JP2003257964A - Method of forming metal oxide thin film - Google Patents

Method of forming metal oxide thin film

Info

Publication number
JP2003257964A
JP2003257964A JP2002061984A JP2002061984A JP2003257964A JP 2003257964 A JP2003257964 A JP 2003257964A JP 2002061984 A JP2002061984 A JP 2002061984A JP 2002061984 A JP2002061984 A JP 2002061984A JP 2003257964 A JP2003257964 A JP 2003257964A
Authority
JP
Japan
Prior art keywords
compound semiconductor
thin film
metal oxide
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061984A
Other languages
Japanese (ja)
Inventor
Kenichi Morikawa
謙一 森川
Yoshihiro Ogawa
芳宏 小川
Manami Uetsuka
真奈美 上塚
Masami Kumei
正美 粂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2002061984A priority Critical patent/JP2003257964A/en
Publication of JP2003257964A publication Critical patent/JP2003257964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the formation of a high-quality metal oxide thin film on a compound semiconductor substrate using a simple and low-cost apparatus, and to facilitate the selective formation of a thin film on the surface of the substrate with a high degree of freedom in selection of the compound semiconductor substrate. <P>SOLUTION: A liquid phase film formation method wherein the compound semiconductor substrate is dipped in a solution containing a fluorine compound and then a thin film of a metal oxide is formed on the compound semiconductor substrate by chemical reaction in the solution comprises steps of (S1) preparing a saturated solution containing a fluorine compound, (S2) for surface reformation, irradiating plasma containing oxygen on the surface of the compound semiconductor substrate, (S3) after the surface reformation, dipping the compound semiconductor substrate in the solution, and then forming the thin film of a metal oxide on the substrate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体上へ
金属酸化物薄膜を液相成膜にて形成する金属酸化物薄膜
の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal oxide thin film on a compound semiconductor by liquid phase film formation.

【0002】[0002]

【従来の技術】従来この種の成膜は、蒸着法やスパッタ
リング法を用いるのが一般的であり、図3及び図4にそ
れらの成膜装置の概略構成を示す。
2. Description of the Related Art Conventionally, for this type of film formation, a vapor deposition method or a sputtering method is generally used, and FIGS. 3 and 4 show a schematic configuration of the film forming apparatus.

【0003】図3は電子線加熱蒸着装置の構成を模式的
に示す断面図である。同図において、1は成膜が施され
る基板、2はシャッター、3は電子銃、4は成膜する物
質原料となる蒸発材料で、るつぼ5に収容されている。
6は図外の真空ポンプと連結された真空槽で、内部に上
記の各構成要素を配置している。
FIG. 3 is a sectional view schematically showing the structure of an electron beam heating vapor deposition apparatus. In the figure, 1 is a substrate on which a film is formed, 2 is a shutter, 3 is an electron gun, 4 is an evaporation material as a raw material for forming a film, and is contained in a crucible 5.
Reference numeral 6 denotes a vacuum chamber connected to a vacuum pump (not shown) in which the above-mentioned components are arranged.

【0004】この装置は、真空槽6中を10-3Pa程度
まで引き、るつぼ5に蒸発源として成膜する物質原料で
ある蒸発材料4を置き、これを電子銃3から生成した電
子線で加熱、蒸発させ、蒸発させた物質を一定の距離を
離して対向して置いた基板1の上で凝集させるものであ
る。
In this apparatus, the vacuum chamber 6 is evacuated to about 10 −3 Pa, an evaporation material 4 which is a raw material for forming a film as an evaporation source is placed in a crucible 5, and this is irradiated with an electron beam generated from an electron gun 3. It is heated and evaporated, and the evaporated substance is condensed on the substrate 1 placed facing each other with a certain distance.

【0005】図4はスパッタリング成膜装置の構成を模
式的に示す断面図である。同図において、11はスパッ
タリングのターゲットで、冷却水により冷却される。1
2はシャッター、13は陽極となる基板ステージ、14
は成膜が施される基板、15はシールド板、16は図外
の真空ポンプと連結された真空槽で、内部に上記の各構
成要素を配置し、またAr(ガス)が導入される。17
はそのArの導入量を計測する流量計である。
FIG. 4 is a sectional view schematically showing the structure of a sputtering film forming apparatus. In the figure, 11 is a sputtering target, which is cooled by cooling water. 1
2 is a shutter, 13 is a substrate stage which serves as an anode, 14
Is a substrate on which a film is to be formed, 15 is a shield plate, 16 is a vacuum chamber connected to a vacuum pump (not shown), each of the above components is arranged inside, and Ar (gas) is introduced. 17
Is a flow meter for measuring the introduced amount of Ar.

