to sinter a mixture of such a ceramic material and boron nitride or carbon as a lubricant, and it is particularly difficult to obtain a ceramic with high strength.

それゆえに、この発明の主たる目的は、高温域において
も潤滑性を失わず、かつ強度の大きい、炭化珪素質複合
材料を提供することである。
Therefore, the main object of the present invention is to provide a silicon carbide composite material that does not lose its lubricity even in a high temperature range and has high strength.

(課題を解決するための手段) この発明は、開気孔率が10〜40体積%でその平均気
孔径が0.1〜100μmの気孔を有する多孔質炭化珪
素焼結体と、開気孔に充填される窒化ほう素とを含む、
炭化珪素質複合材料である。
(Means for Solving the Problems) This invention provides a porous silicon carbide sintered body having pores with an open porosity of 10 to 40% by volume and an average pore diameter of 0.1 to 100 μm, and containing boron nitride,
It is a silicon carbide composite material.

(作用) 炭化珪素焼結体の開気孔中に充填された窒化ほう素が、
潤滑剤として働く。
(Function) Boron nitride filled in the open pores of the silicon carbide sintered body
Acts as a lubricant.

(発明の効果) この発明によれば、窒化ほう素が潤滑剤として働くため
、高温域においても潤滑性を失わない炭化珪素質複合材
料を得ることができる。しかも、窒化ほう素が炭化珪素
焼結体の粒子間に介在せず、開気孔内に充填されている
ため、炭化珪素焼結体の強度が大きい、したがって、こ
の炭化珪素質複合材料を用いれば、高温域においても潤
滑性を失わず、かつ強度の大きい摺動部材を得ることが
できる。
(Effects of the Invention) According to the present invention, since boron nitride acts as a lubricant, it is possible to obtain a silicon carbide composite material that does not lose its lubricity even in a high temperature range. Moreover, since boron nitride is not interposed between the particles of the silicon carbide sintered body and is filled in the open pores, the strength of the silicon carbide sintered body is high. Therefore, if this silicon carbide composite material is used, Therefore, it is possible to obtain a sliding member that does not lose its lubricity even in a high temperature range and has high strength.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、平均粒径0.42μmのβ型結晶の炭化珪素粉末
を準備した。この炭化珪素粉末100重量部に対し、非
晶質ほう素粉束0.5重置部、アセチレンブラック粉末
1重量部、ブチラール系バインダ3重量部および水25
0重量部を配合した。
(Example) First, silicon carbide powder of β-type crystals with an average particle size of 0.42 μm was prepared. To 100 parts by weight of this silicon carbide powder, 0.5 parts by weight of amorphous boron powder bundle, 1 part by weight of acetylene black powder, 3 parts by weight of butyral binder, and 25 parts by weight of water.
0 parts by weight was blended.

この配合物をボールミル中で16時間混合した後、噴霧
乾燥し造粒粉末を得た。この造粒粉末を3ton/cd
の圧力で成形し、そののちアルゴンガス雰囲気中におい
て別表に示す温度で焼成し、多孔質炭化珪素焼結体を得
た。
This blend was mixed in a ball mill for 16 hours and then spray dried to obtain a granulated powder. 3 tons/cd of this granulated powder
After that, it was fired in an argon gas atmosphere at a temperature shown in the attached table to obtain a porous silicon carbide sintered body.

また、平均粒径2μmの窒化ほう素粉床を準備した。こ
の窒化ほう素粉床を3  ton/−の圧力で成形した
。そして、窒化ほう素成形体と多孔質炭化珪素焼結体と
を摺動させて、窒化ほう素粉床を多孔質炭化珪素焼結体
の開気孔中に充填した。これを窒素ガス雰囲気中におい
て2000℃で10分間熱処理を施し、炭化珪素質複合
材料を得た。
In addition, a boron nitride powder bed with an average particle size of 2 μm was prepared. This boron nitride powder bed was molded at a pressure of 3 tons/-. Then, the boron nitride molded body and the porous silicon carbide sintered body were slid together to fill the open pores of the porous silicon carbide sintered body with the boron nitride powder bed. This was heat-treated at 2000° C. for 10 minutes in a nitrogen gas atmosphere to obtain a silicon carbide composite material.

この炭化珪素質複合材料を内径15鶴、外径21鶴、厚
さ5鶴のリング状に加工した。この炭化珪素質複合材料
を、リングオンリング方式の摺動試験機を用いて、大気
中において雰囲気温度を25℃〜1000℃まで変化さ
せ、緻密質炭化珪素焼結体を相手材として摺動試験を行
った。そして、炭化珪素質複合材料が破壊するときの力
を示す限界pv値、摩擦係数および摩耗速度を測定し、
別表に示した。
This silicon carbide composite material was processed into a ring shape with an inner diameter of 15 mm, an outer diameter of 21 mm, and a thickness of 5 mm. This silicon carbide composite material was subjected to a sliding test using a ring-on-ring type sliding testing machine in the atmosphere at varying ambient temperatures from 25°C to 1000°C and using a dense silicon carbide sintered body as a counterpart material. I did it. Then, the critical pv value, friction coefficient, and wear rate, which indicate the force at which the silicon carbide composite material breaks, are measured,
It is shown in the attached table.

