JPS60179721A - Method for controlling orientation of ferroelectric liquid crystal - Google Patents

Method for controlling orientation of ferroelectric liquid crystal

Info

Publication number
JPS60179721A
JPS60179721A JP3533384A JP3533384A JPS60179721A JP S60179721 A JPS60179721 A JP S60179721A JP 3533384 A JP3533384 A JP 3533384A JP 3533384 A JP3533384 A JP 3533384A JP S60179721 A JPS60179721 A JP S60179721A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
electrodes
electric field
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3533384A
Other languages
Japanese (ja)
Inventor
Shinjiro Okada
伸二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3533384A priority Critical patent/JPS60179721A/en
Publication of JPS60179721A publication Critical patent/JPS60179721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the response speed of a ferroelectric liquid crystal, by forming electric fields which are uniform in direction at least in the plane of one substrate by applying a voltage across plural electrodes and orienting the liquid crystal uniformly in the course of the liquid crystal transforming from isotropic phase to smetic A phase or N phase. CONSTITUTION:When electric potential of +V is given to an electrode 22aa and electric potential of -V is given to electrodes 22aa and 22ac, lines of electric force between the plates turn their directions to ones shown in the figure with arrows of solid lines. A ferroelectric liquid crystal 23 has a spontaneous polarization P intersecting the molecular chain at almost right angles to its molecule and the direction of the vector receives force, so that the direction becomes coincident with the direction of the electric field and, therefore, the degree of freedom of the molecule is restrained only in the direction Z. When fixed electric potential is given to all of upper surface electrodes 22b thereafter, electric field are produced between top and bottom substrates. Therefore, the liquid crystal molecule is controlled even in the direction of Z-axis and, as a result, oriented in the direction of Y-axis. In this way, the liquid crystal set to isotropic phase by raising cell temperature is transformed to smectic A phase or nematic phase by gradually cooling while a voltage is applied.

Description

【発明の詳細な説明】 九胤公I 本発明は、強誘電液晶に、それを表示素子として用いる
に適した初期分子配列状態、すなわち配向状態を与える
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for providing a ferroelectric liquid crystal with an initial molecular arrangement state, that is, an orientation state suitable for use as a display element.

11且遣 強誘電液晶分子の屈折率異方性を利用して、偏光素子と
の組み合わせにより透過光線を制御する型の表示素子が
、C1arkおよびLagerwallにより提案され
ている(特開昭56−107216号公報、米国特許第
4367924号明細書等)、この強誘電液晶は、一般
に特定の温度域において、カイラルスメクティックC相
(SmC*)又はH相(Smut)を有し、この状態に
おいて、加えられる電界に応答して第1の光学的安定状
態と第2の光学安定状態のいずれかを取り、且つ電界の
印加のないときはその状態を維持する性質、すなわち双
安定性を有し、また電界の変化に対する応答も速やかで
あり、高速ならびに記憶型の表示素子としての広い利用
が期待されている。しかしながら、この双安定性を有す
る液晶を用いる光学変調素子が所定の駆動特性を発揮す
るためには、一対の平行基板間に配置される液晶が、電
界の印加状態とは無関係に、上記2つの安定状態の間で
の変換が効果的に起るよう々分子配列状態にあることが
必要である。たとえばSmC”またはSmH”相を有す
る強誘電性液晶については、S m C”またはS m
 H”相を有する液晶分子相が基板面に対して垂直で、
したがって液晶分子軸が基板面にほぼ平行に配列した領
域(モノドメイン)が形成される必要がある。しかしな
がら、従来の双安定性を有する液晶を用いる光学変調素
子においては、このようなモノドメイン構造を有する液
晶の配向状態が、必ずしも満足に形成されなかったため
に、充分な特性が得られなかったのが実情である。
11. A type of display element that utilizes the refractive index anisotropy of ferroelectric liquid crystal molecules and controls transmitted light in combination with a polarizing element has been proposed by C1ark and Lagerwall (Japanese Patent Application Laid-Open No. 107-216-1982). This ferroelectric liquid crystal generally has a chiral smectic C phase (SmC*) or H phase (Smut) in a specific temperature range, and in this state, it is added It has the property of taking either the first optically stable state or the second optically stable state in response to an electric field and maintaining that state when no electric field is applied, that is, it has bistability, and It also responds quickly to changes in , and is expected to be widely used as high-speed and memory-type display elements. However, in order for an optical modulation element using this bistable liquid crystal to exhibit predetermined driving characteristics, the liquid crystal placed between a pair of parallel substrates must be It is necessary that the molecules be in an ordered state so that conversion between stable states can occur effectively. For example, for a ferroelectric liquid crystal with SmC" or SmH" phase, S m C" or S m
The liquid crystal molecular phase having H” phase is perpendicular to the substrate surface,
Therefore, it is necessary to form a region (monodomain) in which the liquid crystal molecular axes are arranged substantially parallel to the substrate surface. However, in conventional optical modulation elements using liquid crystals with bistability, the alignment state of the liquid crystals having such a monodomain structure was not always formed satisfactorily, and therefore sufficient characteristics could not be obtained. is the reality.

