JPH0419912A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH0419912A
JPH0419912A JP2121103A JP12110390A JPH0419912A JP H0419912 A JPH0419912 A JP H0419912A JP 2121103 A JP2121103 A JP 2121103A JP 12110390 A JP12110390 A JP 12110390A JP H0419912 A JPH0419912 A JP H0419912A
Authority
JP
Japan
Prior art keywords
film
periodic table
transparent conductive
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2121103A
Other languages
Japanese (ja)
Inventor
Masahiko Hirai
匡彦 平井
Hideaki Imai
秀秋 今井
Masaru Ozaki
勝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2121103A priority Critical patent/JPH0419912A/en
Publication of JPH0419912A publication Critical patent/JPH0419912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To make corrosion resistance higher by producing transparent conductive film having a band gap of 3eV or more, in a compound semiconductor made from at least one element respectively selected out of the III group elements of the periodic table and the V group elements of the periodic table. CONSTITUTION:Transparent conductive film having a band gap of 3eV or more is produced in a compound semiconductor made from at least one element selected out of the III group element of the periodic table and at least one element selected out of the V group elements of the periodic table. As the III group elements of the periodic table, B, Al, Ga and In are available. And as the V group elements of the periodic table N, P and As are available. Compound semiconductor of GaN and the like, and mixed crystal of GaAlN, GaBN, GaInN, GaAlInN and the like are available as the examples of compound semiconductor made from these elements. And further some of these are doped with Mg, Zn, Cd, Be, Li, Na, SiO, F and the like to control resistivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に太陽電池、液晶デイスプレーELデイス
プレー用電極として最適な、耐蝕性に優れた透明導電膜
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent conductive film with excellent corrosion resistance, which is particularly suitable as an electrode for solar cells, liquid crystal displays, and EL displays.

[従来の技術] 一般に可視光領域において透明で、かつ導電性を有する
透明導電膜は、アモルファスシリコン太陽電池や、液晶
デイスプレー ELデイスプレーにおける透明電極とし
て、あるいは各用途の帯電防止膜として使用されている
。これらの透明導電膜の材料としては、A u [Ph
1los。
[Prior Art] Transparent conductive films that are transparent and conductive in the visible light region are generally used as transparent electrodes in amorphous silicon solar cells, liquid crystal displays, and EL displays, or as antistatic films for various purposes. ing. As materials for these transparent conductive films, A u [Ph
1los.

Hag、、 Ser、7.46.381 (1955)
]  Ag N、 0ptSoc、 AL+ 40.2
03 (1950)]などの金属超薄膜、I n 20
x  [Jpn、 J、^pp1. Phys、、8.
681(1969)コ    S  n  O2[Va
cuum、  3. 375(1953)]Z n O
[Can、 J、 Phys、、60.1387 (1
982)コなどの酸化物半導体薄膜かあるが、現在1n
20zにSnを添加したITOと呼ばれる透明導電膜が
広く使用されている。
Hag, Ser, 7.46.381 (1955)
] Ag N, 0ptSoc, AL+ 40.2
03 (1950)], In 20
x [Jpn, J, ^pp1. Phys, 8.
681 (1969) Ko Sn O2[Va
Cuum, 3. 375 (1953)] Z n O
[Can, J. Phys., 60.1387 (1
There are oxide semiconductor thin films such as 982), but currently 1n
A transparent conductive film called ITO, which is made by adding Sn to 20z, is widely used.

ITCIは、4eV前後のバンドギャップをもつ可視域
で透明な導電膜で、抵抗率10→Ω(1)程度のものが
得られているが、耐蝕性においては問題を残している。
ITCI is a conductive film that is transparent in the visible range and has a band gap of about 4 eV, and has a resistivity of about 10→Ω(1), but it still has problems in corrosion resistance.

