JPH0396853A - Dew condensation sensor - Google Patents

Dew condensation sensor

Info

Publication number
JPH0396853A
JPH0396853A JP1234025A JP23402589A JPH0396853A JP H0396853 A JPH0396853 A JP H0396853A JP 1234025 A JP1234025 A JP 1234025A JP 23402589 A JP23402589 A JP 23402589A JP H0396853 A JPH0396853 A JP H0396853A
Authority
JP
Japan
Prior art keywords
electrode
dew condensation
sensor
oxygen
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1234025A
Other languages
Japanese (ja)
Inventor
Naoya Kitamura
直也 北村
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1234025A priority Critical patent/JPH0396853A/en
Publication of JPH0396853A publication Critical patent/JPH0396853A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the circuit of a device by providing a catalyst electrode as a positive electrode, a lead electrode as a negative electrode and an electrolyte and an oxygen permeable septum as a detection surface for a dew condensation state. CONSTITUTION:This sensor consists of the catalyst electrode 23 which is effective as the positive electrode to the reduction of oxygen in air, the lead electrode 25 functioning as the negative electrode and the electrolyte 24 and the oxygen permeable septum 22 with which the catalyst electrode 23 is united. This oxygen-lead galvanic battery utilizes large variation in the output value of the battery due to dew condensation on the diaphragm surface. This sensor is basically a galvanic battery, so the sensor itself has a DC output and no external electric circuit is required specially for driving. Consequently, the number of components in use is reduced extremely and the power consumption is reducible.

Description

【発明の詳細な説明】 産業上の利用分町 本発明はガルバニ電池式結露センザに関するものである
。更に詳しくは、本発明は環境が結露状態にあるかどう
かを判定ずるためのセンサであって、正極としての酸素
還元機能を有ずる触媒電極と、負極としての機能を有す
る鉛電掻と電解液および、触媒電極が一体に接合されて
いる酸素透過性隔膜とにより構成される酸素一鉛電池に
おいて、隔膜表面が結露することによって電池の出力値
が著しく変化することを利用した結露センサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Applications The present invention relates to a galvanic cell type dew condensation sensor. More specifically, the present invention is a sensor for determining whether the environment is in a condensed state, which comprises a catalytic electrode having an oxygen reduction function as a positive electrode, a lead electrode and an electrolyte serving as a negative electrode. The present invention also relates to a dew condensation sensor that utilizes the fact that in an oxygen-lead battery composed of an oxygen-permeable diaphragm to which a catalyst electrode is integrally joined, the output value of the battery changes significantly due to dew condensation on the diaphragm surface. be.

結露センサは、結露した状態て使用すると故障や破損を
きたすような機器、すなわち、高速高精度な摺動性を有
するカメラやVTR等の精密機器や、受光面を常に透明
に保たなければならない光センサを用いた炎検知式暖房
機等に広く用いられている。また、最近の電気,電子機
器の発達は産業用,民生用を問わす目ざましいものがあ
り、技術的には高精度化,高精密化がまずまず求められ
ており結露センサの用途はますまず拡がりつつある。
Dew condensation sensors are used in devices that can cause malfunction or damage if used with condensation, i.e. precision devices such as cameras and VTRs that have high-speed, high-precision sliding properties, and the light-receiving surface must be kept transparent at all times. It is widely used in flame detection type heaters that use optical sensors. In addition, recent developments in electrical and electronic equipment have been remarkable, both for industrial and consumer use, and technologically speaking, higher precision and higher precision are required, and the applications of dew condensation sensors are rapidly expanding. be.

従来の技術 従来広く用いられている結露センサは、複数の電極を印
刷あるいは蒸着したセラミック等の硬質基板状に種々の
有機質あるいは無機質の感湿膜をコーティングしたnl
j造を有し、外部より電極間に直流あるいは高周波交流
で電気的に駆動し、結露による感湿膜の電気伝導性の変
化を出力としてみるものが一般的である。
2. Description of the Related Art Dew condensation sensors that have been widely used in the past are made by coating a hard substrate made of ceramic or other material with multiple electrodes printed or vapor-deposited on it and coated with various organic or inorganic moisture-sensitive films.
Generally, the sensor has a J-type structure, is electrically driven from the outside with direct current or high-frequency alternating current between the electrodes, and changes in the electrical conductivity of the moisture-sensitive membrane due to dew condensation are output.

