JPH02181724A - Liquid crystal element and driving method thereof - Google Patents

Liquid crystal element and driving method thereof

Info

Publication number
JPH02181724A
JPH02181724A JP1002422A JP242289A JPH02181724A JP H02181724 A JPH02181724 A JP H02181724A JP 1002422 A JP1002422 A JP 1002422A JP 242289 A JP242289 A JP 242289A JP H02181724 A JPH02181724 A JP H02181724A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
voltage
gap
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1002422A
Other languages
Japanese (ja)
Other versions
JPH0812347B2 (en
Inventor
Hisahide Wakita
尚英 脇田
Yoshio Iwai
義夫 岩井
Tsuyoshi Kamimura
強 上村
Hiroyuki Onishi
博之 大西
Kazuhiro Jiyouten
一浩 上天
Satoru Kimura
哲 木村
Shozo Fujiwara
正三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1002422A priority Critical patent/JPH0812347B2/en
Priority to US07/460,555 priority patent/US5151803A/en
Priority to DE69012353T priority patent/DE69012353T2/en
Priority to EP90300032A priority patent/EP0378293B1/en
Priority to KR1019900000179A priority patent/KR940006990B1/en
Publication of JPH02181724A publication Critical patent/JPH02181724A/en
Publication of JPH0812347B2 publication Critical patent/JPH0812347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To make display with a high contrast without providing light shielding layers by applying a prescribed voltage to electrodes forming picture elements, thereby switching the stable state of the spacing part between the two adjacent picture elements. CONSTITUTION:A ferroelectric liquid crystal matrix panel is provided with the signal electrodes 3 and the scanning electrodes 4 on upper and lower substrates 1, 2 and is specified in the pitch of the picture elements to 90mum and the space between the picture elements to 5mum. Bipolar pulses of Vr=25 volts and Tr=1 millisecond are impressed over the entire surface in the period of a part 20 and the entire part of the panel including the space parts of the picture elements become black, when the voltage of the driving waveform shown in the figure is impressed to this panel. The state of the picture elements switches to exactly the opposite state when the polarity of the electrodes is reversed. The space parts thus exhibit bistability. The display of the high contrast ratio is, therefore, executed even if the light shielding layers are not provided between the electrodes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶を液晶層として持つ液晶素子、特
に絵素ピッチ及び絵素間スペース部分の小さい微細パタ
ーンをそなえた液晶素子と、その駆動法、および、前記
液晶素子を用いた光論理素子と、フォトマスクと、表示
装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a liquid crystal element having a ferroelectric liquid crystal as a liquid crystal layer, particularly a liquid crystal element having a fine pattern with a small pixel pitch and a small space between pixels, and its driving. The present invention relates to a method, an optical logic element using the liquid crystal element, a photomask, and a display device.

従来の技術 従来の強誘電性液晶素子としては、例えば第7図のよう
な構成の液晶表示パネルがある。一方の基板ガラス上に
カラーフィルターと遮光層を形成し、その上に平滑化層
で覆った後、透明電極を形成し、さらに配向膜を塗布す
る。他方のガラス基板上には透明電極と配向膜を付ける
。これら一対の基板をスペーサーにより1.5μmから
5μm程度の間のある一定の間隔に対向させ、その間に
強誘電性液晶を注入し、配向させる(例えば、村上、石
川他二「高速マルチカラー強誘電性LCDJ、第14回
液晶討論会講演予稿集、88頁から89頁)、薄膜化さ
れた強誘電性液晶は第8図のようないくつかの状態が安
定になる。第8図(aL (b)は液晶分子の方向がほ
ぼ揃った状態で、このとき自発分極は基板法線上方間及
び下方向に向いている。
2. Description of the Related Art A conventional ferroelectric liquid crystal element includes, for example, a liquid crystal display panel having a structure as shown in FIG. A color filter and a light-shielding layer are formed on one glass substrate, and a smoothing layer is formed thereon, a transparent electrode is formed, and an alignment film is further applied. A transparent electrode and an alignment film are attached on the other glass substrate. These pair of substrates are opposed to each other at a certain distance between 1.5 μm and 5 μm using a spacer, and ferroelectric liquid crystal is injected between them and oriented (for example, Murakami, Ishikawa et al., “High-speed multicolor ferroelectric The thinned ferroelectric liquid crystal becomes stable in several states as shown in Figure 8. Figure 8 (aL ( In b), the directions of the liquid crystal molecules are almost aligned, and the spontaneous polarization is directed above and below the normal line of the substrate.

第8図(C)は液晶分子が基板法線方向で捻れた状態を
取っており、この捻れ方向が逆回りの状態も存在する。
FIG. 8(C) shows a state in which the liquid crystal molecules are twisted in the normal direction of the substrate, and a state in which the twisting direction is reversed also exists.

配向膜の種類によって基板上の液晶分子の傾き角度や液
晶層の折れ曲がり方によって、第8図と異なる場合もあ
るが、基本的にはこの模式図で液晶分子の安定状態を表
わせる。第9図(a)(b)、 (C)はそれぞれ、第
8図(a)、 (b)、 (C)の液晶を上基板から見
た平面図であるが、直交させた偏光子71.72の間に
液晶セルを挟むと、第9図(a)。
Although it may differ from FIG. 8 depending on the type of alignment film, the angle of inclination of the liquid crystal molecules on the substrate, and the way the liquid crystal layer is bent, this schematic diagram basically represents the stable state of the liquid crystal molecules. FIGS. 9(a), (b), and (C) are plan views of the liquid crystals shown in FIGS. 8(a), (b), and (C), respectively, viewed from the upper substrate. When a liquid crystal cell is sandwiched between .72 and .72, Figure 9(a).