【0006】この装置は、真空槽16の中を少なくとも
10-3Pa以下の圧力まで真空ポンプを用いて引いた
後、その中にArを導入し、ターゲット11と基板ステ
ージ13の間に放電を起こさせるものである。放電の結
果、真空槽16の中のArイオンがターゲット11に叩
き付けられ、ターゲット11を構成する物質が弾き飛ば
されて対向して配置された基板14に付着する。
[0006] In this apparatus, after the vacuum chamber 16 is evacuated to a pressure of at least 10 -3 Pa or less using a vacuum pump, Ar is introduced into the vacuum chamber 16 to discharge between the target 11 and the substrate stage 13. It is what causes it. As a result of the electric discharge, Ar ions in the vacuum chamber 16 are struck by the target 11, and the substance forming the target 11 is repelled and adheres to the substrate 14 arranged opposite to the target.

【0007】このようにして、化合物半導体基板上に酸
化ケイ素、酸化チタンなどの金属酸化物を成膜できるこ
とが知られている。
In this way, it is known that a metal oxide such as silicon oxide or titanium oxide can be formed on a compound semiconductor substrate.

【0008】また、特開昭67−196744号公報及
び特公昭63−65621号公報には、液相で酸化ケイ
素を成膜する方法が提案されている。この方法では、酸
化ケイ素粉末を飽和させたケイ弗化水素酸水溶液にガラ
ス基板を浸漬し、ホウ酸を滴下しながら系内の溶液を濾
過、循環させ、化学反応によって基板上に酸化ケイ素を
成膜するようにしている。弱酸性のケイ弗化アンモニウ
ム水溶液を用いる方法についても、特開平10−158
010号公報に提案されている。
Further, Japanese Patent Application Laid-Open No. 67-196744 and Japanese Patent Publication No. 63-65621 propose a method of forming a silicon oxide film in a liquid phase. In this method, a glass substrate is immersed in a hydrosilicofluoric acid aqueous solution saturated with silicon oxide powder, the solution in the system is filtered and circulated while dropping boric acid, and silicon oxide is formed on the substrate by a chemical reaction. I'm trying to film. A method using a weakly acidic aqueous solution of ammonium silicofluoride is also disclosed in JP-A-10-158.
No. 010 publication.

【0009】同様に、チタン弗化水素酸水溶液もしくは
チタン弗化アンモニウム水溶液とホウ酸を反応させる
と、基板上に酸化チタン被膜を形成できることが、特公
平7‐35268号公報及び特許第2785433号に
提案されている。
Similarly, by reacting an aqueous solution of titanium hydrofluoric acid or an aqueous solution of ammonium titanium fluoride with boric acid, a titanium oxide film can be formed on a substrate, as disclosed in Japanese Patent Publication No. 7-35268 and Japanese Patent No. 2785433. Proposed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の気相成膜技術では、成膜される物質が基板
に対して一方向から入射するため、基板上の傾斜や凹凸
に対して均一な膜厚が得られないという問題点があっ
た。また、これらの方法は真空中で成膜を行うため、真
空を作製するための複雑で高価な装置が必要となる。そ
れ以外にも、成膜物質が、蒸気圧が相当に違う物質の化
合物であった場合、化学量論比を保ったまま成膜するに
は成膜物質の成分ガスを導入しながら成膜を行わなけれ
ばならない。
However, in the conventional vapor phase film forming technique as described above, the material to be formed is incident on the substrate from one direction. There is a problem that a uniform film thickness cannot be obtained. Further, since these methods perform film formation in a vacuum, a complicated and expensive apparatus for producing the vacuum is required. In addition, when the film forming substance is a compound of a substance having a significantly different vapor pressure, in order to form the film while maintaining the stoichiometric ratio, the film formation is performed while introducing the component gas of the film forming substance. It must be made.

【0011】また、特にスパッタリング成膜装置につい
ては、基板に対して成膜物質が叩き付けられるため、こ
れによって基板の損傷、いわゆるプラズマダメージが避
けられない。その他、成膜時に基板が加熱され、これに
よってフォトレジストが破壊される恐れがあることや、
基板に対して選択性がなく、基板全面に成膜してしまう
などの問題がある。
Further, particularly in the case of the sputtering film forming apparatus, since the film forming substance is struck against the substrate, damage to the substrate, that is, so-called plasma damage cannot be avoided. In addition, the substrate may be heated during film formation, which may damage the photoresist,
There is a problem that the substrate has no selectivity and a film is formed on the entire surface of the substrate.