このようにITO膜は、透明性、導電性においては優れ
た特性をもっているが、酸化還元にきわめて弱く、又、
酸などで容易にエツチングされる。例えば、濃塩酸中に
、ガラス基板上に膜厚500〜1000人のITO膜を
蒸着形成したものを浸すと、数秒で溶解してしまう。
Although ITO films have excellent properties in terms of transparency and conductivity, they are extremely susceptible to oxidation and reduction, and
Easily etched with acids, etc. For example, if an ITO film formed by vapor deposition on a glass substrate is immersed in concentrated hydrochloric acid, it will dissolve in a few seconds.

又、ITO膜の主成分であるI n203は、インジウ
ムと酸素との結合か弱いため、高温において水素を含む
雰囲気にさらすなどすると、酸素が遊離しインジウムが
析出して透明性を失ってしまう。このことは、アモルフ
ァスシリコン太陽電池用電極としてITO膜を使用する
場合、アモルファスシリコン膜形成時に水素プラズマを
用いたプラズマCVD法を用いることが多いため、大き
な問題となる。
Furthermore, since In203, which is the main component of the ITO film, has a weak bond between indium and oxygen, if it is exposed to an atmosphere containing hydrogen at high temperatures, oxygen will be liberated, indium will precipitate, and transparency will be lost. This becomes a big problem when using an ITO film as an electrode for an amorphous silicon solar cell because a plasma CVD method using hydrogen plasma is often used to form the amorphous silicon film.

[発明が解決しようとする課題] 上記問題の解決のため、本発明はITO膜に代わる、耐
蝕性に優れた透明導電膜を提供しようとするものである
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present invention aims to provide a transparent conductive film with excellent corrosion resistance in place of the ITO film.

[課題を解決するための手段] 本発明は、前述の課題を解決すべくなされたものであり
、その構成は周期表■族元素から選ばれた少なくとも1
種の元素、及び周期表V族元素から選ばれた少なくとも
1種の元素からなる化合物半導体において、バンドギャ
ップ3eV以上を有する透明導電膜を提供するものであ
る。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and is composed of at least one element selected from group I elements of the periodic table.
The present invention provides a transparent conductive film having a band gap of 3 eV or more in a compound semiconductor composed of at least one element selected from a group V element of the periodic table and a group V element of the periodic table.

以下、本発明について更に詳細に説明する。The present invention will be explained in more detail below.

本発明における、周期表■族元素としては、s SA 
I 、G a SI nがあり、これらのうち少なくと
も1種の元素か含まれる。
In the present invention, as the periodic table group I element, s SA
I, Ga SI n, and at least one element among these is included.

又、周期表■族元素としては、N、P、Asがあり、こ
れらのうち少なくとも1種の元素か含まれる。
Furthermore, examples of Group I elements of the periodic table include N, P, and As, and at least one element among these is included.

これらからなる化合物半導体の例としてはGaN等の化
合物半導体、GaA I N、 G a BN。
Examples of compound semiconductors made of these compounds include compound semiconductors such as GaN, GaA IN, and Ga BN.

Ga InN、GaA 11 nN等の混晶系化合物半
導体があり、又これらに〜Ig、Zn、Cd、Be、L
i、Na、S i% 0% Fなどをドープして、抵抗
率を制御したものかある。
There are mixed crystal compound semiconductors such as GaInN and GaA 11 nN, and these include ~Ig, Zn, Cd, Be, L
There is also one in which the resistivity is controlled by doping with i, Na, Si% 0% F, etc.

これらを成膜する際用いる材料としては、例えば、金属
単体、もしくは、水素化物、もしくはハロゲン化物など
を使用することかできる。
As the material used to form these films, for example, an elemental metal, a hydride, or a halide can be used.

成膜法としては一般に用いられている方法を用いること
ができ、例えば、真空蒸着法、MBE法、CVD法、M
OCVD法、反応性蒸着法、イオンビーム蒸着法、スパ
ッタリング法かある。
As the film forming method, commonly used methods can be used, such as vacuum evaporation method, MBE method, CVD method, M
There are OCVD methods, reactive evaporation methods, ion beam evaporation methods, and sputtering methods.

