JPH02183252A - Formation of metallic film - Google Patents

Formation of metallic film

Info

Publication number
JPH02183252A
JPH02183252A JP1002990A JP299089A JPH02183252A JP H02183252 A JPH02183252 A JP H02183252A JP 1002990 A JP1002990 A JP 1002990A JP 299089 A JP299089 A JP 299089A JP H02183252 A JPH02183252 A JP H02183252A
Authority
JP
Japan
Prior art keywords
substrate
film
tungsten
semiconductor substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1002990A
Other languages
Japanese (ja)
Inventor
Satoru Kitagawa
悟 北川
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1002990A priority Critical patent/JPH02183252A/en
Publication of JPH02183252A publication Critical patent/JPH02183252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To form a metallic film having good step coverability on a semiconductor substrate at a relatively low temp. by depositing a metal oxide on the substrate in a liquid phase and reducing the deposited metal oxide to a metal. CONSTITUTION:Tungsten trioxide WO3 is deposited on the semiconductor substrate and the film 4 thereof is formed if an aq. soln. 1 of tungsten oxalite complex in a reaction vessel 3 is cooled to room temp. or below, preferably 0 to 10 deg.C and the semiconductor substrate 2 is immersed therein. The semiconductor substrate 2 formed with the WO3 film 4 on the surface is then taken out of the soln. 1 and is heat treated at about 400 deg.C in an inert gas, such as argon, to increase the purity. The semiconductor substrate 2 is thereafter put into a reaction tube 6 and the tungsten trioxide is reduced to tungsten at about 300 deg.C in a gaseous hydrogen 5 atmosphere. The metallic film is formed at the relatively low temp. on the substrate 2 in this way.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、半導体等の基板上に金属膜を形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for forming a metal film on a substrate such as a semiconductor.

(従来の技術) 基板、特に半導体基板上に金属膜を形成するための方法
として、化学気相蒸着法(CVD法)やスパッタ法等が
従来用いられている。
(Prior Art) Chemical vapor deposition (CVD), sputtering, and the like have been conventionally used to form metal films on substrates, particularly semiconductor substrates.

CVD法は、化学反応を利用して基板上に金属膜を気相
成長させる方法である。この方法には、比較的容易に厚
い膜を形成することが゛できる利点がある。
The CVD method is a method of growing a metal film on a substrate in a vapor phase using a chemical reaction. This method has the advantage that a thick film can be formed relatively easily.

また、スパッタ法は、重荷電粒子をターゲツト材に照射
し、その衝撃でターゲツト材から飛び出した粒子を対向
する試料上に付着させる方法である。この方法によって
形成された膜は、基板に対する密着力が強い。
The sputtering method is a method in which heavily charged particles are irradiated onto a target material, and the particles ejected from the target material due to the impact are deposited on an opposing sample. The film formed by this method has strong adhesion to the substrate.

(発明が解決しようとする課題) しかしながら、CVD法では下地である基板の材料によ
って膜の成長性が異なるため、基板の種類に応じて温度
、圧力等の条件を変える必要がある。従って、場合によ
っては、基板を高温にする必要が生じる。例えば、シリ
コンウェハの全表面にタングステン膜を形成する場合に
は、ウェハを700℃前後の高温にしなければならない
。このような高温は、既に回路が形成された半導体基板
に対しては好ましいものではない。また、GaAs。
(Problems to be Solved by the Invention) However, in the CVD method, the growth properties of the film vary depending on the material of the underlying substrate, so it is necessary to change conditions such as temperature and pressure depending on the type of substrate. Therefore, in some cases, it may be necessary to heat the substrate to a high temperature. For example, when forming a tungsten film on the entire surface of a silicon wafer, the wafer must be heated to a high temperature of around 700°C. Such high temperatures are not preferable for semiconductor substrates on which circuits have already been formed. Also, GaAs.

InP s ZnS等の化合物半導体基板に対しても、
そのような高温は好ましいものではない。
For compound semiconductor substrates such as InP s ZnS,
Such high temperatures are not desirable.