(b)のような−様な状態を用いて、明暗を付けること
ができる。第9図(C)のような液晶分子が捻れた構造
を持つ状態では灰色の表示になる。薄膜化した強誘電性
液晶パネルはこのような安定状態を持ち、かつ、これら
の状態間の遷移は印加電圧に応じて非常に栄、激に起こ
り、印加電圧と透過光量の特性は急峻な闇値特性を示す
。このため、fjlWAトランジスターのような非線形
素子を設けなくても、単純なマトリックス構成の電極だ
けで大容量で高コントラストの表示を得ることができる
Brightness and darkness can be added using the --like state shown in (b). When the liquid crystal molecules have a twisted structure as shown in FIG. 9(C), the display becomes gray. A thin ferroelectric liquid crystal panel has such a stable state, and the transition between these states occurs very quickly and rapidly depending on the applied voltage, and the characteristics of the applied voltage and amount of transmitted light are sharp and dark. Indicates value characteristics. Therefore, a high-capacity, high-contrast display can be obtained using only electrodes in a simple matrix configuration without providing a nonlinear element such as an fjlWA transistor.

ところで、第7図では、カラーフィルターと遮光層の上
に平滑化層を形成しているが、これはカラーフィルター
上の凹凸およびカラーフィルターと遮光層の境目に段差
部が液晶の配向に悪影響を与えるのを防ぐ為に設けてお
り、強誘電性液晶は層構造を持つためネマチック液晶よ
りもこのような段差の影響を受は易い為、このような*
9Iな構成を取っている。カラーフィルターを付けない
単色のパネルの場合でも、特に、絵素パターンが微細に
なり開口率が小さくなる場合は、絵素間の間隙部を暗く
する、いわゆるブラックマトリックス状態にしなければ
、コントラストが非常に小さくなってしまうので、通常
、第7図のように遮光層を設ける。遮光層以外の方法と
しては、上下基板で配向膜の極性を異ならせて、自発分
極の向きが揃った状態の内の1つの安定性を上昇させ、
初期配向で絵素間隙部を暗くする方法が提案されている
(例えば、特開昭63−225224号公報)。
By the way, in Figure 7, a smoothing layer is formed on the color filter and the light-shielding layer, but this is because the unevenness on the color filter and the stepped portion at the boundary between the color filter and the light-shielding layer adversely affect the alignment of the liquid crystal. Because ferroelectric liquid crystals have a layered structure, they are more easily affected by such steps than nematic liquid crystals.
It has a 9I structure. Even in the case of a single-color panel without a color filter, especially when the pixel pattern becomes fine and the aperture ratio becomes small, the contrast will be very low unless the gaps between the pixels are darkened, creating a so-called black matrix state. Therefore, a light shielding layer is usually provided as shown in FIG. As a method other than the light-shielding layer, the polarity of the alignment film is made different between the upper and lower substrates to increase the stability of one of the states in which the directions of spontaneous polarization are aligned.
A method has been proposed in which the pixel gaps are darkened in the initial orientation (for example, Japanese Patent Application Laid-Open No. 63-225224).

マトリックスパネルでは、隣接した電極の間は絶縁され
ており、電極間隙部には対1ti]基板上には電極があ
るが、通常、間隙部の液晶が電界に応答するとは考えら
れていない。強誘電性液晶の場合は、配向のドメインが
2次元的に広がり易いが、ドメイン壁の動きによる広が
りはせいぜい1μm程度であると報告されている(例え
ば、クラーク、ラガバール:ジャパンディスプレイ゛ 
86、予稿fi456頁[C1ark、 Lagerw
all:JAPAN DISPLAY’86゜PROC
EEDINGS、 P456])。
In a matrix panel, adjacent electrodes are insulated, and there are electrodes on the substrate in the gap between the electrodes, but it is not normally thought that the liquid crystal in the gap responds to an electric field. In the case of ferroelectric liquid crystals, the alignment domains tend to spread two-dimensionally, but it is reported that the spread due to the movement of domain walls is at most about 1 μm (for example, Clark, Ragabar: Japan Display).
86, Proceedings fi 456 pages [C1ark, Lagerw
all: JAPAN DISPLAY'86゜PROC
EDINGS, P456]).

発明が解決しようとする課題 パターンが非常に微細な場合、ブラックマトリックス状
態にするために遮光層を形成するのは、電極のパターン
との位置合わせが難しく、コストの上昇を招(、また、
配向膜の極性を上下基板で異ならせると、暗状態と明状
態の安定性が非対称化するので、不安定な方の状態がマ
トリックス駆動時のクロストーク電圧で輝度乱れが生じ
る等の悪影響がある。また、絵素の間隙部だけ配向膜の
種類を変えるのは、工法的に困難である。
Problems to be Solved by the Invention When the pattern is very fine, forming a light-shielding layer to create a black matrix state is difficult to align with the electrode pattern, leading to increased costs (and
If the polarity of the alignment film is different between the upper and lower substrates, the stability of the dark state and bright state will become asymmetrical, so the unstable state will have negative effects such as brightness disturbance due to crosstalk voltage during matrix drive. . Furthermore, it is technically difficult to change the type of alignment film only in the gaps between pixels.

さらに、絵素ピッチが電極の微細加工精度の限界に近く
なった場合には、開口率は著しく小さくなるので、ブラ
ックマトリックス状態にすると、光の透過率が非常に小
さくなるという問題点も発生する。
Furthermore, if the pixel pitch approaches the limit of electrode microfabrication accuracy, the aperture ratio will become significantly smaller, so creating a black matrix state will cause the problem of extremely low light transmittance. .

!!題を解決するための手段 上記課題を解決するために本発明の液晶素子は、対抗面
に電極を有しマトリックス状の絵素を形成する基板間に
強誘電性液晶を挟持し、隣接する2つの絵素の間隙部を
前記2つの絵素を形成する電極に所定のパルス電圧を印
加することにより前記間隙部の安定状態を切り替えるこ
とにより、?yi雑な構成を取らなくても、容易にブラ
ックマトリックス状態にできるものである。また、セル
構成によっては、明と明の絵素の間隙部は明状態または
、中間輝度状態にでき、暗と暗の絵素の間隙部は暗状態
にできるので、電極の開口率が非常に小さくなっても、
透過率を大きくできる。
! ! Means for Solving the Problems In order to solve the above problems, the liquid crystal element of the present invention has a ferroelectric liquid crystal sandwiched between substrates having electrodes on opposing surfaces and forming matrix-like picture elements, and two adjacent By applying a predetermined pulse voltage to the electrodes forming the two picture elements to switch the stable state of the gap between the two picture elements? yiIt is possible to easily create a black matrix state without using a complicated configuration. Also, depending on the cell configuration, the gap between bright pixels can be in a bright state or an intermediate brightness state, and the gap between dark pixels can be in a dark state, so the aperture ratio of the electrode can be extremely high. Even if it becomes smaller,
Transmittance can be increased.