本発明の透明導電膜においては、3eV以上のバンドギ
ャップを有し、可視域(光の波長400〜800nm)
において70%以上の透過率を有していることを特徴と
している。又、バンドギャップを大きくとることも可能
であり、紫外領域での透明性をもたせることが出来る。
The transparent conductive film of the present invention has a band gap of 3 eV or more, and has a visible range (light wavelength of 400 to 800 nm).
It is characterized by having a transmittance of 70% or more. Furthermore, it is possible to make the band gap large, and it is possible to provide transparency in the ultraviolet region.

又、導電性においては、抵抗率10−2Ωcm以下であ
ることが必要であるが、成膜条件、ドーピング量を操作
することにより、制御することか出来る。例えばGaN
の場合、基板温度を上げ窒素欠陥を多くして、キャリア
密度を多くして、抵抗率を下げることが出来る。
Regarding conductivity, it is necessary that the resistivity is 10 -2 Ωcm or less, but this can be controlled by manipulating the film forming conditions and the amount of doping. For example, GaN
In this case, it is possible to raise the substrate temperature, increase the number of nitrogen defects, increase the carrier density, and lower the resistivity.

これらの透明導電膜は、耐蝕性に優れており、特に窒化
物膜において顕著である。
These transparent conductive films have excellent corrosion resistance, especially in nitride films.

又、かかる透明導電膜の膜厚は、必要とされる抵抗値、
光学的特性によって決めることか出来るものであるが、
通常500人〜2μm程度である。
In addition, the thickness of such a transparent conductive film is determined by the required resistance value,
Although it can be determined by optical characteristics,
It is usually about 500 to 2 μm.

薄膜を合成させる基板としては、サファイア、石英、Z
nS、ZnO1Si、SiC等かある。
Sapphire, quartz, Z
There are nS, ZnO1Si, SiC, etc.

次に成膜方法の一例を説明するか、特にこれに限定され
るものではない。
Next, an example of a film forming method will be described, but the method is not particularly limited thereto.

装置には第1図に示すような真空容器1内に蒸発用坩堝
(クヌードセンセル)2、電子ビーム蒸着装置3、クラ
ンキングガスセル5、基板加熱ホルダー 6を備えた>
IBE装置を使用する。
The apparatus is equipped with an evaporation crucible (Knudsen cell) 2, an electron beam evaporation device 3, a cranking gas cell 5, and a substrate heating holder 6 in a vacuum container 1 as shown in FIG.
Use IBE equipment.

蒸発用坩堝2にはGa金属をいれ、900〜1000℃
に加熱する。
Ga metal is put in the evaporation crucible 2 and heated to 900 to 1000°C.
Heat to.

クラッキングガスセル4は、ガス比口を基板7に吹き付
けるように設置する。導入ガスにはNH3やN2 H4
を使用し導入mは l−50cc/rIinとする。真
空容器内の真空度は、成膜時で1〜5 x 10’ T
orr程度となる。
The cracking gas cell 4 is installed so as to spray the gas onto the substrate 7. Introduced gas includes NH3, N2 H4
The introduction m is 1-50cc/rIin. The degree of vacuum in the vacuum container is 1 to 5 x 10' T during film formation.
It will be about orr.

基板にサファイア単結晶基板などを使用し、600〜1
000℃に加熱しなからGaNを成膜する。
Using a sapphire single crystal substrate etc. for the substrate, 600~1
A GaN film is formed without heating to 000°C.

成膜後、NH3を導入しながら基板温度を下げる。以上
のようにして、透明なGaN膜か得られる。
After film formation, the substrate temperature is lowered while introducing NH3. In the manner described above, a transparent GaN film can be obtained.

[実施例コ 以下実施例により更に詳細に説明する。[Example code] The present invention will be explained in more detail with reference to Examples below.