【0012】また、特開昭57−196744号公報及
び特開昭63−65621号公報においては上記の問題
を避けることができるが、酸化ケイ素膜を成膜できる基
板の材質がガラス、シリコンなど表面に安定な親水基を
持つものに限られ、様々な基板に自由に成膜できないと
いう問題がある。
Further, in JP-A-57-196744 and JP-A-63-65621, the above problems can be avoided, but the material of the substrate on which the silicon oxide film can be formed is glass, silicon or the like surface. However, there is a problem that it is not possible to freely form a film on various substrates because it is limited to those having a stable hydrophilic group.

【0013】本発明は、上記のような問題点に鑑みてな
されたもので、簡易で安価な装置を用いて、化合物半導
体基板上へ良質の金属酸化物薄膜を低温で容易に作製す
ることができ、また化合物半導体基板の選択自由度が高
く、基板表面に選択的に薄膜を形成することができる金
属酸化物薄膜の形成方法を提供することを目的としてい
る。
The present invention has been made in view of the above problems, and it is possible to easily produce a good quality metal oxide thin film on a compound semiconductor substrate at a low temperature using a simple and inexpensive apparatus. It is an object of the present invention to provide a method for forming a metal oxide thin film, which is capable of forming a compound semiconductor substrate with a high degree of freedom in selection and which can selectively form a thin film on the substrate surface.

【0014】[0014]

【課題を解決するための手段】本発明に係る金属酸化物
薄膜の形成方法は、次のよう構成したものである。
The method for forming a metal oxide thin film according to the present invention is configured as follows.

【0015】(1)化合物半導体基板をフッ素化合物を
含む溶液中に浸漬し、該溶液内の化学反応によって前記
化合物半導体基板上へ金属酸化物の薄膜を形成する液相
成膜の方法であって、成膜の前段階で前記化合物半導体
基板の表面に対して酸素を含むプラズマの照射による表
面改質処理を施すようにした。
(1) A method of liquid phase film formation in which a compound semiconductor substrate is immersed in a solution containing a fluorine compound and a metal oxide thin film is formed on the compound semiconductor substrate by a chemical reaction in the solution. Before the film formation, the surface of the compound semiconductor substrate is subjected to a surface modification treatment by irradiation with plasma containing oxygen.

【0016】(2)前記(1)において、酸素を含むプ
ラズマの照射による表面改質処理は、酸素分圧0.1P
a〜100Pa、処理時間30秒以上、アンテナ電力1
0W以上、基板温度0℃〜90℃の条件下で行うように
した。
(2) In the above (1), the surface modification treatment by irradiating the plasma containing oxygen is performed by oxygen partial pressure of 0.1 P.
a to 100 Pa, processing time 30 seconds or more, antenna power 1
It was performed under the conditions of 0 W or more and the substrate temperature of 0 ° C to 90 ° C.

【0017】(3)前記(1)または(2)において、
フッ素化合物は、SiF6 2-、TiF6 2-、ZrF6 2-
少なくとも何れかを含むようにした。
(3) In the above (1) or (2),
The fluorine compound was made to contain at least one of SiF 6 2− , TiF 6 2− , and ZrF 6 2− .

【0018】(4)前記(1)ないし(3)何れかにお
いて、金属酸化物は、酸化ケイ素、酸化チタン、酸化ジ
ルコニウムの少なくとも何れかであるようにした。
(4) In any one of (1) to (3) above, the metal oxide is at least one of silicon oxide, titanium oxide and zirconium oxide.

【0019】(5)前記(1)ないし(4)何れかにお
いて、化合物半導体は、ガリウムを含む化合物半導体、
インジウムを含む化合物半導体、亜鉛を含む化合物半導
体の少なくとも何れかの化合物半導体であるようにし
た。
(5) In any one of (1) to (4) above, the compound semiconductor is a compound semiconductor containing gallium,
At least one of a compound semiconductor containing indium and a compound semiconductor containing zinc is used.