このような強誘電液晶の配向方法としては、従来のTN
型液晶表示装置におけると同様に、まず、ラビング法や
斜方蒸着により、液晶セル内の基板面に、物理的なキズ
を付した有機薄膜、無機蒸着膜、有機薄膜を形成して分
子の配列方向性を与えたものであった。例えば、ラビン
グ法は、第1図(a)に示すように、ガラス基板11上
に透明電極12を形成した後、有機高分子11913を
形成してそれをビロードなどの布で一方向へこすり、膜
表面についた微細なキズによって液晶分子を整列させる
方法である。また斜方蒸着法は、第1図(b)に示され
るように有機高分子膜の替りにSiOなどの無機物の膜
を14を、基板を傾けて行なう蒸着、すなわち斜方蒸着
により形成するものである。しかしながら、強誘電液晶
を用いて表示素子を作る場合には、このような従来の配
向制御方式では、応答時間が遅くなるなどの欠点・があ
った。
As a method for aligning such ferroelectric liquid crystal, conventional TN
As in the case of type liquid crystal display devices, first, organic thin films, inorganic vapor deposited films, and organic thin films with physical scratches are formed on the substrate surface in the liquid crystal cell by rubbing method or oblique vapor deposition, and the molecules are arranged. It gave direction. For example, as shown in FIG. 1(a), the rubbing method involves forming a transparent electrode 12 on a glass substrate 11, forming an organic polymer 11913, and rubbing it in one direction with a cloth such as velvet. This method aligns liquid crystal molecules using minute scratches on the film surface. In the oblique evaporation method, as shown in FIG. 1(b), an inorganic film 14 such as SiO is formed instead of an organic polymer film by evaporation by tilting the substrate, that is, by oblique evaporation. It is. However, when manufacturing a display element using ferroelectric liquid crystal, such conventional alignment control methods have drawbacks such as slow response time.

強誘電液晶独自の配向方式としては、ガラス基盤を上下
こすり合わせて、液晶分子を配列させる方法や、ポリエ
チレンテレフタレートシートをスづ−サーとして、セル
の間隙を形成し、そのエツジの方向性を利用するものな
どがあるがいずれも工業的でない。
Unique alignment methods for ferroelectric liquid crystals include rubbing glass substrates up and down to align liquid crystal molecules, and using polyethylene terephthalate sheets as a spacer to form gaps between cells and utilizing the directionality of the edges. There are some that do, but none of them are industrial.

&見立11 本発明の主要な目的は、上述した従来の液晶分子配向方
法の欠点に鑑み、液晶分子の電極基板から受ける拘束力
を小さくすることにより、応答速度の改善をはかり、強
誘電液晶の特性を充分に活すことの可能な液晶分子の配
向制御法を提供することを目的とする。
&Mitate 11 In view of the above-mentioned drawbacks of the conventional liquid crystal molecule alignment method, the main purpose of the present invention is to improve the response speed by reducing the restraining force exerted on the liquid crystal molecules from the electrode substrate, and to improve the response speed of the ferroelectric liquid crystal. The purpose of this invention is to provide a method for controlling the alignment of liquid crystal molecules that can fully utilize the characteristics of liquid crystal molecules.