作用 非常に微細なパターンでは、絵素と絵素の間隙部の液晶
も電界に応答し、絵素上と同様な安定状態を取ることを
発見した0間隙部の液晶の闇値電圧は絵素上より高いが
、十分な電圧、パルス幅のパルスを印加してやれば安定
状態は切り替わる0強誘電性液晶の応答速度は概ね、電
圧とパルス幅の積に比例するが、簡単のためにパルス幅
を固定した時の、絵素上の液晶の安定状態が明から暗、
暗から明に切り替わる閾値電圧を一■24.−■、4゜
間隙部の安定状態が明から暗、暗から明に切り替わる時
に間隙部を形成する2つの絵素上に印加されている電圧
をVB2.■*bとすると■□〉■、4 Vo>V、。
Effect It was discovered that in very fine patterns, the liquid crystal in the gap between the picture elements also responds to the electric field and assumes a stable state similar to that on the picture element.The dark value voltage of the liquid crystal in the gap between the picture elements is Although it is higher than the above, if a pulse with sufficient voltage and pulse width is applied, the stable state can be switched.0 The response speed of ferroelectric liquid crystal is roughly proportional to the product of voltage and pulse width, but for simplicity, the pulse width is When fixed, the stable state of the liquid crystal on the picture element changes from bright to dark.
24. Threshold voltage for switching from dark to bright. -■, 4° When the stable state of the gap changes from bright to dark and from dark to bright, the voltage applied to the two picture elements forming the gap is VB2. If ■*b, ■□〉■, 4 Vo>V,.

の関係がある。電圧が−v、d以下のパルスにより、絵
素及び、絵素間隙部を暗状態にしてから、走査電極を選
択する0選択期間に絵素がオンの時とオフの時に絵素に
印加される電圧をそれぞれvOn +■。ffとすると V oa≧V、b>Voff の関係があるが V、、>>V、。
There is a relationship between A pulse with a voltage of -v, d or less is applied to the picture element when the picture element is on and when it is off during the 0 selection period in which the scanning electrode is selected after the picture element and the picture element gap are brought into a dark state. Each voltage is vOn +■. ff, there is a relationship of V oa≧V, b>Voff, but V, >>V.

なら選択期間には絵素上だけがスイッチし、ブラックマ
トリックス状態になる。絵素間間隙部の幅が狭くなり、
V□+VIkが小さくなり、V @a ≧V @> >
 V 61 fになると選択期間に間隙部を形成する2
つの絵素がともにオンの時は、間隙部もオン状態になる
Then, during the selection period, only the top of the picture element switches, creating a black matrix state. The width of the gap between pixels becomes narrower,
V□+VIk becomes smaller, V @a ≧V @>>
When V 61 f, a gap is formed in the selection period 2
When two picture elements are both on, the gap is also on.

実施例 以下本発明の一実施例の液晶素子とその駆動法について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a liquid crystal element and a driving method thereof according to an example of the present invention will be explained with reference to the drawings.

第1図は絵素ピッチ90μm、絵素間スペース5μmの
強誘電性液晶マトリックスパネルに第3図のようなマト
リックス駆動波形を絵素に印加した後の絵素の状態を示
した平面図である。第2図は、第1図のパネルの断面図
で、ガラス上にストライブ状の透明電極を形成し、その
上に配向膜を形成している。液晶材料は、エステル系の
強誘電性液晶を用い、液晶層の厚さ2.0amであり、
SiOを基板法線から82度傾動た方向から蒸着し配向
膜を形成した。第3図の駆動波形はリセット期間200
部分でパネル全面を暗状態にした後、電圧平均化法によ
る走査を行なっている。第3図20の部分では¥r−2
5ボルト、Tr−1ミリ秒の双極性パルスがパネル全面
に印加され、このとき初期配向ではねじれ状態だったパ
ネルが絵素の間隙部も含めて真っ黒になった。25ボル
ト、1ミリ秒未満、500μ秒以上のパルス幅では縦の
絵素間隙部のみ黒くなり、500μ秒未満のパルス幅で
は全く応答しなかった。第1図11の部分は選択期間に
Ts−200#秒でV、、−25ボルトの双極性パルス
が印加され、絵素内部だけが明状態になり、12の部分
は選択期間にTs−200μ秒、V−tt ” 15ボ
ルトの双極性パルスが印加されたが暗状態のまま保たれ
た。電圧の極性を第3図とは逆転させると、第1図の絵
素の状態は全く反対の状態になり、間隙部は双安定性を
示すことが分かった。絵素ピッチ30um、絵素間隙部
3μmのパネルでは、間隙部の安定状態が切り替わる電
圧、パルス幅はもっと小さくなり、Vr−25ボルト、
Tr−300μ秒の双極性パルスで暗状態になった。こ
のパネルでは、第1図11のオン絵素は明状態になり、
オン絵素に挟まれた間隙部の液晶はねじれ状態を取り、
中間レベルの明るさとなった。絵素ピッチ6μm、絵素
間隙部2μmのパネルでは絵素間隙部の闇値電圧は更に
小さくなり、V r=25ボルト、Tr=250μ秒で
暗状態になり、このときは、絵素の閾値も25ボルト2
25μ秒と少し上昇し、間隙部との差は非常に小さくな
った。このパネルをTs=250μ秒、■。7−25ボ
ルトと闇値より少し長いパルスで駆動したところ、オン
絵素間の間隙部は明状態に成り、オフ絵素間の間隙部は
暗状態に、オン絵素とオフ絵素間間隙部はねじれ状態に
なった。
FIG. 1 is a plan view showing the state of pixels after a matrix driving waveform as shown in FIG. 3 is applied to the pixels in a ferroelectric liquid crystal matrix panel with a pixel pitch of 90 μm and an inter-pixel space of 5 μm. . FIG. 2 is a sectional view of the panel shown in FIG. 1, in which a striped transparent electrode is formed on glass, and an alignment film is formed thereon. The liquid crystal material uses ester-based ferroelectric liquid crystal, and the thickness of the liquid crystal layer is 2.0 am.
SiO was deposited from a direction tilted 82 degrees from the normal line of the substrate to form an alignment film. The drive waveform in Figure 3 has a reset period of 200
After darkening the entire panel in some areas, scanning is performed using the voltage averaging method. In the part 20 of Fig. 3, ¥r-2
A bipolar pulse of 5 volts and Tr-1 millisecond was applied to the entire panel, and the panel, which was twisted in its initial orientation, became completely black, including the gaps between pixels. When the voltage was 25 volts and the pulse width was less than 1 millisecond and the pulse width was 500 μsec or more, only the vertical picture element gaps became black, and when the pulse width was less than 500 μsec, there was no response at all. In the part of FIG. 11, a bipolar pulse of V, -25 volts is applied for Ts-200# seconds during the selection period, and only the inside of the picture element becomes a bright state, and in the part 12, the voltage is Ts-200μ during the selection period. sec, V-tt" A bipolar pulse of 15 volts was applied but remained in the dark state. If the polarity of the voltage was reversed from that in Figure 3, the state of the pixel in Figure 1 would be exactly the opposite. In a panel with a pixel pitch of 30 um and a pixel gap of 3 μm, the voltage and pulse width at which the stable state of the gap changes are smaller, and Vr-25 bolt,
A Tr-300 μsec bipolar pulse resulted in a dark state. In this panel, the ON picture element in FIG. 11 is in the bright state,
The liquid crystal in the gap between the on pixels takes a twisted state,
The brightness was at a medium level. In a panel with a pixel pitch of 6 μm and a pixel gap of 2 μm, the dark value voltage at the pixel gap becomes even smaller, and becomes a dark state at V r = 25 volts and Tr = 250 μs, and at this time, the threshold of the pixel Also 25 volts 2
The time increased slightly to 25 μsec, and the difference with the gap became very small. This panel was tested at Ts=250 μsec, ■. When driven with a pulse of 7-25 volts, which is slightly longer than the dark value, the gap between the on-pixel elements becomes a bright state, the gap between the off-pixel elements becomes a dark state, and the gap between the on-pixel and off-pixel elements becomes a dark state. The part became twisted.