【0020】[0020]

【発明の実施の形態】本発明は、化合物半導体表面に液
相にて酸化ケイ索、酸化チタンもしくは酸化ジルコニウ
ムを成膜する液相成膜方法に係るものであり、化合物半
導体基板をフッ素化合物を含む溶液中に浸漬し、該溶液
内の化学反応によって前記化合物半導体基板上へ金属酸
化物の薄膜を形成する液相成膜の方法であって、成膜の
前段階で前記化合物半導体基板の表面に対して酸素を含
むプラズマの照射による表面改質処理を施すようにした
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a liquid-phase film forming method for forming a film of oxide oxide, titanium oxide or zirconium oxide on a compound semiconductor surface in a liquid phase. A method of liquid-phase film formation in which a thin film of a metal oxide is formed on the compound semiconductor substrate by a chemical reaction in a solution containing the compound semiconductor substrate, the surface of the compound semiconductor substrate being formed before the film formation. Is subjected to surface modification treatment by irradiation with plasma containing oxygen.

【0021】図1に本発明に係る成膜工程の要部を示
す。フッ素化合物を含む飽和溶液を作製し(S1)、化
合物半導体基板の表面改質処理を行った後に(S2)、
上記溶液に化合物半導体基板を浸漬して(S3)、該基
板上に金属酸化物の薄膜を形成するものである。
FIG. 1 shows an essential part of a film forming process according to the present invention. After preparing a saturated solution containing a fluorine compound (S1) and performing a surface modification treatment on the compound semiconductor substrate (S2),
A compound semiconductor substrate is immersed in the above solution (S3) to form a metal oxide thin film on the substrate.

【0022】詳しくは、表面に反応の足がかりとなる安
定な親水基を持たない化合物半導体、例えば窒化ガリウ
ム(GaN)、ヒ化ガリウム(GaAs)あるいはリン
化ガリウム(GaP)に代表されるガリウムを含む化合
物半導体、窒化インジウム(InN)に代表されるイン
ジウムを含む化合物半導体、更に酸化亜鉛(ZnO)に
代表される酸化亜鉛を含む化合物半導体などの表面を、
酸素を含むプラズマを照射することで改質処理すること
により、前述の液相成膜法によって上記の化合物半導体
上に金属酸化物薄膜を低温で形成する。
More specifically, it contains a compound semiconductor that does not have a stable hydrophilic group on the surface that serves as a foothold for reaction, such as gallium nitride (GaN), gallium arsenide (GaAs) or gallium phosphide (GaP). The surface of a compound semiconductor, a compound semiconductor containing indium represented by indium nitride (InN), and a compound semiconductor containing zinc oxide represented by zinc oxide (ZnO),
The metal oxide thin film is formed at a low temperature on the above compound semiconductor by the above liquid phase film forming method by performing the modification treatment by irradiating the plasma containing oxygen.

【0023】上記成膜に用いる成膜液の例としては、S
iF6 2-、TiF6 2-、ZrF6 2-の少なくとも何れかを
含むフッ素化合物を含む溶液が望ましく、ケイ酸(Si
2・nH2O)粉末を飽和状態まで溶解させたケイ弗化
水素酸(H2SiF6)水溶液、ケイ弗化アンモニウム
((NH42SiF6)水溶液、チタニウム弗化アンモ
ニウム((NH42TiF6)水溶液などに、場合によ
っては反応促進剤としてホウ酸水溶液やアルミニウム及
びアルミニウム化合物を加えた溶液を用いることができ
る。
As an example of the film forming liquid used for the above film formation, S
A solution containing a fluorine compound containing at least one of iF 6 2− , TiF 6 2− , and ZrF 6 2− is desirable, and a solution containing silicic acid (Si
O 2 · nH 2 O) powder is dissolved to a saturated state, hydrofluoric acid (H 2 SiF 6 ) aqueous solution, ammonium silicofluoride ((NH 4 ) 2 SiF 6 ) aqueous solution, titanium ammonium fluoride ((NH 4 ) 2 TiF 6 ) aqueous solution or the like may be used, depending on the case, a boric acid aqueous solution or a solution containing aluminum and an aluminum compound as a reaction accelerator.

【0024】また、本発明にて作製しうる金属酸化物薄
膜は、二酸化ケイ素(SiO2)、酸化チタン(Ti
2)、酸化ジルコニウム(ZrO2)など成膜液によっ
て異なる。
The metal oxide thin film that can be produced by the present invention is made of silicon dioxide (SiO 2 ), titanium oxide (Ti
O 2 ), zirconium oxide (ZrO 2 ) and the like depending on the film forming liquid.