l艶立1」 本発明者は上述の目的で研究した結果、液晶分子が電極
面において拘束されると応答時間が遅くなるが、しかし
、基板面の配向処理をなくしては液晶分子は確率的な割
合で集合し、ランダムな方向を向き、表示素子として使
えないので、配向力を液晶分子配列後は取り除ければ理
想的であるとの認識をもった。そして、このような理想
的な条件を実現するためには、強誘電液晶が冷却により
等吉相からスメクチックA相もしくはN相に移行する過
程において、該液晶に、液晶セルの表示面に平行な方向
の電界を作用させて液晶分子を配列させることが、特に
有効であることを見出した。
As a result of research for the above-mentioned purpose, the present inventor found that when liquid crystal molecules are restrained on the electrode surface, the response time slows down, but if the alignment treatment on the substrate surface is eliminated, the liquid crystal molecules become stochastic. Since the liquid crystal molecules aggregate in a certain proportion and are oriented in random directions, they cannot be used as a display element, so we realized that it would be ideal if the alignment force could be removed after the liquid crystal molecules are aligned. In order to achieve these ideal conditions, during the process in which the ferroelectric liquid crystal transitions from the isotonic phase to the smectic A phase or N phase by cooling, it is necessary to It has been found that it is particularly effective to align liquid crystal molecules by applying an electric field.

本発明の強誘電液晶の配向制御法は、このような知見に
基づくものであり、より詳しくは、一対の平行基板間に
強誘電液晶を挾持させてなる液晶セルの、該一対の平行
基板の少なくとも一方に複数の電極を互いに平行に配設
し、該複数の電極間に電圧を印加することにより、上記
少なくとも一方の基板の面内において一様な方向の電界
を形成し、この電界により、上記液晶が等吉相からスメ
クチックA相もしくはN相に移行する過程において、該
液晶を均一に配向させることを特徴とするものである。
The ferroelectric liquid crystal orientation control method of the present invention is based on such knowledge, and more specifically, the method for controlling the alignment of a ferroelectric liquid crystal in a liquid crystal cell in which a ferroelectric liquid crystal is sandwiched between a pair of parallel substrates. By arranging a plurality of electrodes in parallel to each other on at least one side and applying a voltage between the plurality of electrodes, an electric field is formed in a uniform direction within the plane of the at least one substrate, and by this electric field, The method is characterized in that the liquid crystal is uniformly aligned in the process of the liquid crystal transitioning from the isotoshitic phase to the smectic A phase or N phase.

次に実施例について説明する。Next, an example will be described.

第2図は、本発明法を実施するために用いる液晶セルの
一例の模式斜視図である。このセルは、単純なドツトマ
トリックス方式で形成された液晶セルであり、一対の平
行なガラス基板21a、21bのそれぞれに、互いにほ
ぼ直交する関係にあるストライプ状の電極パターン22
a、22bを形成し、間に強誘電液晶23を挿入してな
る。
FIG. 2 is a schematic perspective view of an example of a liquid crystal cell used to carry out the method of the present invention. This cell is a liquid crystal cell formed using a simple dot matrix method, and has striped electrode patterns 22 on each of a pair of parallel glass substrates 21a and 21b, which are substantially orthogonal to each other.
a and 22b, and a ferroelectric liquid crystal 23 is inserted between them.

ここで、第2図の下側基板に注目し、下側基板21、a
だけを取り出して横から見た図を第3図に示す。
Here, paying attention to the lower substrate in FIG. 2, the lower substrate 21, a
Figure 3 shows a side view of just the part taken out.

このようなセルを用いて行なう液晶の配向制御法を説明
する。
A method of controlling liquid crystal alignment using such a cell will be described.

第3図において、電極22abに+V、電極22aa及
び22acに一■の電位を与えると。
In FIG. 3, when a potential of +V is applied to the electrode 22ab and a potential of 1 is applied to the electrodes 22aa and 22ac.

極板間の電気力線は第3図の矢印の実線の向きを取る。The electric lines of force between the electrode plates take the direction of the solid arrow shown in FIG.

強誘電液晶はその分子内部に、分子鎖とほぼ直交する自
発分極Pを有し、このベクトルの方向は、第3図の電界
の方向と一致するよう、力を受けて、分子の自由度は、
Z方向のみに抑えられることになる。次に第2図の上面
電極22bの全てに一定の電位を与えると、第4図のよ
うに上下基板間に電界が生じる。ここで電気力線の存在
は方向を大ざっばに示したものである。
A ferroelectric liquid crystal has a spontaneous polarization P that is almost orthogonal to the molecular chain inside its molecules.The direction of this vector matches the direction of the electric field in Figure 3.The degree of freedom of the molecule is ,
It will be suppressed only in the Z direction. Next, when a constant potential is applied to all of the upper surface electrodes 22b in FIG. 2, an electric field is generated between the upper and lower substrates as shown in FIG. 4. Here, the existence of electric lines of force roughly indicates the direction.

