JPH02183566A - Triac - Google Patents

Triac

Info

Publication number
JPH02183566A
JPH02183566A JP316589A JP316589A JPH02183566A JP H02183566 A JPH02183566 A JP H02183566A JP 316589 A JP316589 A JP 316589A JP 316589 A JP316589 A JP 316589A JP H02183566 A JPH02183566 A JP H02183566A
Authority
JP
Japan
Prior art keywords
channel
type diffusion
diffusion layer
resistance
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP316589A
Other languages
Japanese (ja)
Inventor
Hajime Kamiuchi
上内 元
Masatake Okada
正剛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP316589A priority Critical patent/JPH02183566A/en
Publication of JPH02183566A publication Critical patent/JPH02183566A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize resistance between terminals by forming a channel of low resistance and a narrow and long channel of high resistance which are sandwiched by N<+> type diffusion layers, between a P-type diffusion layer 4 and a P-type diffusion layer under a gate electrode. CONSTITUTION:Between an N<+> type diffusion layer 2 and an N<+> type diffusion layer 3 for a gate use, a channel 8 and a channel 5-1 are arranged. The length (a) of the channel 8 is large; the width (b) of the channel 8 is small; the length of the channel 5-1 is small; the width (c) of the channel 5-1 is large. An electrode 12 with which a terminal T1 is connected is formed over the N<+> type diffusion layer 2 and a P-type diffusion layer 1; an electrode 13 with which a terminal G is connected is formed over a P-type diffusion layer 4, which is an extension part of the N<+> type diffusion layer 3 and a P<+> type diffusion layer 1, and most of which is surrounded by the N<+> type diffusion layer 3. As a result, a combined resistance between the terminal T1 and the terminal G becomes equal to the combined resistance of a P-type diffusion resistance of the channel 5-1 and a P-type diffusion resistance of the channel 8. Thereby, the precise and stable resistance between the terminal T1 and the terminal G can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体によるプレーナ型トライアックの改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a planar triac using semiconductors.

(従来の技術) 第2図は従来のプレーナ型トライアックの一例の概略を
示す平面図であり、第8図はその動作説明のための略断
面図である。このトライアックは、パーティカル型であ
って、ゲート端子Gからの入力により、電流は端子T1
と端子T2との間で、点線矢印A又はBの方向に流れる
。N型半導体基板7の下面及び側面KPM拡散層10を
設け、その下面の一部にN+型型数散層14設け、全面
に電極11を被覆し、端子T2が設けられている。
(Prior Art) FIG. 2 is a plan view schematically showing an example of a conventional planar triac, and FIG. 8 is a schematic sectional view for explaining its operation. This triac is a particle type, and the current is input from the gate terminal G to the terminal T1.
and the terminal T2 in the direction of the dotted arrow A or B. A KPM diffusion layer 10 is provided on the lower and side surfaces of the N-type semiconductor substrate 7, an N+ type scattering layer 14 is provided on a part of the lower surface, the entire surface is covered with an electrode 11, and a terminal T2 is provided.

N型半導体基板7の他方の面には、その内部にP型拡散
層1を形成し、さらにその内部に適宜の形状のゲート用
のN+型型数散層8カソード用のN+型型数散層2形成
されている。Pfi拡散層1の一部とN+型型数散層2
わたって電極12を設け、端子T1が設けられている。
On the other surface of the N-type semiconductor substrate 7, a P-type diffusion layer 1 is formed inside, and an N+-type diffusion layer 8 for a gate of an appropriate shape is further formed inside the N-type semiconductor substrate 7. Layer 2 is formed. Part of Pfi diffusion layer 1 and N+ type scattering layer 2
An electrode 12 is provided across it, and a terminal T1 is provided.

P型数散層lの一部とN+型型数散層3にわたってt極
18が設けられ、端子Gが取り出されている。これらの
電極は@2図には示されていない。なお、N+型型数散
層2び8の形状も第3図では簡略化しである。
A t-pole 18 is provided over a part of the P-type scattered layer 1 and the N+ type scattered layer 3, and a terminal G is taken out. These electrodes are not shown in Figure @2. Note that the shapes of the N+ type scattering layers 2 and 8 are also simplified in FIG. 3.