【0025】まず、上記化合物半導体に対して成膜する
際、酸素を含むプラズマによる該化合物半導体の表面改
質処理を行う。その条件は、酸素分圧0.1Pa〜10
0Pa、望ましくは0.5Paから5Pa、処理時間3
0秒以上、アンテナ電力10W以上、RF周波数13.
56MHz、基板温度0℃〜90℃、望ましくは20℃
〜30℃である。
First, when forming a film on the compound semiconductor, a surface modification treatment of the compound semiconductor is performed by plasma containing oxygen. The condition is that the oxygen partial pressure is 0.1 Pa to 10 Pa.
0 Pa, preferably 0.5 Pa to 5 Pa, processing time 3
0 seconds or more, antenna power 10 W or more, RF frequency 13.
56MHz, substrate temperature 0 ℃ ~ 90 ℃, desirably 20 ℃
~ 30 ° C.

【0026】そして、化合物半導体表面に対して酸素を
含むプラズマによる表面改質処理を行った後、上記の成
膜液を0.5mol/lから3.0mol/lまで、望
ましくは1.0mol/lから3.0mol/lまで希
釈し、この液に基板を浸漬させて30分以上、望ましく
は30分から10時間、液温を15℃以上、望ましくは
常温から60℃の間に保ちつつ成膜を行う。このとき、
成膜液を循環させ、その循環経路中にフィルターを挿入
して液中に混じるごみや析出してくる微粒子を取り除く
ことが好ましい。
Then, the surface of the compound semiconductor is subjected to a surface modification treatment with plasma containing oxygen, and then the above film forming solution is added from 0.5 mol / l to 3.0 mol / l, preferably 1.0 mol / l. Dilute from 1 to 3.0 mol / l and immerse the substrate in this solution for 30 minutes or longer, preferably 30 minutes to 10 hours, and keep the liquid temperature at 15 ° C or higher, preferably from room temperature to 60 ° C to form a film. I do. At this time,
It is preferable to circulate the film-forming solution and insert a filter in the circulation path to remove dust mixed with the solution and fine particles that precipitate.

【0027】上記の成膜の際、成膜液内部では次のよう
な化学反応が起こっているものと考えられる。
At the time of the above film formation, it is considered that the following chemical reactions occur in the film forming liquid.

【0028】 H2SiF6+2H2O⇔SiO2+6HF (式1) この反応は、ガラスやシリコンウェハーなど、表面に安
定な親水基を持つ基板を成膜液に浸漬した場合、液中で
基板に吸着した反応中間体が表面親水基、例えば表面O
H‐基と脱水結合反応を起こしながら進行し、基板上に
酸化ケイ素(SiO2)被膜が形成される。
H 2 SiF 6 + 2H 2 O ⇔ SiO 2 + 6HF (Equation 1) This reaction is performed when a substrate having a stable hydrophilic group on the surface, such as glass or a silicon wafer, is immersed in a film forming solution. The reaction intermediate adsorbed on the surface is a hydrophilic group on the surface, for example, surface O
Proceeding while causing a dehydration bond reaction with the H-group, a silicon oxide (SiO 2 ) film is formed on the substrate.

【0029】本発明が目的とする化合物半導体表面上へ
の成膜の場合は、あらかじめ化合物半導体基板表面に酸
素を含むプラズマを照射して表面を改質し、反応の足が
かりとなる安定な親水基を形成する。その際、基板表面
にマスクを施しておくと、マスク以外の部分に親水基が
形成されるため、基板表面に選択的に成膜することが可
能である。基板表面に対するマスクの方法は、フォトレ
ジストや金属薄膜の蒸着など、酸素を含むプラズマによ
るダメージが問題でなければ方法を問わない。
In the case of forming a film on the surface of a compound semiconductor, which is the object of the present invention, the surface of the compound semiconductor substrate is previously irradiated with plasma containing oxygen to modify the surface, and a stable hydrophilic group that becomes a foothold for the reaction is formed. To form. At this time, if a mask is applied to the surface of the substrate, hydrophilic groups are formed on the portions other than the mask, so that the film can be selectively formed on the surface of the substrate. The method of masking the surface of the substrate may be any method as long as the damage by plasma containing oxygen, such as the deposition of a photoresist or a metal thin film, does not matter.

【0030】以下、実施例を挙げて、本発明の成膜方法
を詳しく説明する。
The film forming method of the present invention will be described in detail below with reference to examples.