これによって、液晶分子はX軸方向においても規制され
、Y軸方向に整列することになる。ここで電極間での電
圧の印加の仕方であるが、第4図のように、X軸方向と
X軸方向とに、同時に且つそれぞれ一定方向への電場を
かけることは、−例にすぎず、より液晶分子の配列を効
果的とするために、X軸方向の電場とX軸方向の電場を
時間的にタイミングを取って、ずらして印加する方式も
採用できる。また、第3図ないし第4図のようにIS2
トマトリクスの電極22abの両隣の電極22aaおよ
び22acが同じ電位だと、電極22aa−22ab間
と22 a c −22a ’b間の電界が逆向になる
ため、強誘電液晶の安定状態が異なり、偏光子を通して
みるとドメインが発生することになるので、電場印加の
最終段階では、第5図に示すように電界方向を一定にす
るようにスキャンする。すなわち、本発明において「基
板の面内において一様な方向の電界を形成する」という
条件は、液晶分子配列のために逐次的な電界印加を行な
うときは、少なくともその最終段階において満たされれ
ばよい。
As a result, the liquid crystal molecules are also regulated in the X-axis direction and aligned in the Y-axis direction. Here, regarding the method of applying voltage between the electrodes, applying electric fields in the X-axis direction and the X-axis direction simultaneously and in fixed directions, as shown in Figure 4, is just an example. In order to make the arrangement of liquid crystal molecules more effective, it is also possible to adopt a method in which the electric field in the X-axis direction and the electric field in the X-axis direction are applied at different timings. Also, as shown in Figures 3 and 4, IS2
If the electrodes 22aa and 22ac on both sides of the electrode 22ab of the tomatotrix have the same potential, the electric fields between the electrodes 22aa-22ab and between the electrodes 22ac-22a'b will be in opposite directions, so the stable state of the ferroelectric liquid crystal will be different and the polarization will change. When looking through the beam, domains will be generated, so in the final stage of applying the electric field, scan is performed to keep the direction of the electric field constant as shown in FIG. That is, in the present invention, the condition of "forming an electric field in a uniform direction within the plane of the substrate" only needs to be satisfied at least in the final stage when applying an electric field sequentially to align liquid crystal molecules. .

本発明に従い、セル温度を上げて等吉相とした液晶につ
いて、上記の電圧印加を行ないつつ、徐冷じてスメクチ
ックA層またはネマチック相に相転移させる。
According to the present invention, the cell temperature is raised to bring the liquid crystal into the isobathic phase, and the liquid crystal is gradually cooled while applying the voltage described above to undergo a phase transition to the smectic A layer or nematic phase.

又、」二記電圧印加操作に加えて、基板面に、例えばポ
リイミド等の有機高分子薄膜24を形成し、電極部以外
をラビングして微細溝24aによる強制配向力をもたせ
る方式(第6図)も採用可能である。
Furthermore, in addition to the voltage application operation described in section 2 above, a method is employed in which an organic polymer thin film 24 of polyimide or the like is formed on the substrate surface, and areas other than the electrode portions are rubbed to provide a forced orientation force by the fine grooves 24a (Fig. 6). ) can also be adopted.

第7図は、第2図に示したセルの上下各3電極に、実際
に印加される電圧の時間変化の例を示すものであり、効
果的に液晶分子配列が達成されることが経験的に確認さ
れている例である。この例においては、T0〜T工の時
間で、X軸方向の電界が22ab+22aaの方向と2
2ab+22aCの方向へかかる。22ha〜22bc
の電極は電気的には浮かしておけば良いが、それが困難
な場合は、電極22aa〜22acに加える電圧より波
高値の低い交流電界を印加すればよい。
Figure 7 shows an example of the time variation of the voltage actually applied to the three upper and lower electrodes of the cell shown in Figure 2, and it has been empirically shown that liquid crystal molecular alignment can be effectively achieved. This is a confirmed example. In this example, during the time from T0 to T, the electric field in the X-axis direction is 22ab+22aa and 2
It goes in the direction of 2ab+22aC. 22ha~22bc
It is sufficient to electrically float the electrodes, but if this is difficult, an alternating current electric field with a peak value lower than the voltage applied to the electrodes 22aa to 22ac may be applied.