この結果、透明電極により形成された絵素の開口率は1
6prff/36μmで44%だが、表示される文字や
図形の明るさは開口率100%の場合と同等であった。
As a result, the aperture ratio of the picture element formed by the transparent electrode is 1
Although it was 44% at 6 prff/36 μm, the brightness of displayed characters and figures was equivalent to that when the aperture ratio was 100%.

パネル全面に電圧を印加するときに液晶層、特に絵素間
隙部にどのような電界がかかっているかを有限要素法で
計算した電界強度分布図を第4図に示す。上電極はOボ
ルト、下電極は20ボルト、液晶層の厚みは2μm、1
!極の厚みは200nm、液晶とガラスの誘電率はそれ
ぞれ7,6.7、電極間間隙部は4μmとしている。
FIG. 4 shows an electric field strength distribution diagram calculated using the finite element method, which shows what kind of electric field is applied to the liquid crystal layer, especially the gap between the picture elements, when a voltage is applied to the entire surface of the panel. The upper electrode is O volts, the lower electrode is 20 volts, the thickness of the liquid crystal layer is 2 μm, 1
! The thickness of the electrode is 200 nm, the dielectric constants of the liquid crystal and glass are 7 and 6.7, respectively, and the gap between the electrodes is 4 μm.

絵素間隙部でも上電極近辺では絵素上の7割、下のガラ
ス付近でも4割から5割の強度の電界が印加されている
のが分かる。同様の計算により、絵素間隙部を狭くして
いくと間隙部の電界はより強く、広くしていくと弱くな
ることも分かった。従って、電極間隙部を狭くしていけ
ば、液晶が応答するに十分な電界が間隙部にも印加され
ており、液晶分子はこの電界に応答していることが、こ
の第4図からも分かる。
It can be seen that even in the picture element gap, an electric field with an intensity of 70% above the picture element is applied near the upper electrode and 40% to 50% near the lower glass. Similar calculations revealed that the electric field in the gap becomes stronger as the pixel gap becomes narrower, and becomes weaker as it becomes wider. Therefore, if the electrode gap is narrowed, an electric field sufficient for the liquid crystal to respond will be applied to the gap, and it can be seen from Figure 4 that the liquid crystal molecules respond to this electric field. .

電極間隙部が30μm程度までのセルではパルスの電圧
をあげるかパルス幅を大きくしていけばブラックマトリ
ックス状態にできた。しかし、間隙部が5μm以上のセ
ルでは、体積抵抗値が低い、イオン性の不純物が多い強
誘電性液晶材料を液晶層に持つ場合は、パルス幅を長く
していっても完全に間隙部を暗状態にできず、あまり、
長くし過ぎると逆にねじれ状態になってしまった。これ
は、イオン性不純物が印加電圧により移動して、印加電
圧とは逆の電圧がイオン分布により発生しているためと
考えられる。そこで、第5図(a)、 (b)のように
双極性パルスのパルス幅を短くして複数回操り返すこと
により、イオンの移動を防ぎ、かつ繰り返しの効果によ
り短いパルスでも間隙部が動くことが分かった。第3図
、第5図(a)、 O))の駆動波形図は、パネル全面
を暗状態にしてから走査を行なったが、隣接した電極に
ほぼ同じ電界が印加されれば絵素間隙部は応答し易いの
で、パネル全面でな(でも連続した複数本の走査電穫上
の絵素に順番に、あるいはパネルの一部だけに、双極性
パルスを印加しても良い。また、絵素間隙部は短いパル
スでも繰り返し印加すると応答しやすくなるので、1回
又は数回の走査毎に間隙部をリセットする方がよい、第
6図(a)〜(′b)はマトリックス駆動波形の他の実
施例の波形図で、横軸は時間、縦軸は電圧、第6図(a
)〜(C)は走査電圧波形、第6図(d)。
In a cell with an electrode gap of up to about 30 μm, a black matrix state could be achieved by increasing the pulse voltage or pulse width. However, in a cell with a gap of 5 μm or more, if the liquid crystal layer is made of a ferroelectric liquid crystal material with a low volume resistivity and many ionic impurities, even if the pulse width is lengthened, the gap will not be completely closed. I can't keep it in the dark, so
If I made it too long, it would become twisted. This is considered to be because the ionic impurities are moved by the applied voltage, and a voltage opposite to the applied voltage is generated due to the ion distribution. Therefore, by shortening the pulse width of the bipolar pulse and repeating it multiple times as shown in Figures 5 (a) and (b), ion movement is prevented, and the gap moves even with short pulses due to the effect of repetition. That's what I found out. In the driving waveform diagrams shown in Figures 3 and 5 (a), O)), scanning was performed after the entire panel was in a dark state, but if almost the same electric field is applied to adjacent electrodes, the gap between the picture elements will be Since it is easy to respond, bipolar pulses can be applied not only to the entire panel (but also to pixels on multiple consecutive scanning electrodes in sequence, or only to a part of the panel. Since the gap becomes more responsive when even short pulses are repeatedly applied, it is better to reset the gap after every one or several scans. In the waveform diagram of the example, the horizontal axis is time and the vertical axis is voltage.
) to (C) are scanning voltage waveforms, FIG. 6(d).