実施例1 装置には第1図に示すようなMBE装置を使用した。Example 1 An MBE apparatus as shown in FIG. 1 was used as the apparatus.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
。クラッキングガスセル4は、ガス出口を基板7に吹き
付けるように設置した。導入ガスにはNH3を使用し、
導入量は3ec/1Tlinとした。又、このガスセル
は触媒存在下でガスを加熱できるようになっており、ア
ルミナに触れさせながら約300℃に加熱した。基板に
はサファイア単結晶基板(1102)面を使用し 65
0℃に加熱した。
Ga metal was placed in the evaporation crucible 2 and heated to 940°C. The cracking gas cell 4 was installed so that the gas outlet sprayed onto the substrate 7. NH3 is used as the introduced gas,
The amount introduced was 3ec/1Tlin. Moreover, this gas cell is capable of heating gas in the presence of a catalyst, and the gas was heated to about 300° C. while it was in contact with alumina. A sapphire single crystal substrate (1102) plane is used as the substrate.65
Heated to 0°C.

真空容器内の真空度は、成膜時で1〜5×10’ To
rr程度であった。
The degree of vacuum in the vacuum container is 1 to 5 x 10' To
It was about rr.

このような実験条件において1時開成膜を行ない、膜厚
的150OAのGaN膜を得た。この膜は可視域(光の
波長400〜800r+m)において80%以上の透過
率をもち、抵抗率は10−3Ωσであった。分光の結果
から得たバンドギャップの大きさは、約3.2eVであ
った。又、この膜を王水中に1時間放置したか全く侵食
されなかった。更に、この膜上にプラズマCVD法によ
りアモルファスSi膜を成膜したが、GaN膜の劣化は
認められなかった。
Under these experimental conditions, one-time open film formation was performed to obtain a GaN film with a film thickness of 150 OA. This film had a transmittance of 80% or more in the visible range (light wavelengths of 400 to 800 r+m) and a resistivity of 10-3 Ωσ. The bandgap size obtained from the spectroscopic results was about 3.2 eV. Further, this film was left in aqua regia for 1 hour and was not eroded at all. Further, an amorphous Si film was formed on this film by plasma CVD, but no deterioration of the GaN film was observed.

実施例2 装置には実施例1と同様の第1図に示すようなMBE装
置を使用した。
Example 2 An MBE apparatus similar to that of Example 1 as shown in FIG. 1 was used.

蒸発用坩堝2にはGa金属をいれ、940’Cに加熱し
た。電子ビーム蒸着装置3の坩堝にはA1金属をいれ、
薄膜中でのA1金属の原子数比がGa金属の10分の一
程度になるように電子ビームの出力を調整し、加熱蒸発
した。
Ga metal was placed in the evaporation crucible 2 and heated to 940'C. Put A1 metal into the crucible of the electron beam evaporation device 3,
The output of the electron beam was adjusted so that the atomic ratio of the A1 metal in the thin film was about one-tenth that of the Ga metal, and the film was heated and evaporated.

以下、基板の加熱温度を1000℃にした以外は実施例
1と同じ条件て成膜を行ない 膜厚的1500XのGa
AIN膜を得た。原子吸光法による組成分析によれば、
A1の原子数比はGaの約10%であった。この膜は可
視域(光の波長400〜800r+m)において、80
%以上の透過率をもち、抵抗率は10−2Ω釦であった
。分光の結果から得たバンドギャップの大きさは3.6
eVてあった。又この膜を王水中に1時間放置したが、
全く侵食されなかった。
Hereinafter, a film was formed under the same conditions as in Example 1 except that the substrate heating temperature was 1000°C.
An AIN film was obtained. According to compositional analysis using atomic absorption spectrometry,
The atomic ratio of A1 was about 10% of Ga. In the visible range (light wavelength 400-800r+m), this film has a
% or more, and the resistivity was 10-2Ω. The bandgap size obtained from the spectroscopy results is 3.6
There was eV. Also, this membrane was left in aqua regia for 1 hour,
It wasn't eroded at all.

実施例3 装置には実施例1と同様の第1図に示すようなMBE装
置を使用した。
Example 3 An MBE apparatus similar to that of Example 1 as shown in FIG. 1 was used.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
。蒸発用坩堝2のもう一方にはM g金属をいれ、30
0°Cに加熱した。
Ga metal was placed in the evaporation crucible 2 and heated to 940°C. Put Mg metal in the other side of evaporation crucible 2,
Heated to 0°C.