71〜T2’t’は電極22aa〜22acは負電位、
22ba〜22bcは正電位にとり、X軸方向の電界を
印加する。T2〜T3はT。−T工と同様、T3〜T4
もT、−T2と同様とする。このようにして時間T4〜
T9についても図示の通りの電圧を印加して、22 a
 a + 22 a b + 22acと極性を移動し
て行き、配向制御を終る。
71 to T2't', electrodes 22aa to 22ac are at negative potential;
22ba to 22bc are set to a positive potential and apply an electric field in the X-axis direction. T2-T3 are T. -Same as T work, T3~T4
It is also assumed that T and -T2 are the same. In this way, time T4~
Applying the voltage as shown in the figure to T9, 22a
The polarity is shifted from a + 22 a b + 22 ac to end the orientation control.

本発明においては、配向制御用の電場を切ると液晶分子
の配向制御用の力は働かなくなるので、何らかの擾乱に
より配向が乱れた場合は電圧をかけ直す必要がある。し
たがって、このような擾乱を起りにくくするために、基
板面に液晶分子を膜面に平行に配列させる性質のあるポ
リイミド(ポリアミド)薄膜を形成することもでき、ま
た必要に応じて、このポリイミド膜をラビングしてもよ
い。
In the present invention, when the electric field for controlling the alignment is turned off, the force for controlling the alignment of the liquid crystal molecules ceases to work, so if the alignment is disturbed due to some disturbance, it is necessary to reapply the voltage. Therefore, in order to make such disturbances less likely to occur, it is possible to form a polyimide (polyamide) thin film on the substrate surface, which has the property of arranging liquid crystal molecules parallel to the film surface. You can also rub it.

第8図は、本発明の配向制御方法を実施するための別の
セル構成を示し、このセルにおいては配向制御用の専用
電極を有する。すなわち、一対の平行なガラス基板31
a、31bのそれぞれに、液晶配向用のストライプ状電
極パターン32a(32a−1,32a−2、s・*3
2a−N)および32b (32b−1,32b−2、
φΦ・拳32b−N)を形成し、これら配向制御用電極
32a、32bのそれぞれを覆って、ポリイミド、5i
02等からなる絶縁膜33aおよび33bを形成し、そ
の上に表示用ストライブ状電極群34aおよび34bを
形成し、これらの間に強誘電液晶23を挿入してなる。
FIG. 8 shows another cell configuration for carrying out the orientation control method of the present invention, and this cell has an electrode dedicated for orientation control. That is, a pair of parallel glass substrates 31
a, 31b, striped electrode patterns 32a (32a-1, 32a-2, s・*3
2a-N) and 32b (32b-1, 32b-2,
φΦ・fist 32b-N), and each of these orientation control electrodes 32a, 32b is covered with polyimide, 5i.
Insulating films 33a and 33b made of 02 or the like are formed, display strip-like electrode groups 34a and 34b are formed thereon, and ferroelectric liquid crystal 23 is inserted between these.

この例では、下側基板に設けた配向制御用電極32a−
1〜32a−Nと上側基板に設けた配向制御用電極32
b−1〜32b−Nの数は等しく、位置も1対lに構成
されている。
In this example, the alignment control electrode 32a- provided on the lower substrate
1 to 32a-N and the alignment control electrode 32 provided on the upper substrate
The numbers b-1 to 32b-N are equal, and their positions are arranged in a 1:1 ratio.

なお特に図示しないが、一対の基板のいずれか一方につ
いて、配向用電極32aまたは32bを、表示用電極3
4aまたは34bと共用すること(この際は、当然中間
絶縁膜33aまたは33bが省略される)もでき、また
上下の配向用電極の形状、位置は、多少ずれても差支え
ない。
Although not particularly illustrated, for either one of the pair of substrates, the alignment electrode 32a or 32b is connected to the display electrode 3.
4a or 34b (in this case, of course, the intermediate insulating film 33a or 33b is omitted), and the shapes and positions of the upper and lower alignment electrodes may be slightly shifted.

この方式だと液晶セルの開口率が上って基板内の線間隔
が減少しても問題ない。
With this method, there is no problem even if the aperture ratio of the liquid crystal cell increases and the line spacing within the substrate decreases.

第8図のセルにおいて液晶を配向させるに際しては、第
9図に示すように上下基板ともに1番からN番まで1例
えば順次低下する電場勾配を作ることにより、セルに平
行に電界が発生する。
When aligning the liquid crystal in the cell of FIG. 8, an electric field is generated parallel to the cell by creating an electric field gradient that decreases sequentially from number 1 to number N on both the upper and lower substrates as shown in FIG.

