JPH02183151A - Ph sensor - Google Patents

Ph sensor

Info

Publication number
JPH02183151A
JPH02183151A JP1003285A JP328589A JPH02183151A JP H02183151 A JPH02183151 A JP H02183151A JP 1003285 A JP1003285 A JP 1003285A JP 328589 A JP328589 A JP 328589A JP H02183151 A JPH02183151 A JP H02183151A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
layer
conducting layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1003285A
Other languages
Japanese (ja)
Other versions
JPH076941B2 (en
Inventor
Tasohiro Sugie
他曽宏 杉江
Kichiya Yano
谷野 吉弥
Yasuhiro Akune
阿久根 安博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1003285A priority Critical patent/JPH076941B2/en
Publication of JPH02183151A publication Critical patent/JPH02183151A/en
Publication of JPH076941B2 publication Critical patent/JPH076941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable application ideally in a wide temperature range from a low temperature near a room temperature to a high temperature exceeding 500 deg.C by forming an ion conducting layer tight on a charge transfer layer to have a solid electrolyte film mainly composed of Bi2O3. CONSTITUTION:An ion conducting layer 2 is formed as film on the surface of a base electrode 1 made of a copper wire at one end part thereof by CVD, sputtering, ion plating or the like. A measuring side electrode comprising Pt or the like is bonded on the surface of the conducting layer 2, which 2 is made up of a lamination of two solid electrolyte films 2a and 2b. One electrolyte film 2a comprised Sb2O3-Bi2O3 and the other electrolyte film 2b comprised WO3-Bi2O3. An oxide film 1a made of an oxide Cu2O of an electrode ground metal is formed between the electrode 1 and the conducting layer 2 and a charge transfer layer 1' is made up of the oxide film 1a and a ground layer of the electrode 1. This enables highly accurate detection of pH in a wide temperature range from a room temperature to a high temperature exceeding 500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、濃淡電池作用を利用したPHセンサーに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a PH sensor that utilizes concentration cell action.

(従来の技術〕 従来のこの種PHセンサーとしては、金属導体及びその
素地金属の酸化物膜で形成される電荷移動層上に、イツ
トリア安定化ジルコニア(以下「YSZJという)から
なるイオン導電層を密着形成して、イオン導電層の両面
間に生じた電位差によりPHを測定しうるように構成し
たものが知られている。
(Prior Art) Conventional PH sensors of this type include an ion conductive layer made of yttria-stabilized zirconia (hereinafter referred to as "YSZJ") on a charge transfer layer formed of a metal conductor and an oxide film of the base metal. A structure is known in which the ion conductive layer is formed in close contact with each other so that the pH can be measured based on the potential difference generated between both surfaces of the ion conductive layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来センサーは、低温域では極め
て精度が悪く、特に室温付近の温度域では到底使用でき
ないものである。このため、500°C以上の高温域で
しか実用されておらず、広範な温度域での使用が不可能
なものである。これは、第4図に示す如<、yszのイ
オン導電率が500°Cまでの低温領域では極めて低く
、したがってイオン拡散速度が極めて遅くなるためであ
ると考えられる。
However, such conventional sensors have extremely low accuracy in low temperature ranges, and cannot be used at all, especially in temperature ranges around room temperature. For this reason, it has only been put to practical use in a high temperature range of 500°C or higher, and cannot be used in a wide temperature range. This is considered to be because, as shown in FIG. 4, the ionic conductivity of ysz is extremely low in the low temperature region up to 500° C., and therefore the ion diffusion rate is extremely slow.

また、応答速度を向上させるためには787層を薄膜化
することが望ましいが、このようにすると、金属導体と
の線膨張率差により782層が剥離し易くなり、耐久性
が大幅に低下する。したがって、787層はこれを薄膜
化できず、どうしても応答性に劣るといった問題がある
Additionally, in order to improve the response speed, it is desirable to make the 787 layer thinner, but if this is done, the 782 layer will be more likely to peel off due to the difference in linear expansion coefficient with the metal conductor, resulting in a significant decrease in durability. . Therefore, the 787 layer cannot be made thinner, and there is a problem that the response is inevitably inferior.