また、スパッタ法は形成される膜の段差被覆性に劣り、
さらに膜形成中に発生する紫外線、軟X線、荷電粒子等
が半導体装置の特性に悪影響を与えることがある。
In addition, the sputtering method has poor step coverage of the formed film,
Furthermore, ultraviolet rays, soft X-rays, charged particles, etc. generated during film formation may adversely affect the characteristics of the semiconductor device.

この発明は、上記事情に鑑み、基板、特に半導体基板上
に段差被覆性の良い金属膜を、比較的低温で、かつ半導
体装置の特性に悪影響を及ぼすことなく形成する方法を
提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a method for forming a metal film with good step coverage on a substrate, particularly a semiconductor substrate, at a relatively low temperature and without adversely affecting the characteristics of a semiconductor device. shall be.

[発明の構成] (課題を解決するための手段) この発明の金属膜形成方法は、液相において基板上に金
属酸化物を析出させる工程と、析出した金属酸化物を金
属に還元する工程とを有することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The metal film forming method of the present invention includes a step of depositing a metal oxide on a substrate in a liquid phase, and a step of reducing the deposited metal oxide to a metal. It is characterized by having the following.

液相中で基板上に金属酸化物を析出させる方法としでは
、例えば、基板上に析出させようとする金属の塩の溶液
を調製し、この溶液に基板を浸漬した後、溶液中で金属
を酸化して基板上に析出させることによって行なうこと
ができる。
As a method for depositing metal oxides on a substrate in a liquid phase, for example, a solution of a salt of the metal to be deposited on the substrate is prepared, the substrate is immersed in this solution, and then the metal is deposited in the solution. This can be done by oxidizing and depositing on the substrate.

基板上に析出した金属酸化物を金属に還元する方法とし
ては、例えば、金属酸化物の層が形成された基板を水素
ガス雰囲気下で加熱°することにより行なうことができ
る。通常、金属酸化物の還元は気相で行なうが、液相に
おいて行なうこともできる。
As a method for reducing the metal oxide deposited on the substrate to metal, it can be carried out, for example, by heating the substrate on which the metal oxide layer is formed in a hydrogen gas atmosphere. The reduction of metal oxides is usually carried out in the gas phase, but it can also be carried out in the liquid phase.

(作用) 液相中における基板上への金属酸化物の析出と、この金
属酸化物の高純度化および金属への還元は共に比較的低
温で行なうことができる。
(Function) Both the precipitation of a metal oxide on a substrate in a liquid phase, the purification of this metal oxide, and its reduction to a metal can be performed at a relatively low temperature.

(実施例) 以下、この発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

まず、第1図に示すように反応容器3内のタングステン
(v)オキザラト錯体[WO2(C204)] −の水
溶液lを室温以下、好ましくは0〜10℃に冷却し、タ
ングステン膜を形成しようとする半導体基板2を浸漬す
る。これを数時間もしくは数十時間静置することにより
第2図に示すように、半導体基板上に三酸化タングステ
ンW03が析出し、三酸化タングステン膜(WO3膜)
4を形成する。タングステン(V)オキザラト錯体水溶
液1は、例えば、タングステン酸カルシウム塩に2 W
O4とシュウ酸H2C204との混合水溶液を、鉛を陰
極とし、飽和シュウ酸水溶液をアノード液として電解還
元することにより得ることができる。このようにして形
成されたタングステン(V)オキザラト錯体は、溶液中
の溶存酸素によって容易に三酸化タングステンWO3に
酸化され、基板上に析出する。
First, as shown in Fig. 1, an aqueous solution l of tungsten (v) oxalate complex [WO2(C204)] - in a reaction vessel 3 is cooled to below room temperature, preferably 0 to 10°C, to form a tungsten film. The semiconductor substrate 2 to be heated is immersed. By allowing this to stand for several hours or tens of hours, tungsten trioxide W03 is deposited on the semiconductor substrate as shown in Figure 2, forming a tungsten trioxide film (WO3 film).
form 4. Tungsten (V) oxalate complex aqueous solution 1 is, for example, 2 W
It can be obtained by electrolytically reducing a mixed aqueous solution of O4 and oxalic acid H2C204 using lead as a cathode and a saturated oxalic acid aqueous solution as an anode. The tungsten (V) oxalate complex thus formed is easily oxidized to tungsten trioxide WO3 by dissolved oxygen in the solution, and deposited on the substrate.