第8図の点線矢印Aの径路にあるP型拡散層1゜N型半
導体基板7.P型半導体層10及びN+型型数散層14
らなるPNPN構成により、第一のサイリスタが形成さ
れ、点線矢印Bの径路にあるN+型型数散層2P散拡散
層1.N型半導体基板7及びP型半導体層10からなる
NPNP構成によ抄、第二のサイリスタが形成されてい
る。
P-type diffusion layer 1°N-type semiconductor substrate 7 in the path of dotted arrow A in FIG. P-type semiconductor layer 10 and N+ type scattering layer 14
A first thyristor is formed by a PNPN configuration consisting of an N+ type diffused layer 2P diffused layer 1. A second thyristor is formed of an NPNP configuration consisting of an N-type semiconductor substrate 7 and a P-type semiconductor layer 10.

端子T1とゲート用の端子Gとの間の抵抗は、電極12
の下面のP散拡散層lと電極18下面のP型拡散層4と
の間のP型拡散抵抗であり、これは電極12の下面のN
+型型数散層2電極18下面のN+型型数散層8の間の
チャネル5のP型拡散抵抗及び電極18下面のN+型型
数散層8P散拡散層lとの間のP型拡散抵抗6.6の合
成抵抗となる。
The resistance between the terminal T1 and the gate terminal G is the resistance between the electrode 12
This is the P-type diffused resistance between the P-diffused layer l on the lower surface of the electrode 18 and the P-type diffused layer 4 on the lower surface of the electrode 12.
+ type scattered layer 2 P type diffused resistance of channel 5 between N+ type scattered layer 8 on the lower surface of electrode 18 and P type between N+ type scattered layer 8P diffused layer 1 on the lower surface of electrode 18 This is a combined resistance of 6.6 diffused resistances.

(発明が解決しようとする課題〕 第2図のような従来の拡散パターンの形状では、端子τ
lと端子Gとの間の抵抗は、前記のP型拡散抵抗5とP
型拡散抵抗6との合成抵抗となっている。このとき、電
極12の下面のN++散層2と電極13の下面のN++
散層8とは、同時にフォトリングラフィにより形成され
るため、チャネル5によるP型拡散抵抗の幅、長さ等は
常に一定であり安定している。然しなから、P型拡散抵
抗6はP散拡散層lとN+g+散層3との別々のフォト
リングラフィにより形成されるから、その時のマスクの
合せ誤差により、幅、長さ等が変化し、抵抗値が不安定
になる。
(Problem to be solved by the invention) In the conventional diffusion pattern shape as shown in Fig. 2, the terminal τ
The resistance between L and terminal G is the P-type diffused resistor 5 and P
It is a combined resistance with the type diffused resistance 6. At this time, N++ diffused layer 2 on the lower surface of the electrode 12 and N++ on the lower surface of the electrode 13
Since the diffused layer 8 is formed at the same time by photolithography, the width, length, etc. of the P-type diffused resistor formed by the channel 5 are always constant and stable. However, since the P type diffused resistor 6 is formed by separate photolithography of the P diffused layer l and the N+g+ diffused layer 3, the width, length, etc. may change due to mask alignment errors at that time. The resistance value becomes unstable.

端子TIと端子Gとの間の抵抗は、感度、保持電流等の
他の特性にも深い関係があり、素子の品質9歩留まり等
の点からも、安定していることが望ましい。
The resistance between terminal TI and terminal G has a deep relationship with other characteristics such as sensitivity and holding current, and it is desirable that the resistance be stable from the viewpoint of element quality and yield.

本発明はこの抵抗の安定化を目的とするものである。The present invention aims to stabilize this resistance.