前記第2図〜第7図の例でも述べたように、セル自体を
加熱して、」1記のような電圧の印加は、等方層からス
メクチックA層への転移時に電圧を印加しておく。
As mentioned in the examples of FIGS. 2 to 7 above, the cell itself is heated, and the voltage application as described in item 1 is performed by applying a voltage during the transition from the isotropic layer to the smectic A layer. put.

電圧を印加する場合は、液晶セルの厚みの中央伺近でも
電界が一方向に向いていることが、液晶分子を全体とし
て均一に配向させるために好ましい。また、セル面積が
大きくなって電極数Nが大きくなった一す、セル自体の
耐圧限界で、第9図に示すような一様な電場勾配によっ
ては、隣接する電極間に望ましい電位差を与えられない
ときには、第10図のように部分的に電位勾配を設けそ
れを一定周期でスキャンするようにすれば、横方向に整
列する。すなわち、このようにすることにより、セルに
与える最大電圧差は低く抑え、実質的な効果としては第
9図に示すような一様な電場勾配が与えられ、且つ隣接
する電極間に望ましい大きさの電位差を与えることが可
能になる。
When applying a voltage, it is preferable that the electric field is oriented in one direction even near the center of the thickness of the liquid crystal cell in order to uniformly align the liquid crystal molecules as a whole. Furthermore, although the cell area has become larger and the number of electrodes N has increased, due to the withstand voltage limit of the cell itself, it is not possible to provide a desired potential difference between adjacent electrodes with a uniform electric field gradient as shown in Figure 9. If there is no potential gradient, as shown in FIG. 10, if a partial potential gradient is provided and the gradient is scanned at a constant period, they will be aligned in the horizontal direction. That is, by doing this, the maximum voltage difference applied to the cell can be kept low, and the practical effect is to provide a uniform electric field gradient as shown in Figure 9, and to create a desired magnitude between adjacent electrodes. It becomes possible to give a potential difference of

第9図の場合も、第10図の場合も、一定の時間間隔で
間欠的に」1下方向(どちらでもよいが方向を一定にし
ておく必要がある)の電界をかけると、液晶分子の配列
の自由度が減って壁面に沿って配向させやすい。より具
体的には、例えば、第9図、第10図の波形の電場と交
番するかたちで、上下方向の電場を印加すればよい。
In both the cases of Figures 9 and 10, when an electric field is applied intermittently in the 1 downward direction (either direction is fine, but the direction must be kept constant) at regular time intervals, the liquid crystal molecules The degree of freedom in arrangement is reduced, making it easier to align along the wall surface. More specifically, for example, an electric field in the vertical direction may be applied in a manner alternating with the electric field having the waveforms shown in FIGS. 9 and 10.

第2図ないし第7図で説明した例において、Z軸方向の
電界のみを、専用電極で印加する構成により、配向をよ
り効率的に行なうこともできる。
In the examples described in FIGS. 2 to 7, alignment can be performed more efficiently by applying only the electric field in the Z-axis direction using a dedicated electrode.

このためには、例えば、第2図に対応して第11図に示
すように、表示兼配向用電極22aおよび22bの下に
、絶縁膜35aまたは35bを介して、垂直方向電圧印
加用電極36aおよび36b(この例では全面電極)を
形成した、2層電極構成の液晶セルを用いればよい。こ
の場合も、第9図あるいは第10図の例と同様に、基板
に垂直な方向の電界と平行な方向の電界は、タイミング
をずらして、すなわち交番してかけることが望ましい。
For this purpose, for example, as shown in FIG. 11 corresponding to FIG. 2, a vertical voltage applying electrode 36a is placed under the display and alignment electrodes 22a and 22b via an insulating film 35a or 35b. A liquid crystal cell having a two-layer electrode structure may be used, in which electrodes 36b and 36b (in this example, electrodes are formed on the entire surface) are formed. In this case as well, as in the example of FIG. 9 or 10, it is desirable that the electric field in the direction perpendicular to the substrate and the electric field in the parallel direction are applied at different timings, that is, in alternation.