【0031】〔実施例1〕3.1mol/lのケイ弗化
水素酸水溶液200mlに対してケイ酸(SiO 2・n
2O)粉末12gを溶解させ、飽和溶液を作製した。
成膜させる化合物半導体として2インチ径のGaNを選
び、そのGaN基板表面に酸素を含むプラズマを照射し
て表面改質処理を施した。
Example 1 3.1 mol / l silicofluorination
Silicic acid (SiO 2・ N
H2O) 12 g of powder was melt | dissolved and the saturated solution was produced.
2 inch diameter GaN is selected as the compound semiconductor for film formation.
And irradiating the surface of the GaN substrate with plasma containing oxygen.
Surface treatment was applied.

【0032】処理条件は、ICP(Inductive
Coupled Plasma:誘導結合プラズマ)
方式の装置を用いて、酸素分圧1.0Pa、酸素流量5
0sccm、処理時間10分、アンテナ電力800W、
RF周波数13.56MHz、基板温度25℃で行っ
た。
The processing conditions are as follows: ICP (Inductive)
Coupled Plasma: Inductively coupled plasma)
Oxygen partial pressure 1.0Pa, oxygen flow rate 5
0sccm, processing time 10 minutes, antenna power 800W,
The RF frequency was 13.56 MHz and the substrate temperature was 25 ° C.

【0033】このGaN基板を、上記のシリカ飽和溶液
を1.4mol/lまで希釈して作った成膜液に浸漬
し、40℃に保った。5時間後に成膜液より引き上げた
ところ、GaN表面上にSiO2が成膜されていた。こ
の膜の膜厚は、段差計を用いて測定したところ、200
nmであった。
This GaN substrate was immersed in a film forming solution prepared by diluting the above-mentioned saturated silica solution to 1.4 mol / l and kept at 40 ° C. When the film was pulled up from the film forming solution after 5 hours, SiO 2 was formed on the GaN surface. The film thickness of this film was 200 when measured with a step gauge.
was nm.

【0034】このようにして作製されたSiO2膜は、
絶縁膜として優れた特性を示す。図2にスパッタリング
法によってGaN基板表面上に200nm成膜したSi
2薄膜と実施例1でGaN基板表面上に成膜したSi
2薄膜の電流‐電圧特性を示す。
The SiO 2 film thus produced is
It has excellent characteristics as an insulating film. Fig. 2 shows a 200 nm Si film formed on the surface of a GaN substrate by the sputtering method.
O 2 thin film and Si formed on the GaN substrate surface in Example 1
O 2 thin film of current - voltage characteristics thereof are shown.

【0035】本実施例の成膜により、従来のスパッタリ
ング法によって作製されたSiO2膜と同等以上の絶縁
性を示す膜を作製できることが分かる。図2は液相成膜
法及びスパッタリング法によって作製したSiO2膜の
電流‐電圧特性を示す図である。
It can be seen that the film formation of this example makes it possible to form a film having an insulation property equivalent to or higher than that of the SiO 2 film formed by the conventional sputtering method. FIG. 2 is a diagram showing current-voltage characteristics of the SiO 2 film produced by the liquid phase film forming method and the sputtering method.

【0036】このように、本実施例では、化学反応によ
る簡易で安価な装置を用いて、化合物半導体基板上へ良
質の金属酸化物薄膜を60℃以下の低温で容易に作製す
ることができる。また、凹凸のある基板にも追随性良く
薄膜を形成でき、化合物半導体基板の選択自由度も高
い。更に、マスクを用いて化合物半導体基板表面にパタ
ーニングを形成することで、基板表面に選択的に薄膜を
形成することができる。
As described above, in this embodiment, a good quality metal oxide thin film can be easily formed on a compound semiconductor substrate at a low temperature of 60 ° C. or lower by using a simple and inexpensive apparatus by chemical reaction. Further, a thin film can be formed with good conformity even on a substrate having irregularities, and the degree of freedom in selecting a compound semiconductor substrate is high. Furthermore, by forming a pattern on the compound semiconductor substrate surface using a mask, a thin film can be selectively formed on the substrate surface.