本発明は、このような従来センサーにおける問題を解決
して、室温付近の低温から500’C以上の高温に至る
広範な温度域において好適に使用でき、且つ応答性及び
耐久性に優れたPHセンサーを提供することを目的とす
るものである。
The present invention solves the problems with conventional sensors and provides a PH sensor that can be suitably used in a wide temperature range from low temperatures near room temperature to high temperatures of 500'C or more, and has excellent responsiveness and durability. The purpose is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決した本発明のPHセンサーは、金属導体
及びその素地金属の酸化物膜で形成される電荷移動層上
に、異種の固体電解質膜を積層してなるイオン導電層を
密着形成してあり、各固体電解質膜がBi2O,を主成
分としてなるものである。
The PH sensor of the present invention that solves this problem has an ion conductive layer formed by stacking different types of solid electrolyte membranes on a charge transfer layer formed of a metal conductor and an oxide film of the base metal. Each solid electrolyte membrane has Bi2O as its main component.

具体的には、各固体電解質膜は、B i 20.に5b
20.、Ce、O□、TeO2,Ta205゜N b 
206.W Oa t M n Oz等の酸化物セラミ
ックを一種若しくは二種以上固溶させた固体電解質材で
構成される。酸化物セラミックの固溶量は2〜10mo
1%としておくことが好ましい。イオン導電層は、CV
D、スパッタリング、イオンブレーティング等によって
形成されるが、その層厚さは0.01〜50μmとして
おくことが好ましい、イオン導電層を構成する固体電解
質膜の積層数は、PH測定条件等に応じて適宜に設定さ
れる。
Specifically, each solid electrolyte membrane has B i 20. 5b
20. , Ce, O□, TeO2, Ta205°N b
206. It is composed of a solid electrolyte material in which one or more kinds of oxide ceramics such as W Oat M n Oz are dissolved in solid solution. The solid solution amount of oxide ceramic is 2 to 10 mo
It is preferable to set it to 1%. The ion conductive layer is CV
D. It is formed by sputtering, ion blating, etc., but the layer thickness is preferably 0.01 to 50 μm. The number of laminated solid electrolyte membranes constituting the ion conductive layer depends on the PH measurement conditions, etc. It is set appropriately.

〔作用〕[Effect]

Bi2O,を主成分としてなる固体電解質材。 A solid electrolyte material whose main component is Bi2O.

例えば5b2o3−Bi203では、第3図に示す如く
、室温から800°Cに至る広範な温度域で高いイオン
導電率を有する。すなわち、室温付近におけるイオン導
電率でも、500〜600℃におけるYSzのイオン導
電率と略同−となっている。かかる特性は、Bi2O,
に5b2o3以外の前記酸化セラミックを固溶させた場
合においても同様である。したがって、イオン導電層を
B12o3を主成分としてなるもので構成することによ
って、500℃以上の高温域においては勿論、500″
C以下の低温域、特に室温程度の低温域においても、P
Hを精度良く検出しうる。
For example, 5b2o3-Bi203 has high ionic conductivity over a wide temperature range from room temperature to 800°C, as shown in FIG. That is, even the ionic conductivity near room temperature is approximately the same as the ionic conductivity of YSz at 500 to 600°C. Such properties are Bi2O,
The same applies when the oxide ceramic other than 5b2o3 is dissolved in solid solution. Therefore, by composing the ion conductive layer with a material containing B12o3 as the main component, it can be used in a high temperature range of 500°C or higher, and
Even in the low temperature range below C, especially in the low temperature range around room temperature, P
H can be detected with high accuracy.

また、イオン導電層を異種の固体電解質膜で積層形成し
たから、熱膨張率勾配が生じてイオン導電層が素地金属
に充分になじむことになる。したがって、イオン導電層
の薄膜化及び剥離防止を共に図ることができ、応答性及
び耐久性を向上させうる。
Further, since the ion conductive layer is formed by laminating different types of solid electrolyte membranes, a thermal expansion coefficient gradient is generated, and the ion conductive layer is sufficiently adapted to the base metal. Therefore, it is possible to both reduce the thickness of the ion conductive layer and prevent it from peeling off, thereby improving responsiveness and durability.