(e)は信号電圧波形、第6図(f) 〜(h)はXl
−X3とYlとが形成する絵素に印加される電圧を表わ
す。
(e) is the signal voltage waveform, and Fig. 6 (f) to (h) are the signal voltage waveforms.
- represents the voltage applied to the picture element formed by X3 and Yl.

第6図(a)〜(C)のリセット期間を見ると、走査電
捲に、他の走査線が選択されている時に、選択期間の印
加電圧とはパルスの印加順序を逆転させてパルス幅を長
くした電圧を印加すると、その時の信号電圧がオン信号
でもオフ信号でも、同極性のパルスが連続的に絵素P1
〜P3に印加されるので、絵素間隙を電界応答させるこ
とができた。この駆動法なら、連続的な走査を行いなが
ら、パルス幅の長いリセットパルスを印加でき、かつ、
走査時間は絵素上の液晶の応答速度(選tRIIJI間
のパルス幅)Tsの2N倍(Nは走査線数)となり、ネ
マチック液晶の電圧平均化法と同等で、走査時間を非常
に短くできる。また、このリセットパルスは直流成分を
含まないので、液晶の劣化を招くことはない、すなわち
、信号電圧は1選択期間の前半と後半で、 オン信号の時 VsとO オフ信号の時 (14/a)率Vsと(2/a)*Vs
の電位を取るが(aはバイアス比)、リセットの走査信
号は、Vsと00電位を数選択期間ずつ取るので、1選
択期間内に絵素に印加される電圧とパルス幅の積は、走
査電圧がVsのとき、オン信号では (シ5−Vs)*Ts+(Vs−0)ds−Vs11T
sオフ信号では (’js−(1−2/a)*Vs) *1s+ fVs
−(2/a)本VSl 本Ts−Vsdsと等しく、走
査電圧がOボルトの時は、オン信号では (0−Vs)率Ts+(0−0)ds−−Vs傘Tsオ
フ信号では (0−<1−2/a)*Vs) 傘Ts+ (0−(2
/a)*νsl 1sTs=−Vs*Tsとなり、オン
信号でもオフ信号でも電圧とパルス幅の積は正負等しい
ので、直流成分は残らず、また、信号電圧によらずに絵
素及び絵素間隙部をリセットできる。
Looking at the reset period in FIGS. 6(a) to (C), when another scanning line is selected in the scanning voltage, the pulse width is reversed from the applied voltage during the selection period. When a voltage with a longer period of time is applied, pulses of the same polarity are continuously applied to picture element P1, regardless of whether the signal voltage at that time is an on signal or an off signal.
~P3, it was possible to cause the picture element gap to respond to the electric field. With this driving method, it is possible to apply a reset pulse with a long pulse width while performing continuous scanning, and
The scanning time is 2N times (N is the number of scanning lines) the response speed of the liquid crystal on the picture element (pulse width between selections) Ts, which is equivalent to the voltage averaging method for nematic liquid crystals, and the scanning time can be extremely shortened. . In addition, since this reset pulse does not include a DC component, it will not cause deterioration of the liquid crystal.In other words, the signal voltage is set in the first and second half of one selection period: on signal Vs and O, off signal (14/ a) Rate Vs and (2/a)*Vs
(a is the bias ratio), but the reset scanning signal takes Vs and 00 potential for several selection periods, so the product of the voltage applied to the picture element and the pulse width within one selection period is the scanning When the voltage is Vs, the on signal is (S5-Vs)*Ts+(Vs-0)ds-Vs11T
For s off signal, ('js-(1-2/a)*Vs) *1s+fVs
- (2/a) main VSl is equal to main Ts - Vsds, and when the scanning voltage is O volts, (0 - Vs) rate Ts + (0 - 0) ds - - Vs umbrella Ts for off signal (0 - Vs) -<1-2/a)*Vs) Umbrella Ts+ (0-(2
/a)*νsl 1sTs=-Vs*Ts, and the product of voltage and pulse width is equal to positive and negative for both on and off signals, so no DC component remains, and the pixel and pixel gap are independent of the signal voltage. section can be reset.

この方法を用いれば、リセットパルスは走査中のどの時
点でも、どの様なパルス幅でも、また何回でも印加でき
るので、例えば、第6図のような駆動波形はイオン性不
純物の多いパネルでも絵素間隙部の安定状態を連続的な
走査を短い走査時間内で切り替えることができた。
Using this method, the reset pulse can be applied at any time during scanning, with any pulse width, and any number of times, so for example, the drive waveform shown in Figure 6 can be applied even on panels with many ionic impurities. It was possible to switch the stable state of the elementary gap between continuous scanning within a short scanning time.