【0037】〔実施例2〕上記と同様、3.1mol/
lのケイ弗化水素酸水溶液200mlに対してケイ酸
(SiO2・nH2O)粉末12gを溶解させ、飽和溶液
を作製した。更に、これを希釈して2.5mol/lの
成膜液を作製し、この液中に酸素を含むプラズマによる
表面改質処理を施した2インチ径のGaAs基板を浸漬
し、40℃に保った。3時間後に成膜液より引き上げた
ところ、GaAs基板表面上にSiO 2膜が作製されて
いた。この膜の膜厚は、段差計を用いて測定したとこ
ろ、200nmであった。
Example 2 Similar to the above, 3.1 mol /
1 to 200 ml of a hydrosilicofluoric acid aqueous solution
(SiO2・ NH2O) 12 g of powder is dissolved and saturated solution
Was produced. Furthermore, this is diluted to 2.5 mol / l
A film-forming solution is prepared and plasma containing oxygen is used.
Immerse 2 inch diameter GaAs substrate with surface modification treatment
And kept at 40 ° C. After 3 hours, it was pulled up from the film-forming solution
On the surface of the GaAs substrate, SiO 2The membrane is made
I was there. The thickness of this film was measured using a step gauge.
It was 200 nm.

【0038】このようにして形成されたSiO2膜にお
いても、上述の実施例で形成されたSiO2膜と同様優
れた特性を有し、例えばLED素子を作る際に絶縁膜と
して利用できるだけでなく、誘電膜、保護膜、光学膜な
どにも広く利用することができる。
The SiO 2 film formed in this manner has excellent characteristics similar to those of the SiO 2 film formed in the above-mentioned embodiment, and not only can it be used as an insulating film when manufacturing an LED element, for example. It can also be widely used as a dielectric film, a protective film, an optical film, and the like.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
簡易で安価な装置を用いて、化合物半導体基板上へ良質
の金属酸化物薄膜を低温で容易に作製することができ、
また化合物半導体基板の選択自由度が高く、基板表面に
選択的に被膜を形成することができるという効果があ
る。
As described above, according to the present invention,
Using a simple and inexpensive device, a good quality metal oxide thin film can be easily formed on a compound semiconductor substrate at low temperature,
In addition, the compound semiconductor substrate has a high degree of freedom in selection, and there is an effect that a film can be selectively formed on the substrate surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る成膜工程を示す図FIG. 1 is a diagram showing a film forming process according to the present invention.

【図2】 実施例で作製SiO2膜の電圧‐電流特性を
示す図
FIG. 2 is a diagram showing the voltage-current characteristics of the SiO 2 film produced in the example.

【図3】 電子線加熱蒸着装置の構成を示す断面図FIG. 3 is a sectional view showing the structure of an electron beam heating vapor deposition apparatus.

【図4】 スパッタリング成膜装置の構成を示す断面図FIG. 4 is a sectional view showing the structure of a sputtering film forming apparatus.

【符号の説明】[Explanation of symbols]