しかも、異種酸化物膜間で非化学量論的な多元酸化物、
つまり酸素欠陥め多い酸化物が生成されることから、イ
オン導電率の更なる向上が期待される。
Moreover, non-stoichiometric multi-component oxides between different oxide films,
In other words, since an oxide with many oxygen defects is generated, further improvement in ionic conductivity is expected.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図及び第2図について説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

この実施例のPHセンサーあっては、第1図に示す如く
、銅線からなる基盤電極1の一端部分表面に、CVD、
スパッタリング、イオンブレーティング等によって、イ
オン導電層2が被覆形成されている。イオン導電層2の
表面には、図示していないが、公知のものと同様にpt
等からなる測定側電極が接着されている。
In the PH sensor of this embodiment, as shown in FIG. 1, CVD,
An ion conductive layer 2 is coated and formed by sputtering, ion blasting, or the like. Although not shown, the surface of the ion conductive layer 2 is coated with PT as well as the known ones.
The measurement side electrode consisting of etc. is glued.

イオン導電層2は、第2図に示す如く、2種の固体電解
質[2a、2bを積層してなる。積層厚さは、0.0f
〜50μmとされている。一方の固体電解質膜2aは5
b203−Bi203からなり、他方の固体電解質膜2
bはWO3Big03からなる。Bi2O3に対する5
b2o、及びWO3の固溶量は、夫々2〜10mo1%
とされている。
As shown in FIG. 2, the ion conductive layer 2 is formed by laminating two types of solid electrolytes [2a and 2b]. Lamination thickness is 0.0f
~50 μm. One solid electrolyte membrane 2a has 5
b203-Bi203, the other solid electrolyte membrane 2
b consists of WO3Big03. 5 for Bi2O3
The solid solution amount of b2o and WO3 is 2 to 10 mo1%, respectively.
It is said that

基盤電極1とイオン導電層2との間には、電極素地金属
の酸化物Cu2oによる酸化物膜1aが形成されており
、この酸化物膜1aと電極1の素地層とで電荷移動層1
′が形成されている。
Between the base electrode 1 and the ion conductive layer 2, an oxide film 1a made of oxide Cu2o of the electrode base metal is formed, and this oxide film 1a and the base layer of the electrode 1 form the charge transfer layer 1.
' is formed.

【発明の効果〕【Effect of the invention〕

以上の説明から明らかなように1本発明によれば、室温
から500℃以上の高温に至る広範囲の温度域において
PHを精度良く検出することができ、しかも応答性及び
耐久性に優れたPHセンサーを提供することができる。
As is clear from the above description, according to the present invention, the PH sensor is capable of accurately detecting PH in a wide temperature range from room temperature to high temperatures of 500°C or higher, and has excellent responsiveness and durability. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るPHセンサーの一実施例を示す要
部の断面図、第2図はその一部の拡大図、第3図は5b
20.−Bi20.におけるイオン導電率と温度との関
係を示す特性曲線図であり、第4図はYSZにおけるイ
オン導電率と温度との関係を示す特性曲線図である。 1・・・電極基盤(金属導体)、 1′・・・電荷移動層。 1a・・・酸化物膜、 2・・・イオン導電層。 2a。 b ・・・固体電解質膜。 第3図 温 度(6C) 第 図 第2図 第4図 η℃ 温 度(’C)
Fig. 1 is a sectional view of the main part showing one embodiment of the PH sensor according to the present invention, Fig. 2 is an enlarged view of a part thereof, and Fig. 3 is a 5b
20. -Bi20. FIG. 4 is a characteristic curve diagram showing the relationship between ionic conductivity and temperature in YSZ. FIG. 4 is a characteristic curve diagram showing the relationship between ionic conductivity and temperature in YSZ. 1... Electrode base (metal conductor), 1'... Charge transfer layer. 1a... Oxide film, 2... Ion conductive layer. 2a. b...Solid electrolyte membrane. Figure 3 Temperature (6C) Figure 2 Figure 4 η℃ Temperature ('C)

Claims (1)