以下実施例1と同じ条件で同じ時開成膜を行ない、膜厚
約1500人のMgをドーピングしたGaN膜を得た。
Thereafter, film formation was performed under the same conditions as in Example 1 at the same time to obtain a GaN film doped with Mg having a thickness of about 1500 nm.

この膜は可視域(光の波長400〜800nm)におい
て、80%以上の透過率をもち、抵抗率は10°1Ω印
であった。これにより、電導度を制御できたことを確認
した。分光の結果から得たバンドギャップの大きさは、
約3.2eVてあった。又、この膜を王水中に1時間放
置したか全く侵食されなかった。
This film had a transmittance of 80% or more in the visible range (light wavelength of 400 to 800 nm), and a resistivity of 10°1Ω mark. This confirmed that the conductivity could be controlled. The size of the band gap obtained from the spectroscopy results is
It was about 3.2 eV. Further, this film was left in aqua regia for 1 hour and was not eroded at all.

実施例4 装置には実施例1と同様の第1図に示すようなMBE装
置を使用した。
Example 4 An MBE apparatus similar to that of Example 1 as shown in FIG. 1 was used.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
。蒸発用坩堝2のもう一方にはIn金属をいれ、650
℃に加熱した。
Ga metal was placed in the evaporation crucible 2 and heated to 940°C. In the other side of the evaporation crucible 2, put In metal,
heated to ℃.

以下、基板の加熱温度を700℃にした以外は実施例1
と同じ条件で同じ時開成膜を行ない、膜厚的150OA
のGa1nN膜を得た。原子吸光法による組成分析によ
れば、Inの原子数比はGaの約5%であった。この膜
は可視域(光の波長400〜g(lonm)において、
7096以上の通過率をもち、抵抗率は104Ω口であ
った。分光の結果から得たバンドギャップの大きさは、
約3.Oe■であった。又、この膜を王水中に1時間放
置したが全(侵食されなかった。
The following is Example 1 except that the heating temperature of the substrate was 700°C.
An open film was formed under the same conditions and at the same time, and the film thickness was 150OA.
A Ga1nN film was obtained. According to the composition analysis by atomic absorption method, the atomic ratio of In was about 5% of Ga. In the visible range (wavelength of light 400~g (lonm)), this film
It had a pass rate of 7096 or more and a resistivity of 104Ω. The size of the band gap obtained from the spectroscopy results is
Approximately 3. It was Oe■. Further, this membrane was left in aqua regia for 1 hour, but no corrosion occurred.

実施例5 装置には実施例1と同様の第1図に示すようなMBE装
置を使用した。
Example 5 An MBE apparatus similar to that of Example 1 as shown in FIG. 1 was used.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
。クラッキングガスセル4は、ガス出口を基板7に吹き
付けるように設置した。導入ガスにはN2 H4を使用
し導入量は3cc/11inとした。又、このガスセル
は触媒存在下でガスを加熱できるようになっており、ア
ルミナに触れさせながら約300℃に加熱した。ガスセ
ル5は、ガス出口を基板7に吹き付けるようにした。導
入ガスにはPCl3を使用し、導入量はice/l1i
nとした。基板にはサファイア単結晶基板(1102)
面を使用し、650℃に加熱した。
Ga metal was placed in the evaporation crucible 2 and heated to 940°C. The cracking gas cell 4 was installed so that the gas outlet sprayed onto the substrate 7. N2 H4 was used as the introduced gas, and the amount introduced was 3 cc/11 inch. Moreover, this gas cell is capable of heating gas in the presence of a catalyst, and the gas was heated to about 300° C. while it was in contact with alumina. The gas cell 5 was configured to spray a gas onto the substrate 7 through its outlet. PCl3 is used as the introduced gas, and the amount introduced is ice/l1i.
It was set as n. The substrate is a sapphire single crystal substrate (1102)
A surface was used and heated to 650°C.