1 基板 2 シャッター 3 電子銃 4 蒸発材料 5 るつぼ 6 真空槽 11 ターゲット 12 シャッター 13 基板ステージ 14 基板 15 シールド板 16 真空槽 17 流量計 1 substrate 2 shutter 3 electron gun 4 Evaporation material 5 crucibles 6 vacuum tank 11 targets 12 shutters 13 Substrate stage 14 board 15 Shield plate 16 vacuum tank 17 Flowmeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上塚 真奈美 東京都目黒区中目黒2丁目9番13号 スタ ンレー電気株式会社内 (72)発明者 粂井 正美 東京都目黒区中目黒2丁目9番13号 スタ ンレー電気株式会社内 Fターム(参考) 5F058 BA09 BB01 BB02 BC02 BC03 BE10 BF41 BF44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Manami Uezuka, inventor             2-9-13 Nakameguro, Meguro-ku, Tokyo             NLE Electric Co., Ltd. (72) Inventor Masami Awai             2-9-13 Nakameguro, Meguro-ku, Tokyo             NLE Electric Co., Ltd. F term (reference) 5F058 BA09 BB01 BB02 BC02 BC03                       BE10 BF41 BF44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板をフッ素化合物を含む
溶液中に浸漬し、該溶液内の化学反応によって前記化合
物半導体基板上へ金属酸化物の薄膜を形成する液相成膜
の方法であって、成膜の前段階で前記化合物半導体基板
の表面に対して酸素を含むプラズマの照射による表面改
質処理を施すようにしたことを特徴とする金属酸化物薄
膜の形成方法。
1. A liquid phase film formation method comprising immersing a compound semiconductor substrate in a solution containing a fluorine compound and forming a thin film of a metal oxide on the compound semiconductor substrate by a chemical reaction in the solution, A method for forming a metal oxide thin film, characterized in that the surface of the compound semiconductor substrate is subjected to a surface modification treatment by irradiation with plasma containing oxygen in a pre-stage of film formation.
【請求項2】 前記酸素を含むプラズマの照射による表
面改質処理は、酸素分圧0.1Pa〜100Pa、処理
時間30秒以上、アンテナ電力10W以上、基板温度0
℃〜90℃の条件下で行うようにしたことを特徴とする
請求項1に記載の金属酸化物薄膜の形成方法。
2. The surface modification treatment by irradiating the plasma containing oxygen includes oxygen partial pressure of 0.1 Pa to 100 Pa, treatment time of 30 seconds or more, antenna power of 10 W or more, and substrate temperature of 0.
The method for forming a metal oxide thin film according to claim 1, wherein the method is performed under the condition of ℃ to 90 ℃.
【請求項3】 前記フッ素化合物は、SiF6 2-、Ti
6 2-、ZrF6 2-の少なくとも何れかを含むことを特徴
とする請求項1または2に記載の金属酸化物薄膜の形成
方法。
3. The fluorine compound is SiF 6 2− , Ti
The method for forming a metal oxide thin film according to claim 1, comprising at least one of F 6 2− and ZrF 6 2− .
【請求項4】 前記金属酸化物は、酸化ケイ素、酸化チ
タン、酸化ジルコニウムの少なくとも何れかであること
を特徴とする請求項1ないし3何れかに記載の金属酸化
物薄膜の形成方法。
4. The method for forming a metal oxide thin film according to claim 1, wherein the metal oxide is at least one of silicon oxide, titanium oxide and zirconium oxide.
【請求項5】 前記化合物半導体は、ガリウムを含む化
合物半導体、インジウムを含む化合物半導体、亜鉛を含
む化合物半導体の少なくとも何れかの化合物半導体であ
ることを特徴とする請求項1ないし4何れかに記載の金
属酸化物薄膜の形成方法。
5. The compound semiconductor according to claim 1, wherein the compound semiconductor is at least one of a compound semiconductor containing gallium, a compound semiconductor containing indium, and a compound semiconductor containing zinc. A method for forming a metal oxide thin film.
JP2002061984A 2002-03-07 2002-03-07 Method of forming metal oxide thin film Pending JP2003257964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061984A JP2003257964A (en) 2002-03-07 2002-03-07 Method of forming metal oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061984A JP2003257964A (en) 2002-03-07 2002-03-07 Method of forming metal oxide thin film

Publications (1)

Publication Number Publication Date
JP2003257964A true JP2003257964A (en) 2003-09-12

Family

ID=28670499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061984A Pending JP2003257964A (en) 2002-03-07 2002-03-07 Method of forming metal oxide thin film

Country Status (1)

Country Link
JP (1) JP2003257964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045943A (en) * 2015-08-28 2017-03-02 富士電機株式会社 Manufacturing method for nitride semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045943A (en) * 2015-08-28 2017-03-02 富士電機株式会社 Manufacturing method for nitride semiconductor device

Similar Documents

Publication Publication Date Title
US4605479A (en) In-situ cleaned ohmic contacts
JP3400293B2 (en) CVD apparatus and cleaning method thereof
US6067999A (en) Method for deposition tool cleaning
JPH1174257A (en) Fluorine-containing silicon oxide film and its manufacture
JP3006048B2 (en) Dry etching method
JP2757546B2 (en) Method and apparatus for etching Fe-containing material
JPH03276626A (en) Etching method for film to be etched composed of silicon compound system
JP2003257964A (en) Method of forming metal oxide thin film
US4137141A (en) Process for producing a silicon nitride diffusion barrier on a semiconductor substrate, particularly III-V semiconductor substrates
US8541307B2 (en) Treatment method for reducing particles in dual damascene silicon nitride process
JPH04137532A (en) Surface processing method and its equipment
JP2002252202A (en) Method for forming minute structure on surface of semiconductor substrate and semiconductor substrate having minute structure made by this method and device using it
JPH09129592A (en) Method of etching substrate by chemical beam
US20230407468A1 (en) Defect free germanium oxide gap fill
US20220186365A1 (en) Super-conformal germanium oxide films
JP3303375B2 (en) Dry etching method
JP2764595B2 (en) Method for manufacturing semiconductor device
JPH01104763A (en) Production of thin metal compound film
JPH0424431B2 (en)
JPH11176806A (en) Plasma purge method for plasma process particle control
JPH0536645A (en) Dry etching method
JPH02262336A (en) Thin film forming method
JPS63241185A (en) Method for depositing thin metallic film
JP3468412B2 (en) Cleaning gas
JPH05347263A (en) Forming method of insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A02