【特許請求の範囲】[Claims] 金属導体及びその素地金属の酸化物膜で形成される電荷
移動層上に、異種の固体電解質膜を積層してなるイオン
導電層を密着形成してあり、各固体電解質膜がBi_2
O_3を主成分としてなることを特徴とするPHセンサ
ー。
An ion conductive layer formed by stacking different types of solid electrolyte membranes is closely formed on a charge transfer layer formed of a metal conductor and an oxide film of its base metal, and each solid electrolyte membrane has a Bi_2
A PH sensor characterized by containing O_3 as a main component.
JP1003285A 1989-01-10 1989-01-10 PH sensor Expired - Lifetime JPH076941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1003285A JPH076941B2 (en) 1989-01-10 1989-01-10 PH sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1003285A JPH076941B2 (en) 1989-01-10 1989-01-10 PH sensor

Publications (2)

Publication Number Publication Date
JPH02183151A true JPH02183151A (en) 1990-07-17
JPH076941B2 JPH076941B2 (en) 1995-01-30

Family

ID=11553132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1003285A Expired - Lifetime JPH076941B2 (en) 1989-01-10 1989-01-10 PH sensor

Country Status (1)

Country Link
JP (1) JPH076941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087332A1 (en) * 2021-11-17 2023-05-25 广东省科学院测试分析研究所(中国广州分析测试中心) Bismuth oxide p-n type transition potential-based photoelectrochemical flexible wearable sweat ph sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499693A (en) * 1977-12-24 1979-08-06 Max Planck Gesellschaft Immersion sonde
JPS5640750A (en) * 1979-09-11 1981-04-17 Yamazato Erekutoronaito Kk Measuring element of oxygen concentration
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion
JPS5815067A (en) * 1981-07-13 1983-01-28 セントラル硝子株式会社 Bi2o3 composition of mainly delta phase at ordinary temperature, specific use, manufacture and manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499693A (en) * 1977-12-24 1979-08-06 Max Planck Gesellschaft Immersion sonde
JPS5640750A (en) * 1979-09-11 1981-04-17 Yamazato Erekutoronaito Kk Measuring element of oxygen concentration
JPS5677751A (en) * 1979-10-12 1981-06-26 Gen Electric Sensor for hydrogen ion
JPS5815067A (en) * 1981-07-13 1983-01-28 セントラル硝子株式会社 Bi2o3 composition of mainly delta phase at ordinary temperature, specific use, manufacture and manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087332A1 (en) * 2021-11-17 2023-05-25 广东省科学院测试分析研究所(中国广州分析测试中心) Bismuth oxide p-n type transition potential-based photoelectrochemical flexible wearable sweat ph sensor

Also Published As

Publication number Publication date
JPH076941B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JP2825206B2 (en) Metal oxide electrode
EP0580206B1 (en) Wide-range oxygen sensor
JPH07198675A (en) Gas sensor using ion conductor and its manufacture
US3794575A (en) Oxygen sensor
JP2837120B2 (en) Wide area air-fuel ratio sensor and driving method thereof
JPH02183151A (en) Ph sensor
JPH0521010Y2 (en)
EP0480076A1 (en) Method and sensor for measuring oxygen partial pressure
JPH04250353A (en) Ph measuring apparatus
JPH02269948A (en) Sensor for combustion control
JPS59136651A (en) Air-fuel ratio meter for automobile
JPH02154139A (en) Oxygen sensor
JPH0396853A (en) Dew condensation sensor
JPH04254749A (en) Laminated-type limiting-current-type oxygen sensor
JPH05240830A (en) Oxygen sensor
JPH0610099B2 (en) Thin film gas detector
JPH11344464A (en) Oxygen concentration sensor and its manufacture
JPH02196952A (en) Sensor for combustion control
JP2000055876A (en) Solid electrolyte type carbon dioxide sensor, sensor element and method for detecting concentration of carbon dioxide
JPS6176948A (en) Thin film gas detecting element
JPH05157727A (en) Oxygen sensor
JPH0213843A (en) Ph sensor and split part
JPH04208849A (en) Electrochemical gas sensor
JPH03140859A (en) Oxygen sensor
JPH0827254B2 (en) Thin film gas sensor