以上のように本発明の液晶素子は、パターンが非常に微
細で、開口率を十分に取れない場合でも、遮光層無しの
簡単な構成で、高コントラストで透過率(反射形の場合
は反射率)の高いライトバルブを実現できる。
As described above, even when the liquid crystal element of the present invention has a very fine pattern and cannot obtain a sufficient aperture ratio, it has a simple structure without a light-shielding layer, has high contrast, and has high transmittance (or reflectance in the case of a reflective type). ) can realize a light valve with high performance.

本発明の液晶素子を用いれば、液晶素子を積層して大容
量並列光論理演算子が実現可能となる。
By using the liquid crystal element of the present invention, it becomes possible to realize a large-capacity parallel optical logic operator by stacking liquid crystal elements.

また、絵素間隙部が小さい時は、明状態、或は、暗状態
の隣合った絵素は繋がって表示されるので、半導体集積
回路等の作成時に用いられるフォトマスクとして本発明
の液晶素子を用いれば、従来のような、クロムなどの遮
光層をエツチングして固定のパターンを作成せずとも、
1枚の液晶素子で任意のパターンをデータを液晶ドライ
ブ回路へ送るだけで形成できる。
Furthermore, when the pixel gap is small, adjacent picture elements in a bright state or a dark state are displayed as being connected, so the liquid crystal element of the present invention can be used as a photomask for use in the production of semiconductor integrated circuits, etc. If you use , you don't have to create a fixed pattern by etching a light-shielding layer such as chrome, which is the case with conventional methods.
Any pattern can be formed using a single liquid crystal element simply by sending data to the liquid crystal drive circuit.

さらに、本発明の液晶素子を用いた従来にない高精度大
容量の表示装置が実現できる。特に、絵素ピッチが数十
μm以下のパターンの場合は、スクリーン上に拡大投射
する事により大型で高精細大容量で、かつ、高コントラ
ストで明るい表示装置を構成できる。
Furthermore, a display device with unprecedented high precision and large capacity can be realized using the liquid crystal element of the present invention. In particular, in the case of a pattern with a pixel pitch of several tens of μm or less, by enlarging and projecting it onto a screen, a large, high-definition, large-capacity, high-contrast, and bright display device can be constructed.

発明の効果 本発明の液晶素子は、所定の電圧波形を印加することに
より、微細な絵素パターンの絵素間間隙部の強誘電性液
晶分子を電界に応答させて安定状態を切り替えることに
より、電極間に遮光層を設けない簡単な構成で、高コン
トラスト比の表示を行なうことができる。
Effects of the Invention The liquid crystal element of the present invention applies a predetermined voltage waveform to cause the ferroelectric liquid crystal molecules in the gaps between pixels of a fine pixel pattern to respond to an electric field and switch their stable state. Display with a high contrast ratio can be achieved with a simple configuration in which no light shielding layer is provided between the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の液晶素子の平面図
と断面図、第3図は本発明の液晶素子の駆動法の波形図
、第4図は計算により求めた電界強度分布図、第5図と
第6図は本発明の駆動波形図、第7図は従来例の強誘電
性液晶パネルの構成図、第8図、第9図は強誘電性液晶
の安定状態の模式図である。 l・・・・・・上基板、2・・・・・・下基板、3・・
・・・・信号電極、4・・・・・・走査電極、11・・
・・・・オフ絵素、12・・・・・・オン絵素。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図 鶴 図 第 図 4ノー一一類誘を姓來晶 乾−−−透明耽紮 6= 遮光1 ω−−−表居亦チ (b> (C) (α) (bン (C)
Figures 1 and 2 are a plan view and a cross-sectional view of a liquid crystal element according to an embodiment of the present invention, Figure 3 is a waveform diagram of a driving method for a liquid crystal element of the present invention, and Figure 4 is an electric field strength determined by calculation. Distribution diagrams, Figures 5 and 6 are driving waveform diagrams of the present invention, Figure 7 is a configuration diagram of a conventional ferroelectric liquid crystal panel, and Figures 8 and 9 are diagrams of the stable state of ferroelectric liquid crystal. It is a schematic diagram. l...upper board, 2...lower board, 3...
...Signal electrode, 4...Scanning electrode, 11...
...off picture element, 12...on picture element. Name of agent: Patent attorney Shigetaka Awano (1 person) b> (C) (α) (bn(C)

Claims (22)