真空容器内の真空度は、成膜時で1〜5×10’Tor
r程度であった。
The degree of vacuum in the vacuum container is 1 to 5 x 10' Torr during film formation.
It was about r.

このような実験条件において1時開成膜を行ない、膜厚
的1500AのGaPN膜を得た。この膜は可視域(光
の波長400〜800r+m)において、80%以上の
透過率をもち、抵抗率は10−3Ω叩であった。分光の
結果から得たバンドギャップの大きさは、約3 、 O
eVであった。又、この膜を王水中に1時間放置したが
全(侵食されなかった。
Under these experimental conditions, one-time open film formation was performed to obtain a GaPN film with a film thickness of 1500 Å. This film had a transmittance of 80% or more in the visible range (light wavelengths of 400 to 800 r+m), and a resistivity of 10 -3 Ω. The size of the band gap obtained from the spectroscopy results is approximately 3.0
It was eV. Further, this membrane was left in aqua regia for 1 hour, but no corrosion occurred.

実施例6 装置には第2図に示すような、石英管8内にGa金属を
入れたボート 9、基本ホルダー10、及びガス導入ノ
ズル11.12を備えたCVD装置を使用した。
Example 6 A CVD apparatus as shown in FIG. 2 was used, which was equipped with a boat 9 containing Ga metal in a quartz tube 8, a basic holder 10, and gas introduction nozzles 11 and 12.

石英管8は、管状炉によって加熱しボート 9は900
℃、基本ホルダー10は10DO’Cになるように調整
した。基板にはサファイア単結晶基板(1102)面を
使用した。
The quartz tube 8 is heated by a tubular furnace and the boat 9 is 900 yen.
℃, and the basic holder 10 was adjusted to 10 DO'C. A sapphire single crystal substrate (1102) plane was used as the substrate.

ガス導入ノズル11にはHCIガスを5cc/min流
し、ガリウム金属にガスがよく触れるようにした。ガス
導入ノズル12にはNH3ガスを200cc/min流
し、基板7上方でGaClガスと混合するようにした。
HCI gas was flowed through the gas introduction nozzle 11 at a rate of 5 cc/min so that the gas could come into contact with the gallium metal. NH3 gas was flowed through the gas introduction nozzle 12 at a rate of 200 cc/min, and was mixed with GaCl gas above the substrate 7.

石英管8には、この他にキャリアガスとしてN2ガスを
1000cc/min流した。
In addition to this, N2 gas was flowed through the quartz tube 8 at 1000 cc/min as a carrier gas.

このような実験条件において1時開成膜を行ない、膜厚
約20μ荘のGaN膜を得た。この膜は可視域(光の波
長400〜800nm)において、70%以上の透過率
をもち、抵抗率は1o−3Ω釦の値を得た。分光の結果
から得たバンドギャップの大きさは、約3.2eVてあ
った。又、この膜を王水中に1時間放置したか全く侵食
されなかった。
Under these experimental conditions, one-time open film formation was performed to obtain a GaN film with a thickness of approximately 20 μm. This film had a transmittance of 70% or more in the visible range (light wavelength of 400 to 800 nm), and a resistivity of 10-3Ω. The bandgap size obtained from the spectroscopic results was about 3.2 eV. Further, this film was left in aqua regia for 1 hour and was not eroded at all.

実施例7 装置には第3図に示すような、真空容器 1内に蒸発用
坩堝2、プラズマ源13、基板加熱ボルダ−Bを備えた
真空蒸着装置を使用した。
Example 7 A vacuum evaporation apparatus as shown in FIG. 3 was used, which was equipped with an evaporation crucible 2, a plasma source 13, and a substrate heating boulder B in a vacuum container 1.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
Ga metal was placed in the evaporation crucible 2 and heated to 940°C.

プラズマ源13は、プラズマガス出口を基板7に吹き付
けるように設置した。導入ガスにはN2を使用し、導入
量は5cc/minとした。又、このプラズマ源は高周
波によりガスをプラズマ加熱できるようになっている。
The plasma source 13 was installed so that the plasma gas outlet sprayed onto the substrate 7. N2 was used as the introduced gas, and the amount introduced was 5 cc/min. Further, this plasma source is capable of plasma heating the gas using high frequency waves.