発明か解決しようとする課題 このような従来の結露センサは、基本的にセンサ単体で
は出力を発することができない受動素子であって、必ず
駆動ずるための外部電気回路が必要である。このため回
路としては種々の方式のものが考案され実用化されてい
るが、それらは定電圧凹路や高周波回路等を含み簡単な
ものではない。
Problems to be Solved by the Invention Such conventional dew condensation sensors are basically passive elements that cannot produce an output by themselves, and always require an external electric circuit to drive them. For this reason, various types of circuits have been devised and put into practical use, but they are not simple, including constant voltage concave circuits, high frequency circuits, etc.

したがって、消費電力が大きくなったり、電気部品点数
か多くなったりして機器のコスト上の問題点となってい
る。
Therefore, the power consumption increases and the number of electrical parts increases, resulting in problems in terms of equipment cost.

また、従来の結露センサの性能は用いられている感湿膜
の電気伝導性によって決まり、一般的に結露による電気
伝導性の変化が大きいほど性能がよい。このため感湿膜
の厚みは非常に薄くされているか、その場合感湿膜の耐
熱性が問題となる。
Furthermore, the performance of conventional dew condensation sensors is determined by the electrical conductivity of the moisture-sensitive film used, and generally the greater the change in electrical conductivity due to dew condensation, the better the performance. For this reason, the thickness of the moisture-sensitive film is either very thin, or in that case, the heat resistance of the moisture-sensitive film becomes a problem.

わずかの過電流,過電圧によって薄膜状の感湿膜は焼損
等の被古を受C−+るために、センザの駆動回路や使用
環境に十分な注意が必要であり、さらには感湿膜の機械
的強度や長期にわたる信頼性にも問題かある。
Because the thin film-like moisture-sensitive membrane is susceptible to burnout and other damage due to a slight overcurrent or overvoltage, it is necessary to pay sufficient attention to the sensor drive circuit and usage environment. There are also problems with mechanical strength and long-term reliability.

課題を解決するための手段 本発明は、このような結露センサの問題点に鑑み、従来
の原理とは全く異なる原理による結露センサを提供する
ものである。すなわち、正極として空気中の酸素の還元
に有効な触媒電極と、負極としての機能を有する鉛電極
と電解液および、触媒電極が一体に接合されている酸素
透過性隔膜とにより構成される酸素一釦ガルバニ電池に
おいて、隔膜表面が結露ずることによって電池の出力値
が著しく変化することを利用するものである。
Means for Solving the Problems In view of the above-mentioned problems with dew condensation sensors, the present invention provides a dew condensation sensor based on a completely different principle from the conventional principle. In other words, an oxygen-permeable diaphragm consisting of a catalytic electrode effective in reducing oxygen in the air as a positive electrode, a lead electrode functioning as a negative electrode, an electrolytic solution, and an oxygen-permeable diaphragm to which the catalytic electrode is integrally joined. This method takes advantage of the fact that in a button galvanic cell, the output value of the cell changes significantly due to dew condensation on the surface of the diaphragm.

このセンサは基本的にはガルバニ式電池であるので、セ
ンサ単体で直流出力を有し、l)v動のための外部電気
回路を特に必要としないものである。
Since this sensor is basically a galvanic battery, the sensor alone has a DC output, and does not particularly require an external electric circuit for l) v movement.

したがって、この結露センサを用いる機器はセンサのた
めに使用する部品点数を非常に少なくすることができ、
消費電力も小さくすることができるので、コス1・を低
くできる。
Therefore, devices using this dew condensation sensor can use a very small number of parts for the sensor.
Since power consumption can also be reduced, cost 1 can be reduced.

また、本発明によるセンサはガルバニ電池の出力変化を
利用したものであって、従来のような感湿膜の電気伝導
性の変化を利用したものではないので、電気伝導性を良
くしようとするがために生ずる前述のような耐熱性や信
頼性における問題点は本質的に生じない。
In addition, the sensor according to the present invention utilizes changes in the output of a galvanic cell, and does not utilize changes in the electrical conductivity of a moisture-sensitive membrane as in the past. The above-mentioned problems in heat resistance and reliability that occur because of this do not essentially occur.

作用 本発明によるガルバニ電池式結露センサの作用を第1図
を用いて説明する。
Function The function of the galvanic cell type dew condensation sensor according to the present invention will be explained with reference to FIG.