【特許請求の範囲】[Claims] (1)対抗面に電極を有しマトリックス状の絵素を形成
する基板間に強誘電性液晶を挟持し、隣接する2つの絵
素の間隙部を前記2つの絵素を形成する電極に所定のパ
ルス電圧を印加することにより前記間隙部の安定状態を
切り替えることを特徴とする液晶素子。
(1) A ferroelectric liquid crystal is sandwiched between substrates that have electrodes on opposing surfaces and form matrix-like picture elements, and a gap between two adjacent picture elements is provided with a predetermined gap between the electrodes forming the two picture elements. A liquid crystal element characterized in that the stable state of the gap is switched by applying a pulse voltage of.
(2)隣接する2つの絵素がどちらも暗状態の時は前記
絵素の間隙部を暗状態に、前記2つの絵素が明状態の時
は前記間隙部を明状態または中間輝度状態に安定させる
ことを特徴とする請求項(1)記載の液晶素子。
(2) When two adjacent picture elements are both in a dark state, the gap between the pixels is in a dark state, and when the two picture elements are in a bright state, the gap is in a bright or intermediate brightness state. The liquid crystal element according to claim 1, characterized in that the liquid crystal element is stabilized.
(3)上下基板上に同じ配向膜を用いることを特徴とす
る請求項(1)または(2)のいずれかに記載の液晶素
子。
(3) The liquid crystal element according to claim 1 or 2, wherein the same alignment film is used on the upper and lower substrates.
(4)所定のパルス電圧により間隙部を暗状態に安定化
し、所定のパルス電圧が前記パルス電圧と同電圧で絵素
を暗安定状態にできる最短のパルス幅より長いパルス幅
を持つことを特徴とする請求項(1)記載の液晶素子。
(4) The gap is stabilized in a dark state by a predetermined pulse voltage, and the predetermined pulse voltage has a pulse width longer than the shortest pulse width that can bring the picture element into a dark stable state at the same voltage as the pulse voltage. The liquid crystal element according to claim (1).
(5)間隙部が走査電極の選択期間に間隙部を形成する
絵素に印加される電圧で安定状態が変わらないことを特
徴とする請求項(4)記載の液晶素子。
(5) The liquid crystal element according to claim 4, wherein the stable state of the gap does not change due to the voltage applied to the picture element forming the gap during the selection period of the scanning electrode.
(6)所定のパルス電圧が所定の走査回数毎に印加され
ることを特徴とする請求項(4)記載の液晶素子。
(6) The liquid crystal element according to claim (4), wherein a predetermined pulse voltage is applied every predetermined number of scans.
(7)所定のパルス電圧が走査の直前に印加されること
を特徴とする請求項(6)記載の液晶素子。
(7) The liquid crystal element according to claim (6), wherein a predetermined pulse voltage is applied immediately before scanning.
(8)所定のパルス電圧が、絵素を暗状態に安定化でき
る最短のパルス電圧のパルス幅以上のパルス幅を持つ交
流パルスを、前記交流パルスのパルス幅の2倍から10
0倍の休止期間を挟んで複数回繰り返すものであること
を特徴とする請求項(3)、(4)、(5)、(6)ま
たは(7)のいずれかに記載の液晶素子。
(8) A predetermined pulse voltage is an AC pulse whose pulse width is greater than or equal to the pulse width of the shortest pulse voltage that can stabilize a picture element in a dark state.
The liquid crystal device according to any one of claims 3, 4, 5, 6, and 7, wherein the liquid crystal device is repeated a plurality of times with a pause period of 0 times in between.
(9)2つの絵素につながる走査電極に、前記走査電極
以外の走査電極が選択されているときに、選択期間に印
加される走査電極に印加されるパルス列の2倍以上のパ
ルス幅で前記パルス列と電圧値の順列を逆転させたパル
ス列を印加することにより、2つの絵素に間隙部が安定
状態になるに十分なパルス電圧が印加されることを特徴
とする請求項(1)から(8)のいずれかに記載の液晶
素子。
(9) When a scan electrode other than the scan electrode connected to two picture elements is selected, the pulse width of the pulse train applied to the scan electrode during the selection period is twice or more. Claims (1) to (1), characterized in that by applying a pulse train in which the order of the voltage values is reversed from that of the pulse train, a pulse voltage sufficient to bring the gap portion into a stable state is applied to the two picture elements. 8) The liquid crystal element according to any one of 8).
(10)間隙部の幅が30μm以下であることを特徴と
する請求項(1)から(4)のいずれかに記載の液晶素
子。
(10) The liquid crystal element according to any one of claims (1) to (4), wherein the width of the gap is 30 μm or less.
(11)間隙部の幅が5μm以下であることを特徴とす
る請求項(1)、(2)または(3)のいずれかに記載
の液晶素子。
(11) The liquid crystal element according to any one of claims (1), (2), and (3), wherein the width of the gap is 5 μm or less.
(12)間隙部の幅が絵素の幅の3割以上であることを
特徴とする請求項(2)記載の液晶素子。
(12) The liquid crystal element according to claim (2), wherein the width of the gap is 30% or more of the width of the picture element.
(13)対抗面に電極を有しマトリックス状の絵素を形
成する基板間に強誘電性液晶を挟持する液晶素子の駆動
法において、走査電極を選択する前に、絵素の間隙部を
暗状態に安定するに十分な電圧、パルス幅を持つ所定の
パルス電圧を前記絵素に印加することを特徴とする液晶
素子の駆動法。
(13) In a method for driving a liquid crystal device in which a ferroelectric liquid crystal is sandwiched between substrates that have electrodes on opposing surfaces and form a matrix of picture elements, the gap between the picture elements is darkened before selecting the scanning electrode. A method for driving a liquid crystal element, characterized in that a predetermined pulse voltage having a voltage and pulse width sufficient to stabilize the state is applied to the picture element.
(14)所定のパルス電圧をパネル全面に印加した後に
走査を行なうことを特徴とする請求項(13)記載の液
晶素子の駆動法。
(14) The method for driving a liquid crystal element according to claim (13), wherein scanning is performed after applying a predetermined pulse voltage to the entire surface of the panel.
(15)所定のパルス電圧を表示を切り替える部分に印
加した後、前記部分を走査して表示を書き込むことを特
徴とする請求項(13)記載の液晶素子の駆動法。
(15) The method for driving a liquid crystal element according to claim 13, characterized in that after applying a predetermined pulse voltage to a portion where the display is switched, the portion is scanned to write the display.
(16)所定のパルス電圧を連続する複数の走査線上の
絵素に印加した後前記走査線を順次選択し、さらに以下
の走査線に対して同様の電圧を印加することを特徴とす
る請求項(13)記載の液晶素子の駆動法。
(16) Claim characterized in that after applying a predetermined pulse voltage to picture elements on a plurality of consecutive scanning lines, the scanning lines are sequentially selected, and then the same voltage is applied to the following scanning lines. (13) The method for driving a liquid crystal element described in (13).
(17)所定のパルス電圧が、絵素を暗状態に安定化で
きる最短のパルス電圧のパルス幅以上のパルス幅を持つ
交流パルスを、前記交流パルスのパルス幅の2倍から1
00倍の休止期間を挟んで複数回繰り返すものであるこ
とを特徴とする請求項(13)から(16)のいずれか
に記載の液晶素子の駆動法。
(17) A predetermined pulse voltage is an AC pulse having a pulse width greater than or equal to the pulse width of the shortest pulse voltage that can stabilize a picture element in a dark state, from twice to one times the pulse width of the AC pulse.
17. The method for driving a liquid crystal element according to claim 13, wherein the method is repeated a plurality of times with a pause period of 00 times in between.
(18)間隙部を形成する2つの絵素につながる走査電
極に、前記走査電極以外の走査電極が選択されていると
きに、選択期間に印加される走査電極に印加されるパル
ス列の2倍以上のパルス幅で前記パルス列と電圧値の順
列を逆転させたパルス列を印加することにより、信号電
極に印加される電圧によらずに2つの絵素に間隙部が安
定状態になるに十分なパルス電圧が印加されることを特
徴とする請求項(13)から(17)のいずれかに記載
の液晶素子の駆動法。
(18) When a scan electrode other than the scan electrode connected to two picture elements forming a gap is selected, the pulse train applied to the scan electrode during the selection period is twice or more By applying a pulse train in which the permutation of voltage values is reversed from the pulse train with a pulse width of 18. The method for driving a liquid crystal element according to claim 13, wherein the voltage is applied.
(19)請求項(2)記載の液晶素子を用いた光論理素
子。
(19) An optical logic device using the liquid crystal device according to claim (2).
(20)請求項(2)記載の液晶素子を用いた露光装置
用フォトマスク。
(20) A photomask for exposure equipment using the liquid crystal element according to claim (2).
(21)請求項(5)記載の液晶素子を用いた表示装置
(21) A display device using the liquid crystal element according to claim (5).
(22)液晶素子の表示をスクリーン上に拡大投射する
よう構成したことを特徴とする請求項(21)記載の表
示装置。
(22) The display device according to claim (21), wherein the display device is configured to enlarge and project the display of the liquid crystal element onto a screen.
JP1002422A 1989-01-09 1989-01-09 Liquid crystal element and its driving method Expired - Fee Related JPH0812347B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1002422A JPH0812347B2 (en) 1989-01-09 1989-01-09 Liquid crystal element and its driving method
US07/460,555 US5151803A (en) 1989-01-09 1990-01-03 Pixel-gap controlled ferroelectric liquid crystal display device and its driving method
DE69012353T DE69012353T2 (en) 1989-01-09 1990-01-03 Liquid crystal display device and method for driving it.
EP90300032A EP0378293B1 (en) 1989-01-09 1990-01-03 Liquid crystal display device and its driving method
KR1019900000179A KR940006990B1 (en) 1989-01-09 1990-01-09 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002422A JPH0812347B2 (en) 1989-01-09 1989-01-09 Liquid crystal element and its driving method