基板にはサファイア単結晶基板(1102)面を使用し
、650℃に加熱した。
A sapphire single crystal substrate (1102) plane was used as the substrate and heated to 650°C.

真空容器内の真空度は、成膜時て 1〜5×10’To
rr程度であった。
The degree of vacuum in the vacuum container is 1 to 5 x 10'To during film formation.
It was about rr.

このような実験条件において1時開成膜を行ない、膜厚
約1500人のGaN膜を得た。この膜は可視域(光の
波長400〜800nm)において8096以上の透過
率をもち、抵抗率は10−3Ω印であった。分光の結果
から得たバンドギャップの大きさは、約3.2eVであ
った。又、この膜を王水中に1時間放置したが全く侵食
されなかった。
Under these experimental conditions, one-time open film formation was performed to obtain a GaN film with a thickness of approximately 1,500 yen. This film had a transmittance of 8096 or more in the visible range (light wavelengths of 400 to 800 nm) and a resistivity of 10 -3 Ω. The bandgap size obtained from the spectroscopic results was about 3.2 eV. Further, this film was left in aqua regia for 1 hour, but was not corroded at all.

実施例8 装置には第4図に示すような、真空容器l内に蒸発用坩
堝2、イオンビームガンJ4、基板加熱ホルダー6を備
えたイオンビーム蒸着装置を使用した。
Example 8 An ion beam evaporation apparatus as shown in FIG. 4 was used, which was equipped with an evaporation crucible 2, an ion beam gun J4, and a substrate heating holder 6 in a vacuum vessel l.

蒸発用坩堝2にはGa金属をいれ、940℃に加熱した
。イオンビームガン14は、ビーム出口を基板7の方向
を向くようにした。イオンビームとしてはNイオンを使
用し、ビーム電流、加速電圧はそれぞれ約1+nA 、
  50[IVとした。又、このイオンビームガンは直
流アーク放電プラズマによりNイオンを得るようになっ
ている。基板にはサファイア単結晶基板(1102)面
を使用し、600℃に加熱した@ 真空容器内の真空度は、成膜時て 1〜5×10’ T
orr程度であった。
Ga metal was placed in the evaporation crucible 2 and heated to 940°C. The ion beam gun 14 had its beam exit facing toward the substrate 7. N ions are used as the ion beam, and the beam current and acceleration voltage are approximately 1+nA, respectively.
50 [IV. Further, this ion beam gun is designed to obtain N ions using DC arc discharge plasma. A sapphire single crystal substrate (1102) was used as the substrate, heated to 600°C @ The degree of vacuum in the vacuum chamber was 1 to 5 x 10' T during film formation.
It was about orr.

このような実験条件において1時開成膜を行ない、膜厚
的15002のGaN膜を得た。この膜は可視域(光の
波長400〜800nm)において8096以上の透過
率をもち、抵抗率は10−3Ω印であった。分光の結果
から得たバンドギャップの太きさは、約3.2eVであ
った。又、この膜を王水中に1時間放置したが全く侵食
されなかった。
Under these experimental conditions, one-time open film formation was performed to obtain a GaN film with a film thickness of 15,002 mm. This film had a transmittance of 8096 or more in the visible range (light wavelengths of 400 to 800 nm) and a resistivity of 10 -3 Ω. The width of the band gap obtained from the spectroscopic results was about 3.2 eV. Further, this film was left in aqua regia for 1 hour, but was not corroded at all.