次に、数値の限定理由について説明する。Next, the reason for limiting the numerical values will be explained.

多孔質炭化珪素焼結体の開気孔率が10体積%よりも小
さいと、窒化ほう素を充填しても炭化珪素質複合材料の
潤滑性をほとんど向上することができない。また、多孔
質炭化珪素焼結体の開気孔率が40体積%よりも大きい
と、焼結体の強度が小さくなってしまう。
If the open porosity of the porous silicon carbide sintered body is less than 10% by volume, the lubricity of the silicon carbide composite material can hardly be improved even if filled with boron nitride. Furthermore, if the open porosity of the porous silicon carbide sintered body is greater than 40% by volume, the strength of the sintered body will be reduced.

多孔質炭化珪素焼結体の平均気孔径が0.1μmより小
さいと、窒化ほう素を充填することが困難である。また
、多孔質炭化珪素焼結体の平均気孔径が100μmより
大きいと、多孔質炭化珪素焼結体の強度が小さくなり、
また充填された窒化ほう素が脱落しやすい。
When the average pore diameter of the porous silicon carbide sintered body is smaller than 0.1 μm, it is difficult to fill it with boron nitride. Moreover, when the average pore diameter of the porous silicon carbide sintered body is larger than 100 μm, the strength of the porous silicon carbide sintered body becomes small,
Moreover, the filled boron nitride easily falls off.

それに対して、この発明の炭化珪素質複合材料では、高
温域においても潤滑性を保つことができ、かつ強度の優
れた材料を得ることができる。そのため、この炭化珪素
質複合材料を軸受やメカニカルシールなどに使用するこ
とができる。
In contrast, the silicon carbide composite material of the present invention can maintain lubricity even in a high temperature range and has excellent strength. Therefore, this silicon carbide composite material can be used for bearings, mechanical seals, and the like.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro

Claims (1)

【特許請求の範囲】[Claims] 開気孔率が10〜40体積%でその平均気孔径が0.1
〜100μmの気孔を有する多孔質炭化珪素焼結体と、
前記開気孔に充填される窒化ほう素とを含む、炭化珪素
質複合材料。
The open porosity is 10-40% by volume and the average pore diameter is 0.1
A porous silicon carbide sintered body having pores of ~100 μm,
and boron nitride filled in the open pores.
JP168989A 1989-01-06 1989-01-06 Silicon carbide-based composite material Pending JPH02184586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP168989A JPH02184586A (en) 1989-01-06 1989-01-06 Silicon carbide-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP168989A JPH02184586A (en) 1989-01-06 1989-01-06 Silicon carbide-based composite material

Publications (1)

Publication Number Publication Date
JPH02184586A true JPH02184586A (en) 1990-07-19

Family

ID=11508487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP168989A Pending JPH02184586A (en) 1989-01-06 1989-01-06 Silicon carbide-based composite material

Country Status (1)

Country Link
JP (1) JPH02184586A (en)

Similar Documents

Publication Publication Date Title
CA2146399C (en) Bearing material of porous sic having a trimodal pore composition
US5707065A (en) Sintered SIC mechanical seals having particular pore volume, shape, and diameter
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
JPS5824496B2 (en) Lubricating sintered body containing silicon nitride
US5462813A (en) Composite ceramic sintered material
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
KR900007840B1 (en) Method for producing silicon carbide sinteringbody
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
Yang et al. Improvement of mechanical properties and corrosion resistance of porous β‐SiAlON ceramics by low Y2O3 additions
JPH02184586A (en) Silicon carbide-based composite material
JPS6050749B2 (en) Silicon carbide sintered body
JP2002053376A (en) Method for sintering silicon nitride ceramics
JPS59131577A (en) Silicon carbide material and manufacture
JP3339645B2 (en) Method for producing silicon carbide-carbon composite material
JP2605813B2 (en) Transmission synchronous ring made of Cu-based sintered alloy
JP4034832B2 (en) B4C-TiB2-graphite composite ceramics Bearing material
JPS62138377A (en) Silicon carbide base composite material
JPH0228548B2 (en)
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
US5045269A (en) Method for sintered shapes with controlled grain size
JP2543093B2 (en) Sliding parts for seals
JPS6245194B2 (en)
EP0375148A2 (en) Production of molded refractory shapes
JPH0469118B2 (en)
JP2004161558A (en) Silicon carbide/carbon composite material, and sliding material obtained by using the same