完」LQ」L釆 上述したように、本発明においては、強誘電液晶が冷却
により等吉相からスメクチックA相もしくはN相に移行
する過程において、該液晶に、液晶セルの基板上に設け
た複数の平行な電極により、基板面に平行な方向の電界
を作用させて液晶分子を配列させる方法を採用すること
により、従来の基板あるいはスペーサー自体による配向
方法等に比べて、表示動作中の液晶分子に働らく配向力
を小さくし、液晶応答速度を向上することができる。又
、使用中の事故で液晶分子の配向が乱れたときでも、電
圧をかけ直せば簡単に元の配向状態が得ら、れる。また
、配向のための専用電極を用いることにより、表示電極
の構成方式に無関係にセルの配向処理を行なうことも可
能となる。
As described above, in the present invention, in the process in which the ferroelectric liquid crystal transitions from the isotonic phase to the smectic A phase or N phase by cooling, the liquid crystal has a plurality of layers provided on the substrate of the liquid crystal cell. By adopting a method of aligning liquid crystal molecules by applying an electric field parallel to the substrate surface using parallel electrodes, the liquid crystal molecules are aligned during display operation, compared to conventional alignment methods using the substrate or spacer itself. It is possible to reduce the alignment force acting on the liquid crystal and improve the liquid crystal response speed. Furthermore, even if the orientation of the liquid crystal molecules is disturbed due to an accident during use, the original orientation can be easily restored by reapplying the voltage. Furthermore, by using dedicated electrodes for orientation, it is also possible to perform cell orientation processing regardless of the configuration method of the display electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)はそれぞれ従来の液晶配向方
法を説明するためのセル基板の厚さ方向模式断面図、第
2図は本発明法を実施するための液晶セルの一例の模式
斜視図、第3図は第2図のセルの下側基板周辺の電気力
線図、第4図は基板と平行および垂直方向にともに電界
をかけた際の電気力線図、第5図は下側電極への電圧印
加例、第6図はマトリクス電極間に選択的にラビング処
理を施した基板の断面図、第7図は、マトリクス電極へ
の電圧印加例、第8図および第11図はそれぞれ本発明
法を実施するための液晶セルの他の例の断面図、第9図
および第10図はそれぞれ配面制御用電極に印加する電
圧の分布図である。 21a、21b、31a、31b−−一基板22a(2
2aa、22ab、 22aC−11)・IIΦ・下側電極 22b(22ba、22bb、 22bc會・)串・・Φ上側電極 23・・・強誘電液晶 24.33a、33b、 35a、35b−−−絶縁膜 32a (32a−1〜32a−N) ψQe・配向用水平電圧印加電極 32b (32b−1〜32b−N) ・・・・配向用水平電圧印加電極 36a、36b・・配向用水平電圧印加電極第1 区 1 第2図 第3図 第5 因 半
Figures 1 (a) and (b) are schematic cross-sectional views in the thickness direction of a cell substrate for explaining the conventional liquid crystal alignment method, respectively, and Figure 2 is a schematic diagram of an example of a liquid crystal cell for implementing the method of the present invention. A perspective view, Figure 3 is a diagram of electric lines of force around the lower substrate of the cell in Figure 2, Figure 4 is a diagram of electric lines of force when an electric field is applied both parallel and perpendicular to the substrate, and Figure 5 is a diagram of electric lines of force around the lower substrate of the cell in Figure 2. An example of voltage application to the lower electrode, FIG. 6 is a cross-sectional view of a substrate with selective rubbing treatment applied between the matrix electrodes, FIG. 7 is an example of voltage application to the matrix electrode, and FIGS. 8 and 11 9 and 10 are respectively cross-sectional views of other examples of liquid crystal cells for carrying out the method of the present invention, and FIGS. 9 and 10 are distribution diagrams of voltages applied to the alignment control electrodes, respectively. 21a, 21b, 31a, 31b--one substrate 22a (2
2aa, 22ab, 22aC-11)・IIΦ・lower electrode 22b (22ba, 22bb, 22bc) skewer・φ upper electrode 23...ferroelectric liquid crystal 24.33a, 33b, 35a, 35b --- insulation Film 32a (32a-1 to 32a-N) ψQe/horizontal voltage application electrode for orientation 32b (32b-1 to 32b-N)... Horizontal voltage application electrode for alignment 36a, 36b... Horizontal voltage application electrode for alignment 1st Ward 1 Figure 2 Figure 3 Figure 5 Inhan

Claims (1)