[発明の効果] 以上のように、本発明の透明導電膜は耐蝕性に優れ、工
業上極めて有用なものである。
[Effects of the Invention] As described above, the transparent conductive film of the present invention has excellent corrosion resistance and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜5で用いたMBE装置の説明図、第
2図〜第4図はそれぞれ実施例6〜8で用いた装置の説
明図である。 1・・・真空容器、2・・・蒸発用坩堝、3・・・電子
ビーム蒸着装置、 4・・・クラッキングガスセル、5・・・ガスセル、6
・・・基板加熱ホルダー 7・・・基板、訃・・石英管
、9・・・ボート、10・・・基板ホルダー11.12
・・・ガス導入ノズル、13・・・プラズマ源、14・
・・イオンビームガン。 第 図 \ 第 図
FIG. 1 is an explanatory diagram of the MBE apparatus used in Examples 1 to 5, and FIGS. 2 to 4 are explanatory diagrams of the apparatus used in Examples 6 to 8, respectively. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Evaporation crucible, 3... Electron beam evaporation device, 4... Cracking gas cell, 5... Gas cell, 6
... Substrate heating holder 7 ... Substrate, butt ... Quartz tube, 9 ... Boat, 10 ... Substrate holder 11.12
...Gas introduction nozzle, 13...Plasma source, 14.
...Ion beam gun. Figure \ Figure

Claims (1)

【特許請求の範囲】[Claims]  周期表III族元素から選ばれた少なくとも1種の元素
、及び周期表V族元素から選ばれた少なくとも1種の元
素からなる化合物半導体において、バンドギャップ3e
V以上を有する透明導電膜。
A compound semiconductor consisting of at least one element selected from group III elements of the periodic table and at least one element selected from group V elements of the periodic table, with a band gap of 3e.
A transparent conductive film having V or more.
JP2121103A 1990-05-14 1990-05-14 Transparent conductive film Pending JPH0419912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121103A JPH0419912A (en) 1990-05-14 1990-05-14 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121103A JPH0419912A (en) 1990-05-14 1990-05-14 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0419912A true JPH0419912A (en) 1992-01-23

Family

ID=14802957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121103A Pending JPH0419912A (en) 1990-05-14 1990-05-14 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0419912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804839A (en) * 1995-12-28 1998-09-08 Sharp Kabushiki Kaisha III-V nitride compound semiconductor device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804839A (en) * 1995-12-28 1998-09-08 Sharp Kabushiki Kaisha III-V nitride compound semiconductor device and method for fabricating the same

Similar Documents

Publication Publication Date Title
US4652463A (en) Process for depositing a conductive oxide layer
US4939043A (en) Optically transparent electrically conductive semiconductor windows
US5173443A (en) Method of manufacture of optically transparent electrically conductive semiconductor windows
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
TWI450865B (en) Β-ga2o3 type single crystal growth method
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP4613373B2 (en) Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
WO2002016679A1 (en) Polycrystalline semiconductor material and method of manufacture thereof
JPH01198481A (en) Formation of deposited film by microwave plasma cvd
CN112086344B (en) Preparation method of aluminum gallium oxide/gallium oxide heterojunction film and application of aluminum gallium oxide/gallium oxide heterojunction film in vacuum ultraviolet detection
JPH08973B2 (en) Deposited film formation method
EP0104916A2 (en) Depositing a film onto a substrate including electron-beam evaporation
JPH0419912A (en) Transparent conductive film
EP0438398B1 (en) Optically transparent electrically conductive semiconductor windows and methods of manufacture
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
US6503578B1 (en) Method for preparing ZnSe thin films by ion-assisted continuous wave CO2 laser deposition
JP3339178B2 (en) Method for producing electrode for group 3-5 compound semiconductor
Abdullahi RF Sputtered Zinc Oxide (ZnO) Thin Films: A Review
US4233614A (en) Light emitting diode
EP4230761A1 (en) A method for reactive magnetron sputter deposition of gallium oxide thin films
JP2650635B2 (en) Method for producing II-VI compound semiconductor thin film
Muñoz‐Sanjosé et al. ZnO and Related Materials
JPH07283167A (en) Iii-v compound semiconductor electrode material
Xin et al. Study on the effect of Sn concentration on the structural, optical, and electrical properties of (Al 0.55 In 0.45) 2 O 3: Sn films
Flauta et al. Thin film formation of gallium nitride using plasma-sputter deposition technique