(課題を解決するための手段) 本発明においては、N中温拡散層2,8の形成に際し、
ゲート電極の下方のP型拡散層4とP散拡散層1との間
にN+型型数散層28によって挾まれる抵抗値の小さい
チャネルと幅の狭い長さの長い抵抗値の大きいチャネル
を形成させた。
(Means for Solving the Problems) In the present invention, when forming the N medium temperature diffusion layers 2 and 8,
A channel with a low resistance value and a narrow channel with a long length and a high resistance value are sandwiched between the P type diffusion layer 4 and the P diffusion layer 1 below the gate electrode by the N+ type diffusion layer 28. formed.

(作用) チャネルの幅、長さ等は、N+型型数散層28が同時に
形成されるため、常に一定とされる。幅が狭く、かつ長
さが長いと抵抗値が大きくなり、pm拡散抵抗5の抵抗
値より充分大きくすると、端子T1と端子0間の抵抗値
はチャネル5によるP型拡散抵抗の抵抗値に近づき安定
化する。
(Function) The width, length, etc. of the channel are always constant because the N+ type scattering layer 28 is formed at the same time. If the width is narrow and the length is long, the resistance value becomes large.If the resistance value is made sufficiently larger than the resistance value of the pm diffused resistor 5, the resistance value between the terminal T1 and the terminal 0 approaches the resistance value of the P type diffused resistor due to the channel 5. Stabilize.

(実施例〉 第1図は本発明の一実施例の表面のパターンの一例を示
す平面図である。第8図忙示されている電極12.18
は省略しである。第2図と同一の部分は同一の符号で表
わされる。
(Embodiment) Fig. 1 is a plan view showing an example of a surface pattern of an embodiment of the present invention.
is omitted. The same parts as in FIG. 2 are designated by the same reference numerals.

本発明が従来例と異なる所は、半導体基板10の表面に
形成された、一方のサイリスタのカソードのためのN+
型型数散層2、ゲート用のN++拡散層3との間の形状
である。
The difference between the present invention and the conventional example is that the N+
This is the shape between the type scattering layer 2 and the N++ diffusion layer 3 for the gate.

第1図において、一方のサイリスタのカソードとなるN
+型型数散層2ゲート用N+型拡散層8との間には、長
さ1の長い、かつ幅すの狭いチャネル8と、長さの短い
、かつ幅Cの広いチャネル5−1が設けられている。
In Figure 1, N is the cathode of one thyristor.
Between the + type scattering layer 2 gate N+ type diffusion layer 8, there are a long channel 8 with a length 1 and a narrow width, and a channel 5-1 with a short length and a wide width C. It is provided.

端子TIの接続される電極12は、N+型型数散層2P
散拡散層lにわたって形成され、端子Gの接続される電
極18は、N+m+散層8とP+温拡散層1の延長され
た一部であってN+型型数散層8よって大1部分を包囲
されているP型数敬重4にわたって形成されている。従
って、端子T1と端子Gとの間の合成抵抗は、チャネル
5のP型拡散抵抗とチャネル8のP型拡散抵抗との合成
されたものとなる。チャネル8のP型拡散抵抗を、チャ
ネル5のpg拡散抵抗より充分大きくすれば、端子TI
と端子Gとの間の抵抗は、チャネル5−1のP型拡散抵
抗に接近してくる。
The electrode 12 to which the terminal TI is connected is an N+ type scattering layer 2P.
The electrode 18 formed over the diffused diffusion layer l and to which the terminal G is connected is an extended part of the N+m+ diffused layer 8 and the P+ warm diffusion layer 1, and is mostly surrounded by the N+ type diffused layer 8. It is formed over a P-type number of 4. Therefore, the combined resistance between terminal T1 and terminal G is a combination of the P-type diffused resistance of channel 5 and the P-type diffused resistance of channel 8. If the P type diffused resistance of channel 8 is made sufficiently larger than the pg diffused resistance of channel 5, terminal TI
The resistance between and terminal G approaches the P-type diffused resistance of channel 5-1.

(発明の効果) 本発明によれば、端子TIと端子Gとの間の抵抗は、N
+型型数散層28の形成によって精度よく安定したもの
が得られるから、品質向上及び歩留向上を図ることがで
きる。
(Effects of the Invention) According to the present invention, the resistance between the terminal TI and the terminal G is N
By forming the +-type scattering layer 28, a highly accurate and stable product can be obtained, so that quality and yield can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面図、第2図は従来の一
例の平面図、第8図は動作説明のための断面図である。 l・・・P屋拡散層、2・・・N+型型数濁、8・・・
N+聾拡散層、4・・・P型拡散層、5・・・チャネル
、6・・・P型拡散抵抗、 7・・・N型半導体基板、 8・・・チャネ lし、 0・・・P型拡散層、 1・・・裏面電極、
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a plan view of a conventional example, and FIG. 8 is a sectional view for explaining the operation. l...P-ya diffusion layer, 2...N+ type number turbidity, 8...
N+ deaf diffusion layer, 4... P type diffusion layer, 5... Channel, 6... P type diffused resistor, 7... N type semiconductor substrate, 8... Channel 1, 0... P-type diffusion layer, 1... back electrode,

Claims (1)

【特許請求の範囲】[Claims] 1、基板に垂直に形成されたNPNPとPNPNの2系
統のサイリスタと、その基板の表面に形成されたゲート
とよりなり、第1の導電型の半導体層の上に形成された
ゲート側の第2の導電型の半導体層と一方の系統のサイ
リスタの表面の第2の導電型の半導体層との間に抵抗値
の小さいチャネルと抵抗値の大きいチャネルとを設けた
ことを特徴とするトライアック
1. Consists of two systems of thyristors, NPNP and PNPN, formed perpendicular to the substrate, and a gate formed on the surface of the substrate, with the gate-side thyristor formed on the semiconductor layer of the first conductivity type. A triac characterized in that a channel with a small resistance value and a channel with a large resistance value are provided between a semiconductor layer of a second conductivity type and a semiconductor layer of a second conductivity type on the surface of a thyristor of one system.
JP316589A 1989-01-10 1989-01-10 Triac Pending JPH02183566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP316589A JPH02183566A (en) 1989-01-10 1989-01-10 Triac

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP316589A JPH02183566A (en) 1989-01-10 1989-01-10 Triac

Publications (1)

Publication Number Publication Date
JPH02183566A true JPH02183566A (en) 1990-07-18

Family

ID=11549749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP316589A Pending JPH02183566A (en) 1989-01-10 1989-01-10 Triac

Country Status (1)

Country Link
JP (1) JPH02183566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438023A (en) * 1994-03-11 1995-08-01 Ramtron International Corporation Passivation method and structure for a ferroelectric integrated circuit using hard ceramic materials or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438023A (en) * 1994-03-11 1995-08-01 Ramtron International Corporation Passivation method and structure for a ferroelectric integrated circuit using hard ceramic materials or the like
US5578867A (en) * 1994-03-11 1996-11-26 Ramtron International Corporation Passivation method and structure using hard ceramic materials or the like

Similar Documents

Publication Publication Date Title
GB1198132A (en) Improvements in Semiconductor Bistable Switching Devices
JPH02183566A (en) Triac
GB1500325A (en) Semiconductor device
US4757368A (en) Semiconductor device having electric contacts with precise resistance values
KR920003801B1 (en) Progrmmable semiconductor cell structure
JP3253468B2 (en) Semiconductor device
JPS55146959A (en) Semiconductor device having silicon nitride film and integrated circuit using the same
JPS5933985B2 (en) semiconductor equipment
JPS6244824B2 (en)
JPS5910763Y2 (en) Monolithic solid state display device
JPH0324071B2 (en)
JPH01264269A (en) Field-effect transistor
JPS58103169A (en) Semiconductor variable resistant element
JPS593866B2 (en) hand tai souchi no seizou houhou
JPH0130308B2 (en)
JPH0139226B2 (en)
JPH0335561A (en) Triac
JPH01152756A (en) Semiconductor integrated circuit device
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPH04368169A (en) Semiconductor device
JPS6143862B2 (en)
JPS5914907B2 (en) Bidirectional negative resistance semiconductor device
JPS6331154A (en) Formation of resistance element
JPS6256667B2 (en)
JPH0645526A (en) Semiconductor diffusion resistor