第1図Aに示される乾燥状態の環境大気21中に含まれ
る酸素は酸素透過性隔膜22の表面に達した後、隔11
41内部を透過し隔膜の片面に接合されている触媒電極
層23に達する。そして酸素は、正極としての触媒電極
,電解漬24および負極としての釦電極25間で下記に
示す電気化学反応を起こし、その反応に基ついてこれら
て椙成される酸素−ガルバニ″七池に出力が得られ,る
After the oxygen contained in the dry environmental atmosphere 21 shown in FIG. 1A reaches the surface of the oxygen permeable membrane 22,
41 and reaches the catalyst electrode layer 23 bonded to one side of the diaphragm. Then, the oxygen causes the electrochemical reaction shown below between the catalyst electrode as the positive electrode, the electrolytic dip 24 and the button electrode 25 as the negative electrode, and based on this reaction, the oxygen-galvanic acid produced by these is output to the seven ponds. is obtained.

?電解液が酸性の場合] 正極反応:  O■+411++4e →2H20負極
反応: 2Pb +2H2 0 −2PbO+48” 
+4e全反応:0■+2Pb→2Pb0 ?電解液がアルカリ性の場合] 正極反応:  O■+282 0 +4e − 408
負極反応: 2Pb −t− 4011− →2PbO
+2M20 +4e全反応:0■+2 P b→2Pb
0 大気中の酸素濃度は21%でほぼ一定であるので、乾燥
状態すなわち酸素透過性隔膜の表面が濡れていない状態
では、このガルバニ電池の出カは一定値を示す。
? When the electrolyte is acidic] Positive electrode reaction: O■+411++4e →2H20 Negative electrode reaction: 2Pb +2H2 0 -2PbO+48"
+4e total reaction: 0■+2Pb→2Pb0? When the electrolyte is alkaline] Positive electrode reaction: O +282 0 +4e - 408
Negative electrode reaction: 2Pb -t- 4011- →2PbO
+2M20 +4e Total reaction: 0■+2 P b→2Pb
0 Since the oxygen concentration in the atmosphere is approximately constant at 21%, the output of this galvanic cell shows a constant value in a dry state, that is, in a state where the surface of the oxygen permeable membrane is not wet.

一方、第1図Bに示される結露状態の大気中では、酸素
透過性隔膜の表面には結露によって水層26が形成され
る。この状態では大気中の酸素は水層中を拡散して行き
酸素透過性隔膜に達することになるが、水層中における
酸素の拡散速度は極めて遅いために、前述の電気化学反
応に関与する酸素の量が極端に少なくなり、ガルバニ電
池の出方は著しく低下する。
On the other hand, in the dew-condensed atmosphere shown in FIG. 1B, a water layer 26 is formed on the surface of the oxygen-permeable diaphragm due to dew condensation. In this state, oxygen in the atmosphere diffuses through the water layer and reaches the oxygen-permeable diaphragm, but since the diffusion rate of oxygen in the water layer is extremely slow, the oxygen involved in the electrochemical reaction mentioned above is The amount of galvanic cells becomes extremely small, and the output of the galvanic cell is significantly reduced.

このようにして、結露状態を出カ変化により正確に判定
できるガルバニ電池式結露センサを得ることができる。
In this way, it is possible to obtain a galvanic cell type dew condensation sensor that can accurately determine the dew condensation state based on changes in output.

5 6 実施例 以下、本発明を好適な実施例を用いて説明する。5 6 Example The present invention will be explained below using preferred embodiments.

本発明の結露センサの性能を調べるために、第2図に示
す断面禍込のガルバニ電池式結露センザを試作した。試
作は以下に述べるようにして行った。
In order to investigate the performance of the dew condensation sensor of the present invention, a galvanic cell type dew condensation sensor with a rough cross section as shown in FIG. 2 was manufactured as a prototype. The prototype was made as described below.

まず、厚みが10〜50μmのフッ素系高分子薄膜の隔
II11の片面に、スパッタリングもしくは真空蒸着に
上り、触媒電極2を所定の厚さに形威した。
First, the catalyst electrode 2 was formed to a predetermined thickness by sputtering or vacuum deposition on one side of the fluoropolymer thin film II11 having a thickness of 10 to 50 μm.

次に負極の釦4,触媒電極の全面より均一に電流を集め
るための多孔性カーホン等よりなる集電体8,センサ出
力を温度補償ずるためのサーミスタ6および抵抗7,出
力を取り出すための正・負リード10. 11の各部品
をセンサ容器本体5に装着した。
Next, there is a button 4 for the negative electrode, a current collector 8 made of porous carphone or the like for collecting current uniformly from the entire surface of the catalyst electrode, a thermistor 6 and a resistor 7 for temperature compensating the sensor output, and a positive electrode for taking out the output.・Negative lead 10. Each of the eleven parts was attached to the sensor container main body 5.

その後、上述の触a電極と隔膜の接合体を容器本体に密
接ずるようにO−リンク9によって装着し、電解液とし
て酢酸一酢酸カリウムー硝酸船よりなる酸性電解液3を
注入してガルバニ電池式結露センサを得た、触媒電極の
材質としては、金を用いたが、白金やインジウム等の貴
金属を用いでも同様の効果か得られる。
Thereafter, the above-mentioned tactile electrode and diaphragm assembly was attached to the container body using an O-link 9 so as to fit closely into the container body, and an acidic electrolyte 3 consisting of potassium acetate monoacetate and nitric acid was injected as an electrolyte, and a galvanic cell type was used. Although gold was used as the material for the catalyst electrode from which the dew condensation sensor was obtained, the same effect can be obtained by using a noble metal such as platinum or indium.

このようにして得られたガルバニ電池式結露センサのサ
ンプルについて、出力特性を調べ第3図に示すような結
果を得た。第3図から試作したセンサは出力特性の可逆
性,応答性に優れたものであることがわかる。
The output characteristics of the thus obtained sample of the galvanic cell type dew condensation sensor were examined, and the results shown in FIG. 3 were obtained. It can be seen from Figure 3 that the prototype sensor has excellent reversibility of output characteristics and responsiveness.

また、上述の実施例のサンプルを、異なる大気雰囲気中
に長時間保持して、センサ出力の安定性を調べた。すな
わち、相対湿度40〜60%の乾燥大気中に1時間、相
対湿度90〜95%の高湿度大気中に1時間、相対湿度
100%の結露大気中に1時間それぞれ保持する試験を
10,000回繰返してセンサ出力の変化を調べた。そ
の結果、第3図中に示した値が、ほとんど変化ずること
なく、出力は大変に安定したものであった。
In addition, the samples of the above-mentioned Examples were held in different atmospheric atmospheres for a long time to examine the stability of the sensor output. That is, 10,000 samples were subjected to a test of 1 hour in a dry atmosphere with a relative humidity of 40 to 60%, 1 hour in a high humidity atmosphere with a relative humidity of 90 to 95%, and 1 hour in a dew atmosphere with a relative humidity of 100%. The test was repeated several times to examine changes in the sensor output. As a result, the values shown in FIG. 3 hardly changed, and the output was extremely stable.

以上述べたように、本発明によって、出力安定性や応答
速度等の性能に優れたガルバニ電池電池式結露センサを
得ることかできる。
As described above, the present invention makes it possible to obtain a galvanic cell type dew condensation sensor with excellent performance such as output stability and response speed.

発明の効果 本発明のガルバニ電池式結露センサは、それ自らが出力
を発する能動素子であるために、結露状態を判定するた
めの電気回路は非常に簡略化される。基本的には安価な
差動増幅器1個と比較器1個で十分であり、定電圧発生
器や高周波発信器等の高価な機構や部品は全く不要であ
る。したかって、これを使用した機器のコスト低減に寄
与するところ非常に大である。
Effects of the Invention Since the galvanic cell type dew condensation sensor of the present invention is an active element that itself emits an output, the electric circuit for determining the dew condensation state is greatly simplified. Basically, one inexpensive differential amplifier and one comparator are sufficient, and expensive mechanisms and parts such as a constant voltage generator and a high frequency oscillator are not required at all. Therefore, it greatly contributes to cost reduction of equipment using this.

また、本発明のガルバニ電池式結露センサは結露状態の
検知面として、化学的に非常に安定でかつ機械的に非常
に強固なフッ素系樹脂膜を利用しており、その特性の長
期にわたる信頼性,安定性に優れている。したがって、
この結露センサを使用した機器の結露による故障や事故
を長期にわたって未然に防止することかできる。
In addition, the galvanic cell type dew condensation sensor of the present invention uses a chemically very stable and mechanically strong fluororesin film as the detection surface for dew condensation, and its characteristics have long-term reliability. , has excellent stability. therefore,
Failures and accidents caused by dew condensation in devices using this dew condensation sensor can be prevented over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるガルバニ電池式結露センサの基
本原理説明図であり、Aは環境大気が乾燥状態にある場
合を示し、Bは環境大気が結露状態にある場合を示す。 21・・・環境大気,22・・・酸素透過性隔膜9 23・・・触媒電極,24・・・電解液25・・・銘電
極,26・・・結露によって生じた水層第2図は、本発
明のガルバニ電池式結露センサ試作品の断面′!I4造
図である。 1・・・酸素透過性隔膜,2・・・触媒電極第3図は、
乾燥状態#結露状態を繰返した場合のセンサの出力特性
を示す図である。 1 0 賽 1 閃 2l 26 2z 23 24 25 宵 Z 呂 11
FIG. 1 is a diagram illustrating the basic principle of a galvanic cell type dew condensation sensor according to the present invention, where A shows a case where the ambient air is in a dry state, and B shows a case where the ambient air is in a dew state. 21...Environmental atmosphere, 22...Oxygen permeable diaphragm 9 23...Catalyst electrode, 24...Electrolyte 25...Name electrode, 26...Aqueous layer caused by dew condensation in Figure 2 , a cross section of a prototype galvanic cell type dew condensation sensor of the present invention! This is an I4 drawing. 1...Oxygen permeable diaphragm, 2...Catalyst electrode Figure 3 shows:
It is a figure which shows the output characteristic of a sensor when a dry state and a dew state are repeated. 1 0 dice 1 flash 2l 26 2z 23 24 25 evening Z ro 11

Claims (1)

【特許請求の範囲】[Claims] 結露状態の検知面としての酸素透過性隔膜と、結露状態
によって出力変化を生じせしめるための正極としての触
媒電極と、負極としての鉛電極および電解液とにより構
成されるガルバニ電池式結露センサ
A galvanic cell type dew condensation sensor consisting of an oxygen permeable diaphragm as a detection surface for dew condensation, a catalytic electrode as a positive electrode to cause output changes depending on the condensation state, and a lead electrode and electrolyte as a negative electrode.
JP1234025A 1989-09-08 1989-09-08 Dew condensation sensor Pending JPH0396853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234025A JPH0396853A (en) 1989-09-08 1989-09-08 Dew condensation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234025A JPH0396853A (en) 1989-09-08 1989-09-08 Dew condensation sensor

Publications (1)

Publication Number Publication Date
JPH0396853A true JPH0396853A (en) 1991-04-22

Family

ID=16964380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234025A Pending JPH0396853A (en) 1989-09-08 1989-09-08 Dew condensation sensor

Country Status (1)

Country Link
JP (1) JPH0396853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606668A (en) * 2015-12-21 2016-05-25 国网安徽省电力公司淮北供电公司 Electrochemical thin-film condensation sensor
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
CN105606668A (en) * 2015-12-21 2016-05-25 国网安徽省电力公司淮北供电公司 Electrochemical thin-film condensation sensor

Similar Documents

Publication Publication Date Title
US5716506A (en) Electrochemical sensors for gas detection
US7258773B2 (en) Solid polymer electrolyte oxygen sensor
US20150377823A1 (en) Limiting-current type gas sensor, fabrication method of the limiting-current type gas sensor and sensor network system
JP3090479B2 (en) Gas sensor
CN101532975B (en) Constant temperature measurement-type micro humidity sensor and producing method thereof
JPH0342566A (en) Measuring cell for electrochemical gas sensor
US4521290A (en) Thin layer electrochemical cell for rapid detection of toxic chemicals
JPS59100854A (en) Sensor of wide range air fuel ratio
JP2005504961A (en) Solid potentiometric gas oxide sensor
JPH0396853A (en) Dew condensation sensor
JP2837120B2 (en) Wide area air-fuel ratio sensor and driving method thereof
US6129824A (en) Electrochemical sensor for the detection of hydrogen chloride
Qiu et al. All-additive solution processed silver/silver chloride reference electrode for handheld ion-sensitive field-effect transistor sensing system
KR200351291Y1 (en) solid electrolyte type CO2 sensor
JPH01201149A (en) Composite gas sensor
JP2813423B2 (en) Electrochemical gas sensor
JPH04250353A (en) Ph measuring apparatus
JP2813424B2 (en) Electrochemical gas sensor device
Wang et al. Low-Cost Extended-Gate Field Effect Transistor Sensing System Based on A Channel Structured Reference Electrode
JP3312781B2 (en) Gas concentration measurement method
JP2761086B2 (en) Electrochemical gas sensor device
JPH0153417B2 (en)
JP2959122B2 (en) Moisture sensitive element
JPS61245049A (en) Humidity sensor
JPS58103653A (en) Gas sensor and its production