【特許請求の範囲】[Claims] 一対の平行基板間に強誘電液晶を挾持させてなる液晶セ
ルの、該一対の平行基板の少なくとも一方に複数の電極
を互いに平行に配設し、該複数の電極間に電圧を印加す
ることにより、上記少なくとも一方の基板の面内におい
て一様な方向の電界を形成し、この電界により、上記液
晶が等吉相からスメクチックA相もしくはN相に移行す
る過程において、該液晶を均一に配向させることを特徴
とする強誘電液晶の配向制御法。
By arranging a plurality of electrodes in parallel with each other on at least one of the pair of parallel substrates of a liquid crystal cell in which a ferroelectric liquid crystal is sandwiched between a pair of parallel substrates, and applying a voltage between the plurality of electrodes. , forming an electric field in a uniform direction in the plane of at least one of the substrates, and uniformly orienting the liquid crystal in the process of transitioning the liquid crystal from the isobathic phase to the smectic A phase or N phase by this electric field; A method for controlling the alignment of ferroelectric liquid crystals characterized by:
JP3533384A 1984-02-28 1984-02-28 Method for controlling orientation of ferroelectric liquid crystal Pending JPS60179721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3533384A JPS60179721A (en) 1984-02-28 1984-02-28 Method for controlling orientation of ferroelectric liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3533384A JPS60179721A (en) 1984-02-28 1984-02-28 Method for controlling orientation of ferroelectric liquid crystal

Publications (1)

Publication Number Publication Date
JPS60179721A true JPS60179721A (en) 1985-09-13

Family

ID=12438904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3533384A Pending JPS60179721A (en) 1984-02-28 1984-02-28 Method for controlling orientation of ferroelectric liquid crystal

Country Status (1)

Country Link
JP (1) JPS60179721A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484223A (en) * 1987-09-28 1989-03-29 Toppan Printing Co Ltd Method for orientating liquid crystal display element
JPH02181724A (en) * 1989-01-09 1990-07-16 Matsushita Electric Ind Co Ltd Liquid crystal element and driving method thereof
JPH0438551U (en) * 1990-07-27 1992-03-31
US5151803A (en) * 1989-01-09 1992-09-29 Matsushita Electric Industrial Co., Ltd. Pixel-gap controlled ferroelectric liquid crystal display device and its driving method
US5164852A (en) * 1986-12-16 1992-11-17 Semiconductor Energy Laboratory Co., Ltd. Method of orientating a ferroelectric liquid crystal layer by AC electric field

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164852A (en) * 1986-12-16 1992-11-17 Semiconductor Energy Laboratory Co., Ltd. Method of orientating a ferroelectric liquid crystal layer by AC electric field
JPS6484223A (en) * 1987-09-28 1989-03-29 Toppan Printing Co Ltd Method for orientating liquid crystal display element
JPH02181724A (en) * 1989-01-09 1990-07-16 Matsushita Electric Ind Co Ltd Liquid crystal element and driving method thereof
US5151803A (en) * 1989-01-09 1992-09-29 Matsushita Electric Industrial Co., Ltd. Pixel-gap controlled ferroelectric liquid crystal display device and its driving method
JPH0438551U (en) * 1990-07-27 1992-03-31

Similar Documents

Publication Publication Date Title
US4902107A (en) Ferroelectric liquid crystal optical device having temperature compensation
EP0550846B1 (en) Ferroelectric liquid crystal device and process for production thereof
US5742369A (en) Method of aligning liquid crystals by applying an alternating electric field under periodically changing temperature
JPS61249024A (en) Liquid crystal optical element
JPS60179721A (en) Method for controlling orientation of ferroelectric liquid crystal
US5568295A (en) Chiral smetic LCD with small pretilt angle, substrate rubbed in two opposing directions, and no cholesteric phase or tilt angle > the pretilt plus inclination angles
JPS61249025A (en) Liquid crystal optical element
CA1279918C (en) Ferroelectric liquid crystal device
JPS61245142A (en) Liquid crystal optical element
JPS61246723A (en) Liquid crystal optical element
US5668616A (en) Ferroelectric liquid crystal device with alignment layers having surface unevenness different from each other
JPS62145216A (en) Liquid crystal element and driving method thereof
JPS6031121A (en) Driving method of optical modulating element
JPS61269124A (en) Method for controlling orientation of ferroelectric liquid crystal
JP2640259B2 (en) Ferroelectric liquid crystal device
CA1317387C (en) Ferroelectric liquid crystal device
JP2537454B2 (en) Liquid crystal electro-optical device manufacturing method
JPH05203933A (en) Ferroelectric liquid crystal element
JPS61246724A (en) Liquid crystal optical element
JPS61219931A (en) Liquid crystal display device
JPS61205919A (en) Liquid crystal element
KR100802306B1 (en) Liquid Crystal Display Device and Method of Fabricating the same
JP2715209B2 (en) Ferroelectric liquid crystal device
JPS61223897A (en) Smectic liquid crystal display unit
JPS6398632A (en) Liquid crystal electrooptical device