Publications (2)

Publication Number Publication Date
JPH02181724A true JPH02181724A (en) 1990-07-16
JPH0812347B2 JPH0812347B2 (en) 1996-02-07

Family

ID=11528813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002422A Expired - Fee Related JPH0812347B2 (en) 1989-01-09 1989-01-09 Liquid crystal element and its driving method

Country Status (1)

Country Link
JP (1) JPH0812347B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223429A (en) * 1990-12-26 1992-08-13 Canon Inc Display device
JPH05341265A (en) * 1992-06-05 1993-12-24 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
JPH06160808A (en) * 1992-11-17 1994-06-07 Canon Inc Driving method for liquid crystal device and liquid crystal device using the same
JP2021036294A (en) * 2019-08-30 2021-03-04 日本放送協会 Display color initialization method of liquid crystal device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179721A (en) * 1984-02-28 1985-09-13 Canon Inc Method for controlling orientation of ferroelectric liquid crystal
JPS61121087A (en) * 1984-11-16 1986-06-09 松下電器産業株式会社 Liquid crystal display unit
JPS6242183A (en) * 1985-08-20 1987-02-24 富士通株式会社 Liquid crystal display element and liquid crystal display unit using the same
JPS6262334A (en) * 1985-09-13 1987-03-19 Canon Inc Liquid crystal element
JPS62210421A (en) * 1986-03-11 1987-09-16 Canon Inc Optical modulating element
JPS62238533A (en) * 1986-04-09 1987-10-19 Canon Inc Driving method for optical modulation element
JPS6363093A (en) * 1986-09-03 1988-03-19 キヤノン株式会社 Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179721A (en) * 1984-02-28 1985-09-13 Canon Inc Method for controlling orientation of ferroelectric liquid crystal
JPS61121087A (en) * 1984-11-16 1986-06-09 松下電器産業株式会社 Liquid crystal display unit
JPS6242183A (en) * 1985-08-20 1987-02-24 富士通株式会社 Liquid crystal display element and liquid crystal display unit using the same
JPS6262334A (en) * 1985-09-13 1987-03-19 Canon Inc Liquid crystal element
JPS62210421A (en) * 1986-03-11 1987-09-16 Canon Inc Optical modulating element
JPS62238533A (en) * 1986-04-09 1987-10-19 Canon Inc Driving method for optical modulation element
JPS6363093A (en) * 1986-09-03 1988-03-19 キヤノン株式会社 Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223429A (en) * 1990-12-26 1992-08-13 Canon Inc Display device
JPH05341265A (en) * 1992-06-05 1993-12-24 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
JPH06160808A (en) * 1992-11-17 1994-06-07 Canon Inc Driving method for liquid crystal device and liquid crystal device using the same
JP2021036294A (en) * 2019-08-30 2021-03-04 日本放送協会 Display color initialization method of liquid crystal device

Also Published As

Publication number Publication date
JPH0812347B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
GB2130781A (en) Liquid crystal colour display device
JP2001209063A (en) Liquid crystal display device and its displaying method
EP0673011B1 (en) Dynamic refinement of pixel structure in a display
JPH06148596A (en) Active matrix type liquid crytal diplay device
JPH06202073A (en) Active matrix type liquid crystal display device
JPH0225834A (en) Liquid crystal device
JPS62159119A (en) Liquid crystal display panel
US7123330B2 (en) Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle
JPH02181724A (en) Liquid crystal element and driving method thereof
JPH06102485A (en) Feproelectric liquid crystal display element
US5404235A (en) Liquid crystal device
JP2773748B2 (en) Liquid crystal display device
JP3291396B2 (en) Liquid crystal display
JPS60201325A (en) Liquid crystal optical element and driving method thereof
JPH02310519A (en) Liquid crystal element and driving method thereof
JP2984496B2 (en) Liquid crystal display device
JPH08152654A (en) Liquid crystal device
JPH04147216A (en) Liquid crystal element
JPH03209216A (en) Liquid crystal element, driving method for the same and liquid crystal display device
JPH0385516A (en) Liquid crystal element
JPS63228124A (en) Liquid crystal electrooptic device
JPH08152601A (en) Driving method of display element and display device
JPH07294933A (en) Liquid crystal electro-optic element
JPH0743676A (en) Liquid crystal display device
JPH11337946A (en) Liquid crystal display device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees