JPH0218233B2 - - Google Patents

Info

Publication number
JPH0218233B2
JPH0218233B2 JP59236443A JP23644384A JPH0218233B2 JP H0218233 B2 JPH0218233 B2 JP H0218233B2 JP 59236443 A JP59236443 A JP 59236443A JP 23644384 A JP23644384 A JP 23644384A JP H0218233 B2 JPH0218233 B2 JP H0218233B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
substrate
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236443A
Other languages
Japanese (ja)
Other versions
JPS61114844A (en
Inventor
Tatsuo Oota
Hideo Watanabe
Mayumi Okasato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP59236443A priority Critical patent/JPS61114844A/en
Priority to DE19853590588 priority patent/DE3590588T1/en
Priority to US06/882,959 priority patent/US4835061A/en
Priority to PCT/JP1985/000622 priority patent/WO1986002881A1/en
Publication of JPS61114844A publication Critical patent/JPS61114844A/en
Publication of JPH0218233B2 publication Critical patent/JPH0218233B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 本発明は、導電性積層体に関し、更に詳述すれ
ば、例えば液晶表示装置等の表示装置に使用して
好適な導電性積層体に関する。 ロ 従来技術 透明導電膜又は透明導電性積層体は、例えば液
晶デイスプレイ用の電極、エレクトロルミネツセ
ンス表示装置の電極、光導電性感光体用の電極を
はじめ、ブラウン管、各種測定器の窓部分の静電
遮蔽層、帯電防止層、発熱体等の電気、電子分野
に広く利用されている。これらのうち、選択的光
透過性を有する透明導電膜は、その赤外光反射能
によつて太陽エネルギー利用のためのコレクタ用
窓材として、又は建物の窓材として応用されてい
る。また、情報処理の発展に伴なつて、ブラウン
管に代わる表示装置として、エレクトロルミネツ
センス、液晶、プラズマ、強誘電体を用いた各種
の固体デイスプレイが開発されており、これらの
デイスプレイには透明電極が必ず用いられる。更
に、電気信号と光信号との相互作用又は相互変換
による新電気光学素子や記録材料が今後の情報処
理技術にとつて有用視されてきているが、これに
も透明性及び導電性を兼備した膜が必要とされ
る。一方、こうした透明導電層は自動車、飛行機
等における凝結防止用の窓ガラスとして、或いは
高分子やガラス等の帯電防止膜、太陽エネルギー
の放散防止用の透明断熱窓としても利用可能であ
る。特に、近年、液晶デイスプレイ、エレクトロ
ルミネツセンス、プラズマデイスプレイ、エレク
トロクロミツクデイスプレイ、螢光表示装置等に
於いては、高画素表示の要求が高まつており、こ
れに伴つて透明導電層からなる電極によつて画素
部を形成すると同時に、金属層からなる低抵抗電
極によつて信号印加ラインを形成し、画素の表示
速度の向上と画像の改良とを図ることが提案され
ている。 ところで、液晶デイスプレイ等の表示装置にあ
つて、導電性積層体の透明導電層のパターニング
は一般にフオトエツチングによつており、導電性
積層体上に残存するフオトレジストを除去するた
めにアルカリ溶液に浸漬する工程及びパターニン
グ後に導電性積層体表面を酸で洗滌する工程があ
る。これらの工程に於いて、透明導電層に亀裂や
局部的な剥離が起ることがあり、後述するように
導電性積層体にとつて重大な欠陥となる。 上記の現象の原因は明確には把握されていない
が、基体と透明導電層との熱膨張係数の差異に基
く透明導電層内に発生する内部応力が作用してい
るもののように考えられる。 即ち、基体上に透明導電層を蒸着によつて被着
させるに際して蒸着層の酸化度を高めて透明性と
導電性を向上させるために、基体を例えば300℃
以下の温度に加熱する。また、基体の熱膨張係数
は広く用いられているポリエーテルサルホン
(PES)では5.5×10-5cm/cm/℃、ポリエチレン
テレフタレート(PET)では1.5×10-5cm/cm/
℃であるのに対して、透明導電層材料として広く
用いられている例えば酸化インジウム(In2Ox、
x≦3)やインジウム−錫酸化物(ITO)のそれ
は10-6cm/cm/℃のオーダーであつて、基体と透
明導電層との熱膨張係数の差異が大きい。そのた
め、室温で透明導電層内には基体の収縮によつて
内部応力が発生し、この内部応力によつて酸又は
アルカリ液中で腐蝕が進行して亀裂や局部的剥離
を起こすものと考えられる。 一方、透明基板上に酸化インジウム膜を形成
し、次いで酸化錫膜を形成した二層構成の透明導
電膜が提示されている(特開昭52−22789号公報)
が、この透明導電膜は、例えば液晶表示装置素子
用の透明電極板として使用する場合、パネルのシ
ールをガラスシール材を用いて強固に行うに際し
て500℃或いはそれ以上の温度とするのであるが、
この熱処理後の透明性と導電性を良好に保つこと
を目的としている。 この透明導電膜では酸化錫層にピンホールや亀
裂があると前記の酸やアルカリに対して抵抗力が
低下する;酸化インジウム層と酸化錫層との溶解
性の相違のためにサイドエツチングが大きく、パ
ターニングが困難である;基体側に酸化インジウ
ム層を設けると耐酸性、耐アルカリ性共に満足で
きず、その結果、透明導電膜に亀裂や剥離が生じ
易い;等の問題がある。 ハ 発明の目的 本発明は、上記のような従来の導電性積層体が
有する問題点を解消し、酸やアルカリに対して充
分な抵抗力を示す導電性積層体を提供することを
目的としている。 ニ 発明の構成 即ち、本発明は、基体上に中間層と透明導電膜
とがこの順に前記基体の同一面側に形成されてな
る積層構造が唯1つ設けられ、前記中間層が無機
質で実質的に非晶質でありかつ前記透明導電層が
結晶質であることを特徴とする導電性積層体に係
る。 上記「基体」は、その熱膨張係数が透明導電層
の熱膨張係数と明瞭な差異のある基体であり、そ
の材料としては高分子有機質、例えば、ポリエチ
レンテレフタレート(PET)、ポリエチレンナフ
タレート、ポリヘキサメチレンジアミド、ポリ−
γ−ブチロアミド、ポリメタキシレンジアミンテ
レフタルアミド、ビスフエノールA及びそのハロ
ゲン化物と酸ジクロライドを主成分とする芳香族
ポリエステルまたは芳香族ポリエステルカーボネ
ート、メタフエニレンジアミンとイソフタル酸及
びテレフタル酸との共重合体等のポリアミド、ポ
リカーボネート、ポリプロピレン、ポリイミド、
ポリアミド、イミドポリベンズイミダゾール、ポ
リエーテルサルホン(PES)、ポリエーテルエー
テルケトン、ポリサルホン、ポリエーテルイミ
ド、トリアセチルセルロースが使用できる。ま
た、偏向性フイルタ機能を有していても良いし、
製造時に延伸を要する場合は1軸性及び2軸性の
いずれも使用可能である。 基体の中間層や透明導電層を形成する面とは反
対側の面又は基体と中間層との間に複数個の高分
子樹脂を積層又は混合しても良い。例えば透水防
止のためのバリヤ層として、塩化ビニリデン樹脂
サランコートを積層擦ることも可能であり、其他
の機能を有する層、例えば反射防止、擦傷防止効
果、ガスバリヤ性樹脂を積層することも可能であ
る。 例えば旭化成社製サランラテツクス(登録商
標)L520、L511からなるポリ塩化ビニリデン材
料を高分子フイルム基体にワイヤーバーコーテイ
ングしたとき、透水防止効果は極めて大きくな
る。 そのコーテイング条件としては、例えば基体を
厚さ100μmのPET又はPESフイルム、サランラ
テツクス原液(固形分48%)を水で1.0〜3倍に
希釈、ワイヤーバーウエツト膜厚3〜60μm、搬
送速度100〜200m/min、乾燥90〜140℃の熱風、
コーテイング層乾燥膜厚1〜30μmとして良い。 基体の厚さは、100μm程度が好適である。 透明導電層の材料としては、Au、Pd、Cr、Ni
のような金属薄膜、SnO2、In2O3、ZnO、TiO2
CdO、CdO−SnO2及び前記ITO等が好適である。
また、その厚さは200〜10000Åが、特に200〜
1000Åが好適である。但し、ITOの場合は錫10原
子%未満とするのが良く、また、上記成分に加え
て、Cd、Zn、Al等を含有させたものも使用でき
る。 基体と透明導電層との間に設ける中間層は、非
晶質からなるものとし、ITO、酸化錫、酸化珪素
(SiO2)、酸化アルミニウム(Al2O3)等の金属又
は半金属の酸化物を成分とするものが特に好適で
ある。その厚さは70Å以上、特に70〜300Åが良
い。その成膜は反応蒸着又は反応スパツタによる
ことができる。 第1図は本発明に基く導電性積層体の断面を示
し、基体2上に中間層3、透明導電層4が順次被
着されている。中間層3と透明導電層4との間に
は、例えば光干渉効果によつて光透過率を向上さ
せるためのAl2O3層其他の無機物質からなる層、
或いは高分子物質からなる層等の其他の中間層
(これらの層は結晶質であつて良い。)を設けても
良い。 ホ 実施例 以下、透明導電層材料に酸化インジウム又は
ITOを使用した例について説明する。 先ず、本発明が完成するに至る経過について説
明する。以下の試験ではいずれも基体には厚さ
100μmのPES又は一軸延伸若しくは二軸延伸
PETを使用し、中間層、透明導電層の成膜は反
応蒸着(蒸発源In、In−Sn、In2O3、ITO)又は
反応スパツタ法(ターゲツトIn、In−Sn、
In2O3、ITO)によつた。 予備試験 1 中間層を設けない従来の導電性積層体につい
て、透明導電層の錫含有量とシート抵抗との関係
を求めた。但し、成膜温度(蒸着時の基体温度)
は10〜200℃、膜厚は600Åである。 試験結果は第2図に示す通りである。 錫含有7原子%迄はシート抵抗Rは100Ω/□
と略々一定値を示し、これが7原子%を越えると
次第にシート抵抗が上昇し、10原子%で170Ω/
□に達する。錫含有量が10原子%を越えるとシー
ト抵抗が急激に上昇するようになり、シート抵抗
を一定に制御することが困難になると共に低抵抗
値を保持することができなくなる。従つて、透明
導電層の錫含有量は10原子%以下にすべきであ
り、特に7原子%以下であるのが望ましい。 予備試験 2 (i) 中間層を設けない従来の導電性積層体につい
て、成膜時の基体温度(成膜温度)と酸に浸漬
前後のシート抵抗の変化との関係より耐酸性を
調べた。成膜温度は10〜200℃の範囲である。
但し、透明導電層は酸化インジウム又は錫含有
量10原子%迄のITO、膜厚500Å、酸は0.05N
の塩酸、液温は20℃、浸漬時間は30分間であ
る。 酸浸漬前のシート抵抗をR0、酸浸漬後のシ
ート抵抗をRとし、R/R0≦2(R/R0は1に
近い程望ましく、2.0以下であることが望まれ
る。)となるための成膜温度は、透明導電層の
錫含有量によつて変化しており、下記第1表に
示す通りであつた。
B. Industrial Application Field The present invention relates to a conductive laminate, and more specifically, to a conductive laminate suitable for use in a display device such as a liquid crystal display device. B. Prior Art Transparent conductive films or transparent conductive laminates are used, for example, as electrodes for liquid crystal displays, electrodes for electroluminescent displays, electrodes for photoconductive photoreceptors, cathode ray tubes, and window portions of various measuring instruments. It is widely used in electrical and electronic fields such as electrostatic shielding layers, antistatic layers, and heating elements. Among these, transparent conductive films having selective light transmittance are used as window materials for collectors for utilizing solar energy or as window materials for buildings due to their infrared light reflecting ability. In addition, with the development of information processing, various solid-state displays using electroluminescence, liquid crystal, plasma, and ferroelectric materials have been developed as display devices to replace cathode ray tubes, and these displays have transparent electrodes. is always used. Furthermore, new electro-optical elements and recording materials that interact with or mutually convert electrical and optical signals are being considered useful for future information processing technology, but these also have transparency and conductivity. A membrane is required. On the other hand, such a transparent conductive layer can also be used as a window glass for preventing condensation in automobiles, airplanes, etc., as an antistatic film for polymers, glass, etc., and as a transparent heat insulating window for preventing the dissipation of solar energy. In particular, in recent years, there has been an increasing demand for high pixel displays in liquid crystal displays, electroluminescent displays, plasma displays, electrochromic displays, fluorescent displays, etc. It has been proposed to form a pixel portion using an electrode and at the same time form a signal application line using a low resistance electrode made of a metal layer in order to improve the display speed of the pixel and the image quality. By the way, in display devices such as liquid crystal displays, patterning of the transparent conductive layer of the conductive laminate is generally done by photo-etching, and in order to remove the photoresist remaining on the conductive laminate, it is immersed in an alkaline solution. There is a step of washing the surface of the conductive laminate with acid after patterning. In these steps, cracks or localized peeling may occur in the transparent conductive layer, which will cause serious defects in the conductive laminate as described below. Although the cause of the above phenomenon is not clearly understood, it is thought that internal stress generated within the transparent conductive layer due to the difference in coefficient of thermal expansion between the substrate and the transparent conductive layer acts. That is, when depositing a transparent conductive layer on a substrate by vapor deposition, the substrate is heated to, for example, 300°C in order to increase the degree of oxidation of the vapor-deposited layer and improve transparency and conductivity.
Heat to the following temperature. Furthermore, the coefficient of thermal expansion of the substrate is 5.5 x 10 -5 cm/cm/°C for the widely used polyether sulfone (PES), and 1.5 x 10 -5 cm/cm/°C for polyethylene terephthalate (PET).
℃, whereas indium oxide (In 2 Ox,
x≦3) and that of indium-tin oxide (ITO) is on the order of 10 -6 cm/cm/°C, and there is a large difference in thermal expansion coefficient between the substrate and the transparent conductive layer. Therefore, internal stress is generated in the transparent conductive layer at room temperature due to contraction of the substrate, and it is thought that this internal stress causes corrosion to progress in the acid or alkaline solution, causing cracks and localized peeling. . On the other hand, a two-layer transparent conductive film has been proposed in which an indium oxide film is formed on a transparent substrate and then a tin oxide film is formed (Japanese Patent Laid-Open No. 52-22789).
However, when this transparent conductive film is used, for example, as a transparent electrode plate for a liquid crystal display device element, the temperature is set to 500°C or higher to firmly seal the panel using a glass sealing material.
The purpose is to maintain good transparency and conductivity after this heat treatment. In this transparent conductive film, if there are pinholes or cracks in the tin oxide layer, the resistance to the aforementioned acids and alkalis will decrease; side etching will be large due to the difference in solubility between the indium oxide layer and the tin oxide layer. , patterning is difficult; when an indium oxide layer is provided on the substrate side, both acid resistance and alkali resistance are unsatisfactory, and as a result, the transparent conductive film is likely to crack or peel. C. Purpose of the Invention The present invention aims to solve the above-mentioned problems of conventional conductive laminates and to provide a conductive laminate that exhibits sufficient resistance to acids and alkalis. . D. Structure of the Invention That is, in the present invention, there is only one laminated structure in which an intermediate layer and a transparent conductive film are formed on the same side of the substrate in this order on a substrate, and the intermediate layer is inorganic and substantially inorganic. The present invention relates to a conductive laminate characterized in that the transparent conductive layer is essentially amorphous and the transparent conductive layer is crystalline. The above-mentioned "substrate" is a substrate whose coefficient of thermal expansion is clearly different from that of the transparent conductive layer, and its material is a polymeric organic material such as polyethylene terephthalate (PET), polyethylene naphthalate, polyhexane, etc. methylene diamide, poly-
γ-butyroamide, polymethaxylene diamine terephthalamide, aromatic polyester or aromatic polyester carbonate whose main components are bisphenol A and its halides and acid dichloride, copolymers of metaphenylene diamine and isophthalic acid and terephthalic acid. Polyamide, polycarbonate, polypropylene, polyimide, etc.
Polyamide, imidopolybenzimidazole, polyethersulfone (PES), polyetheretherketone, polysulfone, polyetherimide, triacetylcellulose can be used. In addition, it may have a deflection filter function,
If stretching is required during production, both uniaxial and biaxial stretching can be used. A plurality of polymer resins may be laminated or mixed on the surface of the substrate opposite to the surface on which the intermediate layer or transparent conductive layer is formed, or between the substrate and the intermediate layer. For example, it is possible to laminate a vinylidene chloride resin saran coat as a barrier layer to prevent water permeation, and it is also possible to laminate layers with other functions, such as anti-reflection, anti-scratch effects, and gas barrier resins. . For example, when a polyvinylidene chloride material made of Saran Latex (registered trademark) L520 and L511 manufactured by Asahi Kasei Corporation is coated with a wire bar on a polymer film substrate, the effect of preventing water permeation becomes extremely large. The coating conditions include, for example, the substrate is a PET or PES film with a thickness of 100 μm, the Saran latex stock solution (solid content 48%) is diluted 1.0 to 3 times with water, the wire bar wet film thickness is 3 to 60 μm, and the conveyance speed is 100~200m/min, dry hot air of 90~140℃,
The dry thickness of the coating layer may be 1 to 30 μm. The thickness of the base is preferably about 100 μm. Materials for the transparent conductive layer include Au, Pd, Cr, and Ni.
Metal thin films such as SnO 2 , In 2 O 3 , ZnO, TiO 2 ,
CdO, CdO-SnO 2 and the above-mentioned ITO are suitable.
Moreover, its thickness is 200~10000Å, especially 200~
1000 Å is preferred. However, in the case of ITO, the tin content is preferably less than 10 atomic %, and in addition to the above components, those containing Cd, Zn, Al, etc. can also be used. The intermediate layer provided between the substrate and the transparent conductive layer is made of amorphous material, and is made of oxidized metal or semimetal such as ITO, tin oxide, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), etc. Particularly suitable are those containing a substance as a component. The thickness is preferably 70 Å or more, particularly 70 to 300 Å. The deposition can be by reactive vapor deposition or reactive sputtering. FIG. 1 shows a cross-section of a conductive laminate according to the invention, in which an intermediate layer 3 and a transparent conductive layer 4 are successively deposited on a substrate 2. FIG. Between the intermediate layer 3 and the transparent conductive layer 4, there is, for example, an Al 2 O 3 layer or a layer made of another inorganic substance for improving light transmittance by optical interference effect.
Alternatively, other intermediate layers such as layers made of polymeric substances (these layers may be crystalline) may be provided. E Example In the following, indium oxide or
An example using ITO will be explained. First, the progress that led to the completion of the present invention will be explained. In all of the tests below, the substrate has a thickness
100μm PES or uniaxial or biaxial stretching
PET is used, and the intermediate layer and transparent conductive layer are formed by reactive vapor deposition (evaporation source In, In-Sn, In 2 O 3 , ITO) or reactive sputtering method (target In, In-Sn,
In 2 O 3 , ITO). Preliminary Test 1 Regarding a conventional conductive laminate without an intermediate layer, the relationship between the tin content of the transparent conductive layer and the sheet resistance was determined. However, the film formation temperature (substrate temperature during vapor deposition)
The temperature is 10 to 200°C, and the film thickness is 600 Å. The test results are shown in Figure 2. Sheet resistance R is 100Ω/□ for tin content up to 7 atomic%
When this value exceeds 7 atomic%, the sheet resistance gradually increases, and at 10 atomic% it reaches 170Ω/
Reach □. When the tin content exceeds 10 at %, the sheet resistance rapidly increases, making it difficult to control the sheet resistance at a constant level and making it impossible to maintain a low resistance value. Therefore, the tin content of the transparent conductive layer should be 10 atomic % or less, and preferably 7 atomic % or less. Preliminary Test 2 (i) The acid resistance of a conventional conductive laminate without an intermediate layer was investigated from the relationship between the substrate temperature during film formation (film formation temperature) and the change in sheet resistance before and after immersion in acid. The film forming temperature ranges from 10 to 200°C.
However, the transparent conductive layer is made of indium oxide or ITO with a tin content of up to 10 at%, film thickness 500 Å, and acid 0.05N.
Hydrochloric acid, liquid temperature is 20℃, immersion time is 30 minutes. The sheet resistance before acid immersion is R 0 and the sheet resistance after acid immersion is R, and R/R 0 ≦2 (R/R 0 is preferably as close to 1 as possible, and preferably 2.0 or less). The film-forming temperature varied depending on the tin content of the transparent conductive layer, and was as shown in Table 1 below.

【表】 表中、at.%は原子%を表わす(以下同じ)。 同表から、R/R0を2.0以下にするためには、
透明導電層の錫含有量が高くなる程成膜温度を
高くする必要があることが解る。 なお、第1表に示した条件では、R/R0
2.0以下であつたが、酸浸漬後に透明導電層に
亀裂が発生していて、耐酸性は満足できるもの
ではなかつた。また、第1表に示した必要成膜
温度以上で作つた透明導電層はX線回折試験に
より、結晶質であることが判明した。従つて、
耐酸性に於いて少なくともR/R≦2.0とする
には、透明導電層を結晶質にすることが有効で
ある。 (ii) 透明導電層の錫含有量を3原子%とし、成膜
温度と耐アルカリ性との関係を調べたところ、
下記第2表に示す結果が得られた。なお、耐ア
ルカリ性は、5重量%のKOH水溶液(20℃)
に10分間浸漬したときの浸漬前R0と浸漬後R
のシート抵抗変化R/R0及び表面状態変化で
調べた。 同表中、〇、△、×は下記の状態を示す(以
降の試験にお於いても同様である。)。 〇:R/R0≦2.0、亀裂、剥離共に認めず △:R/R0≦2.0、亀裂発生、剥離を認めず ×:R/R0>2.0、亀裂、剥離共に発生
[Table] In the table, at.% represents atomic percent (the same applies below). From the same table, in order to make R/R 0 2.0 or less,
It can be seen that the higher the tin content of the transparent conductive layer, the higher the film forming temperature needs to be. Furthermore, under the conditions shown in Table 1, R/R 0 is
Although the value was 2.0 or less, cracks had occurred in the transparent conductive layer after immersion in the acid, and the acid resistance was not satisfactory. Moreover, the transparent conductive layer formed at the required film-forming temperature shown in Table 1 or higher was found to be crystalline by an X-ray diffraction test. Therefore,
In order to achieve at least R/R≦2.0 in terms of acid resistance, it is effective to make the transparent conductive layer crystalline. (ii) When the tin content of the transparent conductive layer was set to 3 at % and the relationship between film formation temperature and alkali resistance was investigated,
The results shown in Table 2 below were obtained. In addition, the alkali resistance is 5% by weight KOH aqueous solution (20℃)
R0 before immersion and R after immersion when immersed for 10 minutes in
The sheet resistance change R/R 0 and the surface state change were investigated. In the same table, ○, △, and × indicate the following conditions (the same applies to subsequent tests). 〇: R/R 0 ≦2.0, neither cracking nor peeling was observed △: R/R 0 ≦2.0, no cracking or peeling was observed ×: R/R 0 >2.0, both cracking and peeling occurred

【表】 なお、第1表に示した必要成膜温度(錫3原
子%;140℃以上)よりも更に高い成膜温度に
於いて、耐酸性の点では亀裂発生があるが、
R/R0≦2.0である。然し、耐アルカリ性の点
で性は高温になる程アルカリ浸漬による表面の
亀裂が甚しくなり、更に、剥離を起こすことも
あり、やがてR/R0が2.0を越えるようになる。 成膜温度が高くなると酸又はアルカリ浸漬時
に透明導電層に亀裂が発生するようになるの
は、基体と透明導電層との熱膨張係数の差に基
く透明導電層中に発生する内容応力が大きくな
り、これが酸又はアルカリ浸漬時の亀裂発生を
誘発することによるもののように考えられる。 以上のように、基体上に直接透明導電層を形
成した導電性積層体では、耐酸性、耐アルカリ
性の双方共に満足し得るものは得られていな
い。なお、第2表に於いて成膜温度140℃以上
の透明導電層はX線回折試験に於いて結晶性を
有しており、他方、80℃以下に於いては、成膜
温度が下がる程非晶質性を有する度合が高い。 上記の結果から、耐酸性に於いてR/R0
低くするためには透明導電層の成膜温度は錫含
有量に応じた或る温度以上(結晶性)とするこ
とを要するが、成膜温度を上げると、耐酸性及
び耐アルカリ性に於いて亀裂発生の傾向が強ま
る。透明導電層に発生する亀裂は、微細なもの
であればR/R0の増大は僅かであるが、透明
導電層を細かいパターンにパターニングした際
には(特に細かい配線を設けた場合には)、微
細な亀裂であつてもこれが断線の原因となつ
て、この導電性積層体を使用した液晶デイスプ
レイ其他の表示装置に作動しない個所が生ずる
ようになる。このような場合、微細な亀裂でも
導電性積層体にとつて重大な欠陥である。 上記の事情から、成膜温度を上げても亀裂発生
を防止できれば甚だ好都合である。 予備試験 3 第1図に示した構造の導電性積層体1につい
て、中間層3の材料を非晶質酸化錫とし、その厚
さと酸浸漬前後のシート抵抗の変化R/R0との
関係を求めた。成膜温度は200℃以下、例えば100
℃である。透明導電層4は錫0〜8原子%を含有
する酸化インジウム又はITO、成膜温度は第1表
に示した必要成膜温度以上とし、特に100〜200℃
(錫0原子%で100℃、錫6原子%で200℃)、厚さ
は400Åである。R0は400〜600Ω/□、酸浸漬前
の光透過率は82〜75%である。膜厚の測定は300
Å以上ではタリステツプにより行い、それ以下の
厚さは蒸発速度、成膜時間から計算によつて求め
た(以降の試験も同様である。)。 試験結果は第3図に示す通りである。 中間層の厚さが80Åよりも小さくなると、R/
R0が急激に上昇する。これは、酸浸漬によつて
透明導電層に多量の亀裂が発生(中には剥離を起
こすものもある。)による結果である。 中間層の厚さ80ÅではR/R0は1.4で、この厚
さが増すに従つてR/R0は小さくなり、500Å以
上ではR/R0が1になつている。中間層の厚さ
80Å以上では透明導電層中に亀裂を認めなかつ
た。 中間層の材料を10原子%の錫を含むITOとした
場合も上記と略々同様の結果となつた。また、中
間層はX線回折試験に於いて非晶質であり、他
方、透明導電層は結晶質になつている。 以上の結果から、中間層の厚さは80Å以上で非
晶質とするのが良く、更に、透明導電層は結晶質
とするのが良いことが理解できる。 次に、本発明の実施例を比較例と較べながら具
体的に説明する。 基体と透明導電層との間に、錫含有量を変えて
中間層を設けた導電性積層体について、前記と同
様の耐酸、耐アルカリ試験を行つた。 第4図に示す蒸着装置を使用して、一方の面に
予め厚さ1〜30μm、例えば20μmの塩化ビニリデ
ン樹脂からなる透水防止層を被着させた厚さ
100μmのPESシート基体のこの透水防止層とは反
対側の面上に、中間層及び透明導電層を順次堆積
させ、透明導電性積層体とした。 蒸着装置は各室30,31b,31a,32に
仕切られていて、両側の室32,30にはシート
基体2の巻取ロール36、供給ロール33が配さ
れ、両ロール間で基体2が順次送られながら次の
ような処理が行われる。 先ず、室30内で5個の搬送ローラ26によつ
てシート基体2が蛇行して搬送され、シート基体
2の間に配されたハロゲンヒータランプ27によ
つて予備加熱してシート基体2の吸着水分を除去
し、放電装置25で放電処理して清浄される。 室30内での操作条件は次の通りである。 加熱温度:80〜150℃、減圧度:10-4
10-5Torr、 放電処理:使用ガスはO2ガス、Arガス又はAr
+O2混合ガス、DC又はAC放電(0〜1000W
(0Wは放電処理を施さず。)) 次いでシート基体2は室31b内に搬送され、
恒温ローラ29(−10℃〜250℃に制御可能)に
密着して所定温度に保持されながら蒸発源42b
から発生する蒸気によつて蒸着、中間層を形成す
る。中間層の厚さは水晶振動式膜厚モニタ28に
よつて検知、制御される。 室31b内での操作条件は次の通りである。 蒸発源42b:Sn、SnとInとの二元蒸着、
SnO2又はSn7原子%以上を含有
するITO 加熱方法:電子銃加熱(SnO2又はITO)抵抗
加熱(Sn又はSn、Inの二元蒸着) ガス放電装置37:高周波放電(詳細は後述す
る。) 蒸発速度:100〜1000Å/min 酸素圧力:5×10-4〜3.0×10-3Torr 高周波電力:200〜800W(13.56MHz) 基体保持温度:70〜100℃ 次いで、シート基体2は室31bと同様の構造
を有する室31a内に搬送され、中間層上に透明
導電層が形成される。 室31a内での操作条件は次の通りである。 蒸発源42a:In又はSn10原子%以下のITO 加熱方法:電子銃加熱又は抵抗加熱 放電装置37:前記と同じ 蒸発速度:100〜2000Å/min 酸素圧力:3×10-4〜3.0×10-3Torr 高周波電力:前記と同じ 基体保持温度:蒸発源にSnを含有しない場合
は90℃以上、例えば130℃、蒸
発源にSn5原子%を含む場合は
180℃以上、例えば190℃ 其他は室31b内に於けると同様である。 最後に、シート基体2は室32内に搬送され、
シート抵抗モニタ24によつて2本の搬送ローラ
26間でシート抵抗を測定され、巻取ロール36
に巻取られる。 室31b,31a内に配された高周波放電装置
37の詳細を述べると、次の通りである。 第5図に示すように、放電用電極はガス(酸
素)導入管43の周面を内包する如くに配された
複数のリング45a,45bからなつている。放
電装置37全体には水冷管を巻付けてこれを冷却
するようにしてあるが、この水冷管は図示省略し
てある。一方のリング状電極45aはリード線6
7によつて高周波導入端子48に接続され、他方
のリング状電極45bはリード線58により金属
製の防着部材44に接続されて金属製の取付け板
39を介して接地されている。上記電極45a,
45bは例えば内径2〜10cmφ、幅0.5〜10cmの
銅製、ステンレス製又は白金製の帯リングからな
り、Cカツプリング型(容量結合型)の放電を導
入管43内で生ぜしめる。前記帯リングは、水冷
管を巻付け、冷却する事により、高電力の高周波
の導入が長時間可能となる。 上記の如くガス放電装置37を使用する反応蒸
着方法は、従来の方法に比較して次の(1)〜(6)の如
き特徴を有している。 (1) 放電装置に高周波電圧を印加して反応用ガス
を活性化又はイオン化しているので、反応用ガ
スの反応性を高めて蒸着物質との反応を促進で
きると共に、放電部では放電電極45を放電領
域57に接しない位置に設けることができる。
従つて、放電時に電極45がボンバードされる
ことはなく、電極材料がガス中に混入して蒸着
膜を汚染することがない。これに反し、放電装
置に直流電圧を加えて放電させることも考えら
れるが、この場合には電極が放電領域に接して
配する必要があるから不適当である。 (2) 放電用電極45を導入管43の外周に配した
ことにより、蒸着空間内のガス圧を高くするこ
となしにガス圧を高く保持した導入管43のガ
スを効率良くイオン化又は活性化できる。従つ
て、ガスの導入量及び導入率を大きくすること
もできる。また蒸着空間のガス圧を低下させ得
て蒸発物質の電場加速が不要となり、蒸発材料
を金属、酸化物のいずれも使用可能であつて、
その選択範囲が向くなり、而も被蒸着基板の材
質を広範囲に選べると共に、良質な蒸着膜の成
膜が可能となる。而も、基板温度の選択範囲が
広がり、その加熱、冷却も簡略に行える。 (3) ガス放電域が導入管43内に限られ、電極4
5とは隔絶されているから、放電時に生じるガ
スイオンによつて電極45がボンバードされる
ことを防止できる。つまり、電極材料の加熱や
ボンバードによるその蒸発を防止し、蒸着空間
の汚染を防ぐことができる。 (4) 導入管43及び電極45を内包する如く防着
部材44,46を設けたので、導入管43、電
極45、高周波導入端子48への蒸発物質の付
着を防止できると共に、取付け板39、電極4
5、導入管43を介しての高周波の漏れも効果
的に防止して放電を安定に行わせることができ
る。 (5) ガス放電装置37は、ベルジヤー内に設置台
を介して簡単な構造で取付可能であるから、取
付又は取外し作業が容易となる。而も、大面積
基体に対して成膜するときは、その設置位置及
び個数を調整して最適化することにより、均一
な成膜が可能となる。例えば、放電装置を適切
な位置にセツトしたり、或いは均一成膜のため
に複数個セツトできる。 (6) ガス放出口の指向方向が容易に変更可能な為
に、蒸発速度の変化に対しても放電が乱れない
様に設定可能となる。特にガス放出口が蒸発源
と基体の間を指向しないようにガス放電装置を
設置すると、放電が安定に持続し、蒸着膜の膜
質を均一化できる。 (7) 取付台、放電電極45、防着部材44を水冷
することにより、放電中の加熱が防止され、高
電力の高周波が導入でき、反応蒸着を促進でき
る。 かくして、第6図に示すように、基体2の一方
の面上に中間層3、透明導電層4が順次形成し、
他方の面に透水防止層5が形成した透明導電性積
層体を得た。 前述した室31b,31a内での操作条件毎
に、得られた透明導電性積層体のシート抵抗、光
透過率、前記試験5、6に於けると同様の耐酸
性、耐アルカリ性の評価を行つた。 その結果の例を挙げると、下記第3表に示す通
りである。同表中、Tsは基体保持温度である。
[Table] Note that cracks may occur in terms of acid resistance at film forming temperatures higher than the required film forming temperature (3 atomic % tin; 140°C or higher) shown in Table 1.
R/R 0 ≦2.0. However, in terms of alkali resistance, the higher the temperature, the more severe the cracks on the surface caused by immersion in alkali, and the more severe the cracks on the surface, which may even cause peeling, and eventually R/R 0 will exceed 2.0. The reason why cracks occur in the transparent conductive layer during immersion in acid or alkali when the film forming temperature increases is because the internal stress generated in the transparent conductive layer due to the difference in thermal expansion coefficient between the substrate and the transparent conductive layer becomes large. This is thought to be due to the induction of cracks during immersion in acid or alkali. As described above, a conductive laminate in which a transparent conductive layer is directly formed on a substrate has not been able to provide satisfactory acid resistance and alkali resistance. In addition, in Table 2, the transparent conductive layer formed at a film formation temperature of 140°C or higher has crystallinity in the X-ray diffraction test, whereas at a film formation temperature of 80°C or lower, it becomes amorphous as the film formation temperature decreases. Highly qualitative. From the above results, in order to lower R/R 0 in terms of acid resistance, it is necessary to set the film formation temperature of the transparent conductive layer to a certain temperature or higher (crystalline) depending on the tin content. Increasing the film temperature increases the tendency for cracks to occur in acid resistance and alkali resistance. If the cracks that occur in the transparent conductive layer are minute, the increase in R/R 0 will be small, but when the transparent conductive layer is patterned into fine patterns (especially when fine wiring is provided) Even minute cracks can cause disconnection, resulting in areas inoperable in liquid crystal displays and other display devices using this conductive laminate. In such cases, even minute cracks are serious defects for the conductive laminate. In view of the above circumstances, it would be extremely advantageous if cracking could be prevented even if the film formation temperature was raised. Preliminary Test 3 Regarding the conductive laminate 1 having the structure shown in Fig. 1, the material of the intermediate layer 3 was amorphous tin oxide, and the relationship between its thickness and the change in sheet resistance R/R 0 before and after immersion in acid was determined. I asked for it. The film forming temperature is below 200℃, e.g. 100℃
It is ℃. The transparent conductive layer 4 is made of indium oxide or ITO containing 0 to 8 atomic percent of tin, and the film formation temperature is higher than the required film formation temperature shown in Table 1, particularly 100 to 200°C.
(100°C for 0 atomic% tin, 200°C for 6 atomic% tin), and the thickness is 400 Å. R 0 is 400-600Ω/□, and the light transmittance before acid immersion is 82-75%. Film thickness measurement is 300
Thicknesses of Å or more were determined by Talystep, and thicknesses below that were determined by calculation from the evaporation rate and film formation time (the same applies to subsequent tests). The test results are shown in Figure 3. When the intermediate layer thickness is less than 80 Å, R/
R 0 increases rapidly. This is the result of a large number of cracks (some of which cause peeling) in the transparent conductive layer due to acid immersion. When the thickness of the intermediate layer is 80 Å, R/R 0 is 1.4, and as this thickness increases, R/R 0 becomes smaller, and at 500 Å or more, R/R 0 becomes 1. middle layer thickness
No cracks were observed in the transparent conductive layer at a thickness of 80 Å or more. When the material of the intermediate layer was ITO containing 10 atomic % of tin, almost the same results as above were obtained. Also, the intermediate layer is amorphous in X-ray diffraction tests, while the transparent conductive layer is crystalline. From the above results, it can be understood that the thickness of the intermediate layer is preferably 80 Å or more and is preferably amorphous, and furthermore, the transparent conductive layer is preferably crystalline. Next, examples of the present invention will be specifically described while comparing them with comparative examples. Acid resistance and alkali resistance tests similar to those described above were conducted on conductive laminates in which intermediate layers with varying tin contents were provided between the substrate and the transparent conductive layer. Using the vapor deposition apparatus shown in Figure 4, a water permeation prevention layer made of vinylidene chloride resin with a thickness of 1 to 30 μm, for example 20 μm, is previously deposited on one side.
An intermediate layer and a transparent conductive layer were sequentially deposited on the surface of a 100 μm PES sheet substrate opposite to the water permeation prevention layer to obtain a transparent conductive laminate. The vapor deposition apparatus is partitioned into chambers 30, 31b, 31a, and 32, and a take-up roll 36 and a supply roll 33 for the sheet substrate 2 are arranged in the chambers 32 and 30 on both sides, and the substrate 2 is sequentially transferred between the two rolls. The following processing is performed while the data is being sent. First, the sheet substrate 2 is conveyed in a meandering manner by five conveyance rollers 26 in the chamber 30, and is preheated by a halogen heater lamp 27 arranged between the sheet substrates 2 to adsorb the sheet substrate 2. Moisture is removed and the material is subjected to electrical discharge treatment in the electrical discharge device 25 to be cleaned. The operating conditions within the chamber 30 are as follows. Heating temperature: 80 ~ 150℃, degree of decompression: 10 -4 ~
10 -5 Torr, Discharge treatment: Gas used is O 2 gas, Ar gas or Ar
+ O2 mixed gas, DC or AC discharge (0~1000W
(0W does not perform discharge treatment.)) Next, the sheet substrate 2 is transported into the chamber 31b,
The evaporation source 42b is maintained at a predetermined temperature in close contact with a constant temperature roller 29 (controllable between -10°C and 250°C).
The intermediate layer is formed by vapor deposition using the vapor generated from the wafer. The thickness of the intermediate layer is detected and controlled by a crystal vibrating film thickness monitor 28. The operating conditions within the chamber 31b are as follows. Evaporation source 42b: Sn, binary evaporation of Sn and In,
ITO containing SnO 2 or Sn7 atomic % or more Heating method: Electron gun heating (SnO 2 or ITO) Resistance heating (Sn or binary evaporation of Sn and In) Gas discharge device 37: High frequency discharge (details will be described later) Evaporation rate: 100 to 1000 Å/min Oxygen pressure: 5 x 10 -4 to 3.0 x 10 -3 Torr High frequency power: 200 to 800 W (13.56 MHz) Substrate holding temperature: 70 to 100°C Next, the sheet substrate 2 is placed in the chamber 31b. It is transported into a chamber 31a having a similar structure, and a transparent conductive layer is formed on the intermediate layer. The operating conditions within the chamber 31a are as follows. Evaporation source 42a: In or ITO with 10 atomic % or less of Sn Heating method: Electron gun heating or resistance heating Discharge device 37: Same as above Evaporation rate: 100 to 2000 Å/min Oxygen pressure: 3 × 10 -4 to 3.0 × 10 -3 Torr High frequency power: Same as above Substrate holding temperature: 90°C or higher when the evaporation source does not contain Sn, e.g. 130°C, when the evaporation source contains 5 at.% of Sn
180° C. or higher, for example 190° C. Other conditions are the same as in the chamber 31b. Finally, the sheet substrate 2 is transported into the chamber 32,
The sheet resistance monitor 24 measures the sheet resistance between the two conveyance rollers 26, and the sheet resistance is measured between the two conveyance rollers 26.
It is wound up. The details of the high frequency discharge device 37 arranged in the chambers 31b and 31a are as follows. As shown in FIG. 5, the discharge electrode consists of a plurality of rings 45a and 45b arranged to enclose the circumferential surface of the gas (oxygen) introduction tube 43. A water-cooled tube is wrapped around the entire discharge device 37 to cool it, but this water-cooled tube is not shown. One ring-shaped electrode 45a is connected to the lead wire 6
7 to the high frequency introduction terminal 48, and the other ring-shaped electrode 45b is connected to the metal adhesion prevention member 44 by a lead wire 58 and grounded via the metal mounting plate 39. The electrode 45a,
The ring 45b is made of copper, stainless steel, or platinum and has an inner diameter of 2 to 10 cmφ and a width of 0.5 to 10 cm, and generates a C-coupling type (capacitive coupling type) discharge in the introduction tube 43. By wrapping a water-cooled tube around the band ring and cooling it, high-power and high-frequency waves can be introduced for a long period of time. The reactive vapor deposition method using the gas discharge device 37 as described above has the following features (1) to (6) as compared to conventional methods. (1) Since the reaction gas is activated or ionized by applying a high frequency voltage to the discharge device, it is possible to increase the reactivity of the reaction gas and promote the reaction with the vapor deposition material, and at the same time, in the discharge section, the discharge electrode 45 can be provided at a position not in contact with the discharge region 57.
Therefore, the electrode 45 is not bombarded during discharge, and the electrode material does not mix into the gas and contaminate the deposited film. On the other hand, it is conceivable to apply a DC voltage to the discharge device to cause discharge, but in this case it is inappropriate because the electrodes need to be placed in contact with the discharge region. (2) By arranging the discharge electrode 45 around the outer periphery of the introduction tube 43, the gas in the introduction tube 43, which maintains a high gas pressure, can be efficiently ionized or activated without increasing the gas pressure in the vapor deposition space. . Therefore, it is also possible to increase the amount and rate of gas introduction. In addition, the gas pressure in the evaporation space can be lowered, eliminating the need for electric field acceleration of the evaporation material, and the evaporation material can be either a metal or an oxide.
The range of selection is widened, and the material of the substrate to be deposited can be selected from a wide range, and a high-quality deposited film can be formed. Moreover, the selection range of substrate temperature is expanded, and heating and cooling of the substrate can be easily performed. (3) The gas discharge area is limited to the inlet tube 43, and the electrode 4
Since the electrode 45 is isolated from the electrode 45, it is possible to prevent the electrode 45 from being bombarded by gas ions generated during discharge. In other words, it is possible to prevent the electrode material from being heated or evaporated by bombardment, thereby preventing contamination of the deposition space. (4) Since the adhesion prevention members 44 and 46 are provided so as to enclose the introduction tube 43 and the electrode 45, it is possible to prevent evaporated substances from adhering to the introduction tube 43, the electrode 45, and the high frequency introduction terminal 48, and also to prevent the attachment of evaporated substances to the introduction tube 43, the electrode 45, and the high frequency introduction terminal 48. Electrode 4
5. Leakage of high frequency waves through the introduction tube 43 can also be effectively prevented, allowing stable discharge. (5) Since the gas discharge device 37 can be installed in the bell gear with a simple structure via an installation stand, installation or removal work becomes easy. However, when forming a film on a large-area substrate, uniform film formation becomes possible by adjusting and optimizing the installation position and number of the substrates. For example, a discharge device can be set at an appropriate position, or a plurality of discharge devices can be set for uniform film formation. (6) Since the direction of the gas discharge port can be easily changed, it can be set so that the discharge is not disturbed even when the evaporation rate changes. In particular, if the gas discharge device is installed so that the gas discharge port is not directed between the evaporation source and the substrate, the discharge can be maintained stably and the quality of the deposited film can be made uniform. (7) By cooling the mount, the discharge electrode 45, and the adhesion prevention member 44 with water, heating during discharge can be prevented, high-power radio frequency waves can be introduced, and reactive vapor deposition can be promoted. In this way, as shown in FIG. 6, an intermediate layer 3 and a transparent conductive layer 4 are sequentially formed on one surface of the substrate 2.
A transparent conductive laminate having a water permeation prevention layer 5 formed on the other surface was obtained. The sheet resistance, light transmittance, and acid resistance and alkali resistance of the obtained transparent conductive laminate were evaluated in the same manner as in Tests 5 and 6 under the operating conditions in the chambers 31b and 31a described above. Ivy. Examples of the results are shown in Table 3 below. In the same table, Ts is the substrate holding temperature.

【表】【table】

【表】 これら導性積層耐の内、耐酸性、耐アルカリ性
共に優れた導電性積層体は、No.1、3、5、8、
9、12、13、15、16、17であつて、中間層の錫含
有量が7原子%以上のものであり、これらの中間
層を形成した状態で、いずれもX線回折試験の結
果、中間層は非晶質であることが確認された。そ
の他の導電性積層体の中間層は結晶質又は結晶質
を含んでいた。また、No.1、3、5、8、9、
12、13、15、16、17の透明導電層は結晶質又は一
部結晶質を含んでいた。 なお、上記No.1、5、9、13、15と同一組成の
中間層を第3表に記載の成膜温度よりも高い温度
で成膜した場合は、中間層に結晶質が含まれるよ
うになり、その上に透明導電層を形成した導電性
積層体は酸又はアルカリ浸漬によつて透明導電層
に亀裂や剥離の発生が観察された。また、上記No.
1、5、9、13、15の成膜温度で中間層の錫含有
量を上記よりも低くした場合も同様であつた。 以上の結果から、中間層の錫含有量が高い程、
また、中間層の成膜温度が低い程、中間層が非晶
質になり易く、導電性積層体の耐酸性、耐アルカ
リ性が改善されることが解る。 これは次のような理由によるものと考えられ
る。 (1) 成膜温度が低い程、蒸着層は蒸着時に基体に
熱を奪われて急冷され、非晶質になり易い。 (2) ITO蒸着層の錫含有量が高くなる程、非晶質
になり易い。 (3) 従つて、ITO蒸着層の錫含有量が高くなる
程、非晶質となり得る成膜温度の上限が高くな
る。 中間層を酸化珪素(SiO2)又は酸化アルミニ
ウム(Al2O3)とし、成膜温度を前者は150℃以
下、後者では170℃以下として、反応蒸着又は反
応スパツタによつて非晶質中間層を形成し、その
上に透明導電層を形成した導電性積層体でも、前
記の実施例と同様に優れた耐酸性、耐アルカリ性
を示した。 中間層をAl2O3で形成(反応蒸着)した例を挙
げると、下記第4表に示す通りである。
[Table] Among these conductive laminates, the conductive laminates with excellent acid resistance and alkali resistance are No. 1, 3, 5, 8,
9, 12, 13, 15, 16, and 17, the tin content of the intermediate layer is 7 at% or more, and the results of X-ray diffraction tests with these intermediate layers formed are as follows: It was confirmed that the intermediate layer was amorphous. Other intermediate layers of the conductive laminate were crystalline or contained crystalline materials. Also, No. 1, 3, 5, 8, 9,
Transparent conductive layers Nos. 12, 13, 15, 16, and 17 were crystalline or partially contained crystalline materials. Note that if the intermediate layer having the same composition as Nos. 1, 5, 9, 13, and 15 is formed at a temperature higher than the film forming temperature listed in Table 3, the intermediate layer may contain crystalline material. In the conductive laminate on which a transparent conductive layer was formed, cracks and peeling were observed in the transparent conductive layer when immersed in acid or alkali. Also, the above No.
The same result was obtained when the tin content of the intermediate layer was lower than the above at film forming temperatures of 1, 5, 9, 13, and 15. From the above results, the higher the tin content in the intermediate layer, the more
Furthermore, it can be seen that the lower the film formation temperature of the intermediate layer, the more likely the intermediate layer becomes amorphous, and the more the acid resistance and alkali resistance of the conductive laminate are improved. This is considered to be due to the following reasons. (1) The lower the film formation temperature, the more likely the deposited layer will lose heat to the substrate during deposition and be rapidly cooled, becoming amorphous. (2) The higher the tin content of the ITO deposited layer, the more likely it is to become amorphous. (3) Therefore, the higher the tin content of the ITO vapor deposited layer, the higher the upper limit of the film formation temperature at which it can become amorphous. The intermediate layer is made of silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ), and the film formation temperature is 150°C or lower for the former and 170°C or lower for the latter, and the amorphous intermediate layer is formed by reactive vapor deposition or reactive sputtering. A conductive laminate in which a transparent conductive layer was formed on the conductive layer also exhibited excellent acid resistance and alkali resistance similar to the above examples. Examples of the intermediate layer formed of Al 2 O 3 (reactive vapor deposition) are shown in Table 4 below.

【表】 次に、透明導電層を金属薄膜とした実験の一例
を挙げると下記第5表に示す通りである。
[Table] Next, an example of an experiment using a metal thin film as a transparent conductive layer is shown in Table 5 below.

【表】 本発明に基く導電性積層体の透明導電層及び中
間層を所定のパターンにパターンエツチングして
液晶デイスプレイとした例を、第7図に示す。 透明基板2上にパターニングされた中間層3及
び透明導電層4を順序積層してなる透明導電性積
層体1が、透明導電層4を互に対向して位置し、
配向膜7を介して液晶6を挟んでサンドイツチ状
を呈し、液晶デイスプレイ9が構成されている。
透明基板2の両側には、透水防止層5、偏向膜8
が順次被着している。 なお、本発明に基く導電性積層体は、液晶デイ
スプレイのみならず、エレクトロルミネツセンス
デイスプレイ、エレクトロクロミツクデイスプレ
イ、螢光デイスプレイ等、種々の表示装置にも使
用して好適である。 ヘ 発明の効果 以上説明したように、本発明に基く導電性積層
体は、基体と結晶質の透明導電層との間に、実質
的に非晶質からなる中間層が設けられた構造とし
てあるので、基体と透明導電層との熱膨張係数の
差異に基いて透明導電層内に発生する内部応力が
上記中間層の存在によつて緩和される。その結
果、酸やアルカリに対する抵抗力が大きく、例え
ば液晶デイスプレイに使用する際、パターニング
の後処理に於いてレジスト除去のためにアルカリ
洗浄をしたり、透明導電層表面洗浄のために酸を
用いても、表面に亀裂や剥離を起すようなことが
なく、充分に信頼して使用することができる。
[Table] FIG. 7 shows an example of a liquid crystal display formed by pattern-etching the transparent conductive layer and intermediate layer of the conductive laminate according to the present invention into a predetermined pattern. A transparent conductive laminate 1 is formed by sequentially laminating a patterned intermediate layer 3 and a transparent conductive layer 4 on a transparent substrate 2, with the transparent conductive layers 4 facing each other,
A liquid crystal display 9 is constructed in a sandwich-like configuration with a liquid crystal 6 sandwiched therebetween via an alignment film 7.
A water permeation prevention layer 5 and a deflection film 8 are provided on both sides of the transparent substrate 2.
are deposited sequentially. The conductive laminate according to the present invention is suitable for use not only in liquid crystal displays but also in various display devices such as electroluminescent displays, electrochromic displays, and fluorescent displays. F. Effects of the Invention As explained above, the conductive laminate according to the present invention has a structure in which a substantially amorphous intermediate layer is provided between the substrate and the crystalline transparent conductive layer. Therefore, the internal stress generated within the transparent conductive layer due to the difference in thermal expansion coefficient between the substrate and the transparent conductive layer is alleviated by the presence of the intermediate layer. As a result, it has a high resistance to acids and alkalis.For example, when used in liquid crystal displays, alkaline cleaning is required to remove resist during patterning post-processing, or acid is used to clean the surface of the transparent conductive layer. However, there is no cracking or peeling on the surface, and it can be used with full reliability.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明の実施例を示すものであ
つて、第1図は導電性積層体の断面図、第2図は
透明導電層の錫含有量とシート抵抗との関係を示
すグラフ、第3図は非晶質酸化錫中間層の膜厚と
酸浸漬によるシート抵抗の変化との関係を示すグ
ラフ、第4図は成膜に使用した蒸着装置の概略断
面図、第5図は蒸着装置中のガス放電装置の斜視
図、第6図は他の導電性積層体の断面図、第7図
は液晶デイスプレイの断面図である。 なお、図面に示された符号に於いて、1……導
電性積層体、2……基体、3……中間層、4……
透明導電層、5……透水防止層、6……液晶、7
……配向膜、8……偏向膜、9……液晶デイスプ
レイ、29……恒温ローラ、37……ガス放電装
置、42a,42b……蒸発源である。
The drawings all show examples of the present invention, and FIG. 1 is a cross-sectional view of a conductive laminate, FIG. 2 is a graph showing the relationship between tin content and sheet resistance of a transparent conductive layer, and FIG. Figure 3 is a graph showing the relationship between the film thickness of the amorphous tin oxide intermediate layer and the change in sheet resistance due to acid immersion, Figure 4 is a schematic cross-sectional view of the evaporation equipment used for film formation, and Figure 5 is the evaporation equipment. FIG. 6 is a sectional view of another conductive laminate, and FIG. 7 is a sectional view of a liquid crystal display. In addition, in the symbols shown in the drawings, 1... conductive laminate, 2... base, 3... intermediate layer, 4...
Transparent conductive layer, 5...Water permeation prevention layer, 6...Liquid crystal, 7
... alignment film, 8 ... deflection film, 9 ... liquid crystal display, 29 ... constant temperature roller, 37 ... gas discharge device, 42a, 42b ... evaporation source.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上に、中間層と透明導電層とがこの順に
前記基体の同一面側に形成されてなる積層構造が
唯1つ設けられ、前記中間層が無機質で実質的に
非晶質でありかつ前記透明導電層が結晶質である
導電性積層体。
1.Only one laminated structure is provided on a substrate, in which an intermediate layer and a transparent conductive layer are formed in this order on the same side of the substrate, and the intermediate layer is inorganic and substantially amorphous, and A conductive laminate in which the transparent conductive layer is crystalline.
JP59236443A 1984-11-09 1984-11-09 Conductive laminate Granted JPS61114844A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59236443A JPS61114844A (en) 1984-11-09 1984-11-09 Conductive laminate
DE19853590588 DE3590588T1 (en) 1984-11-09 1985-11-08 Conducting composite structure
US06/882,959 US4835061A (en) 1984-11-09 1985-11-08 Conductive laminate
PCT/JP1985/000622 WO1986002881A1 (en) 1984-11-09 1985-11-08 Conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236443A JPS61114844A (en) 1984-11-09 1984-11-09 Conductive laminate

Publications (2)

Publication Number Publication Date
JPS61114844A JPS61114844A (en) 1986-06-02
JPH0218233B2 true JPH0218233B2 (en) 1990-04-24

Family

ID=17000825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236443A Granted JPS61114844A (en) 1984-11-09 1984-11-09 Conductive laminate

Country Status (1)

Country Link
JP (1) JPS61114844A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196140A (en) * 1986-02-24 1987-08-29 東レ株式会社 Transparent conductive film
JPS62196139A (en) * 1986-02-24 1987-08-29 東レ株式会社 Transparent conductive film
JP5556436B2 (en) * 2009-10-13 2014-07-23 東洋紡株式会社 Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
WO2011061982A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Transparent electrode substrate, precursor transparent electrode substrate, and method for manufacturing transparent electrode substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123348A (en) * 1973-03-20 1974-11-26
JPS5461696A (en) * 1977-10-26 1979-05-18 Teijin Ltd Transparent conductive laminated body
JPS55135657A (en) * 1979-04-12 1980-10-22 Suwa Seikosha Kk Cellulose group substrate with transparent conductive film
JPS56164852A (en) * 1980-05-26 1981-12-18 Teijin Ltd Conductive laminate
JPS57196745A (en) * 1981-05-26 1982-12-02 Nippon Sheet Glass Co Ltd Substrate having deposited electrically conductive transparent film and its manufacture
JPS59204544A (en) * 1983-05-10 1984-11-19 住友ベークライト株式会社 Laminated conductive film
JPS60189704A (en) * 1984-03-09 1985-09-27 Univ Kyoto Multi-layered oxide film having periodicity
JPS60192621A (en) * 1984-03-14 1985-10-01 住友ベークライト株式会社 Transparent conductive film with high gas barrier property polarizing film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123348A (en) * 1973-03-20 1974-11-26
JPS5461696A (en) * 1977-10-26 1979-05-18 Teijin Ltd Transparent conductive laminated body
JPS55135657A (en) * 1979-04-12 1980-10-22 Suwa Seikosha Kk Cellulose group substrate with transparent conductive film
JPS56164852A (en) * 1980-05-26 1981-12-18 Teijin Ltd Conductive laminate
JPS57196745A (en) * 1981-05-26 1982-12-02 Nippon Sheet Glass Co Ltd Substrate having deposited electrically conductive transparent film and its manufacture
JPS59204544A (en) * 1983-05-10 1984-11-19 住友ベークライト株式会社 Laminated conductive film
JPS60189704A (en) * 1984-03-09 1985-09-27 Univ Kyoto Multi-layered oxide film having periodicity
JPS60192621A (en) * 1984-03-14 1985-10-01 住友ベークライト株式会社 Transparent conductive film with high gas barrier property polarizing film

Also Published As

Publication number Publication date
JPS61114844A (en) 1986-06-02

Similar Documents

Publication Publication Date Title
US4835061A (en) Conductive laminate
EP1127381B1 (en) Transparent conductive oxides for plastic flat panel displays
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
EP1036774B1 (en) Glass substrate having transparent conductive film
EP0144055A2 (en) Process and apparatus for producing a continuous insulated metallic substrate
US20040021820A1 (en) Transparent flexible barrier for liquid crystal display devices and method of making the same
JP2525475B2 (en) Transparent conductive laminate
US20140154424A1 (en) Roll-to-roll sputtering method
US20190084282A1 (en) Novel multilayer stacks including a stress relief layer, methods and compositions relating thereto
KR20070056148A (en) Polymer, method for producing the polymer, optical film, and image display device
JPH0218233B2 (en)
JPH0218232B2 (en)
JPS63454A (en) Production of transparent conductive film
JP4385453B2 (en) Transparent electrode substrate and liquid crystal display device
JPS61143577A (en) Thin film forming device
JPS6255127A (en) Conductive film
JPS58206008A (en) Method of forming transparent conductive laminate
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPS6143805B2 (en)
JPH07178863A (en) Transparent conductive film and production thereof
WO2023042848A1 (en) Transparent conductive film
WO2023042849A1 (en) Transparent electroconductive film
JPH07106614A (en) Production of semiconductor element
JPH0112663B2 (en)
EP0385007A2 (en) Sealing of polymeric web surfaces

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term