次いで、表面にwO3膜4が形成された半導体基板2を
溶液1から取出し、アルゴン等の不活性ガス中において
約400℃で熱処理して高純度化する。
Next, the semiconductor substrate 2 with the wO3 film 4 formed on its surface is taken out from the solution 1 and heat treated at about 400° C. in an inert gas such as argon to achieve high purity.

次に、第3図に示すように、半導体基板2を反応管6に
入れ、水素ガス 5雰囲気下において約300℃で三酸
化タングステンをタングステンに還元する。これにより
、第4図に示すように、半導体基板2上に 0.5μm
程度のタングステン膜7が形成される。
Next, as shown in FIG. 3, the semiconductor substrate 2 is placed in a reaction tube 6, and the tungsten trioxide is reduced to tungsten at about 300° C. in an atmosphere of hydrogen gas. As a result, as shown in FIG.
A tungsten film 7 of about 100% is formed.

また、この発明の金属膜形成方法はタングステンのみな
らず、他の金属、例えばモリブデンに対しても同様に適
用することができる。
Further, the metal film forming method of the present invention can be applied not only to tungsten but also to other metals, such as molybdenum.

さらに、この発明をデバイスに適用する場合は、高融点
金属の配線、ゲート電極ある′いはコンタクト電極等に
採用できる。基板は、SiやGaAs等の半導体に限ら
ず、例えばガラス基板でも構わない。
Furthermore, when the present invention is applied to a device, it can be used for high melting point metal wiring, gate electrodes, contact electrodes, etc. The substrate is not limited to a semiconductor such as Si or GaAs, and may be a glass substrate, for example.

ガラス基板を用いるものとしては、透明ガラス基板表面
に上記実施例の方法で金属膜を゛設けて、これをパター
ニングし、露光装置用のフォトマスクを作る場合などが
挙げられる。
Examples of cases where a glass substrate is used include the case where a metal film is provided on the surface of a transparent glass substrate by the method described in the above embodiment, and this is patterned to make a photomask for an exposure device.

この発明の金属膜形成方法は、半導体基板に対して好適
に用いることができる。特に、既に回路が形成された半
導体基板、またはGaAs5 InP 。
The metal film forming method of the present invention can be suitably used for semiconductor substrates. In particular, semiconductor substrates with already formed circuits, or GaAs5InP.

ZnS等の化合物半導体基板のように、高温加熱によっ
て悪影響を受ける半導体基板に好適に用いることができ
る。
It can be suitably used for semiconductor substrates that are adversely affected by high temperature heating, such as compound semiconductor substrates such as ZnS.

[発明の効果コ 以上のように、この発明の金属膜形成方法は、液相にお
いて基板上に金属酸化物を析出させる際の湯度が室温以
下であり、基板上に形成された金属酸化物膜の高純度化
および還元の際の温度が300〜400℃であるため、
比較的低温で金属膜を形成することができ、基板、特に
半導体基板に悪影響を与えることが少ない。
[Effects of the Invention] As described above, the metal film forming method of the present invention is characterized in that the temperature of the hot water used to deposit the metal oxide on the substrate in the liquid phase is below room temperature, and the metal oxide formed on the substrate is Since the temperature during membrane purification and reduction is 300 to 400°C,
A metal film can be formed at a relatively low temperature, and there is little adverse effect on substrates, especially semiconductor substrates.

また、この発明の金属膜形成方法では液相において基板
上に金属酸化物を析出堆積させて金属酸化物膜を形成さ
せる。このため、この金属酸化物膜は段差被覆性に優れ
ており、したがって、この金属酸化物膜を還元すること
により得られる金属膜も段差被覆性に優れている。
Further, in the metal film forming method of the present invention, a metal oxide film is formed by precipitating and depositing a metal oxide on a substrate in a liquid phase. Therefore, this metal oxide film has excellent step coverage, and therefore, the metal film obtained by reducing this metal oxide film also has excellent step coverage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明の詳細な説明する図であ
る。 ■・・・タングステン(V)オキザラト錯体水溶液、2
・・・半導体基板、3・・・反応容器、4・・・二酸化
タングステン膜、5・・・水素ガス、6・・・反応管、
タングステン膜。
1 to 4 are diagrams explaining the invention in detail. ■...Tungsten (V) oxalato complex aqueous solution, 2
... Semiconductor substrate, 3... Reaction container, 4... Tungsten dioxide film, 5... Hydrogen gas, 6... Reaction tube,
tungsten film.

Claims (4)

【特許請求の範囲】[Claims] (1)液相において基板上に金属酸化物を析出させる工
程と、 析出した金属酸化物を金属に還元する工程とを有するこ
とを特徴とする金属膜の形成方法。
(1) A method for forming a metal film, comprising the steps of depositing a metal oxide on a substrate in a liquid phase, and reducing the deposited metal oxide to a metal.
(2)前記基板が半導体基板である請求項1に記載の形
成方法。
(2) The forming method according to claim 1, wherein the substrate is a semiconductor substrate.
(3)前記金属がタングステンである請求項2に記載の
形成方法。
(3) The forming method according to claim 2, wherein the metal is tungsten.
(4)前記金属がモリブデンである請求項2に記載の形
成方法。
(4) The forming method according to claim 2, wherein the metal is molybdenum.
JP1002990A 1989-01-10 1989-01-10 Formation of metallic film Pending JPH02183252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002990A JPH02183252A (en) 1989-01-10 1989-01-10 Formation of metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002990A JPH02183252A (en) 1989-01-10 1989-01-10 Formation of metallic film

Publications (1)

Publication Number Publication Date
JPH02183252A true JPH02183252A (en) 1990-07-17

Family

ID=11544818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002990A Pending JPH02183252A (en) 1989-01-10 1989-01-10 Formation of metallic film

Country Status (1)

Country Link
JP (1) JPH02183252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294467B1 (en) 1998-03-18 2001-09-25 Nec Corporation Process for forming fine wiring
CN112875836A (en) * 2019-11-29 2021-06-01 中国科学院大连化学物理研究所 Tungsten trioxide electrode with controllable oxygen vacancy distribution and preparation and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294467B1 (en) 1998-03-18 2001-09-25 Nec Corporation Process for forming fine wiring
CN112875836A (en) * 2019-11-29 2021-06-01 中国科学院大连化学物理研究所 Tungsten trioxide electrode with controllable oxygen vacancy distribution and preparation and application thereof

Similar Documents

Publication Publication Date Title
EP0070751B1 (en) Method for lpcvd co-deposition of metal and silicon to form metal silicide
US6270571B1 (en) Method for producing narrow wires comprising titanium oxide, and narrow wires and structures produced by the same method
US4652463A (en) Process for depositing a conductive oxide layer
JP2814445B2 (en) Selective low-temperature chemical vapor deposition of gold.
JPH02183252A (en) Formation of metallic film
JP3228660B2 (en) Method for producing high-purity metal material for semiconductor element formation
JP3376420B2 (en) Method for producing zinc oxide-based compound patterned film
JPH025521A (en) Manufacture of semiconductor device
JPS59169129A (en) Method for sputtering high-melting point metal or high-melting point metal silicide
JPS63241185A (en) Method for depositing thin metallic film
JPS63151052A (en) Formation of electrode wiring of semiconductor device
SU1162352A1 (en) Method of manufacturing film structures
JPH0658889B2 (en) Thin film formation method
JPS582241A (en) Manufacture of transparent patterned electrode
JPS61203652A (en) Manufacture of semiconductor device
JPH0419912A (en) Transparent conductive film
JP2003257964A (en) Method of forming metal oxide thin film
JPH0420982B2 (en)
JP2000080495A (en) Preparation of compound thin film by electro deposition and its compound thin film
JPH0860350A (en) Production of high-purity metallic material, production of sputtering target and formation of wiring net
JPS6325949A (en) Formation of metallic thin film
JPH10317073A (en) Wiring coating for forming semiconductor device and semiconductor package
JPS59110775A (en) Formation of metal film
JPH107494A (en) Formation of oxide thin film
JPH04157727A (en) Pattern formation method