JPH02181495A - Manufacture of superconducting circuit board - Google Patents

Manufacture of superconducting circuit board

Info

Publication number
JPH02181495A
JPH02181495A JP1001571A JP157189A JPH02181495A JP H02181495 A JPH02181495 A JP H02181495A JP 1001571 A JP1001571 A JP 1001571A JP 157189 A JP157189 A JP 157189A JP H02181495 A JPH02181495 A JP H02181495A
Authority
JP
Japan
Prior art keywords
substrate
superconducting
buffer layer
alumina substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001571A
Other languages
Japanese (ja)
Inventor
Hirozo Yokoyama
横山 博三
Kazunori Yamanaka
一典 山中
Hiromi Ogawa
小川 弘美
Hitoshi Suzuki
均 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1001571A priority Critical patent/JPH02181495A/en
Publication of JPH02181495A publication Critical patent/JPH02181495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting device based on an alumina substrate by a method wherein after the alumina substrate provided with a through hole for via use is dipped into a buffer layer formation material, the substrate is fired, powder of a superconductive composition is filled in the through hole and wiring patterns are respectively formed on both surfaces of the substrate. CONSTITUTION:A green sheet is punched to perforate (A) and thereafter, the sheet is fired to form an alumina substrate 2 and after being dipped into a fluid buffer layer formation material, the substrate is fired to film-form (B) a buffer layer 3 on the substrate including a through hole 1. Then, superconductive ceramic powder 4 is cast in the hole 1 with the layer provided in it to fill (C) the hole. Then, superconductive ceramics pastes 5 are screen- printed to form (D) electronic circuit patterns, a high-temperature firing is performed and a superconducting ceramics circuit is completed. In this case, there is the need of forming uniformly the layer 3 on the substrate. Therefore, a hydrophilic surface active agent has only to be applied on the substrate for wettability improvement use.

Description

【発明の詳細な説明】 [概要〕 超伝導回路基板の製造方法に関し、 基板としてアルミナ基板を使用することを目的とし、 バイア形成用の貫通孔を形成したアルミナ基板を流動状
をしたバッファ層形成材料に浸漬した後に焼成してバッ
ファ層を貫通孔を含むアルミナ基板上に膜形成する工程
と、アルミナ基板の貫通孔に超伝導組成の粉末を充填す
る工程と、アルミナ基板の両面に超伝導組成のペースト
からなる配線パターンを形成する工程と、このアルミナ
基板を焼成する工程を含んで超伝導回路基板の製造方法
を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a superconducting circuit board, the purpose is to use an alumina substrate as the substrate, and the present invention involves forming a buffer layer using a fluidized alumina substrate with through holes for forming vias. A step of forming a buffer layer on an alumina substrate including through holes by immersing it in the material and firing it, a step of filling powder of a superconducting composition into the through holes of the alumina substrate, and a step of filling powder of a superconducting composition on both sides of the alumina substrate. The method for manufacturing a superconducting circuit board includes the steps of forming a wiring pattern made of paste and firing the alumina substrate.

〔産業上の利用分野〕[Industrial application field]

本発明はアルミナ基板を用いた超伝導回路基板の製造方
法に関する。
The present invention relates to a method for manufacturing a superconducting circuit board using an alumina substrate.

アルミニウム(八l)、チタン?Ti)など22の元素
やゲルマニウム化ニオブ(Nb、Ge)や炭化モリブデ
ン(MoC)などの金属化合物が超伝導現象を示すこと
は知られていたが、金属元素については高くてもIOK
に止まり、また金属化合物についてもNb、Geの23
.5Kが最高であった。
Aluminum (8l), titanium? It has been known that 22 elements such as Ti) and metal compounds such as niobium germanide (Nb, Ge) and molybdenum carbide (MoC) exhibit superconductivity, but for metal elements, the IOK is at most
23 of Nb and Ge for metal compounds.
.. 5K was the best.

然し、1986年にランタン・バリウム・銅・酸素(L
a−Ba−Cu−0)系の酸化物セラミックスについて
高温超伝導現象が発見されて以来、研究が進められて臨
界温度(Tc)が約90にの超伝導セラミックスが発見
されるに到っており、実用化研究が精力的に進められて
いる。
However, in 1986, lanthanum, barium, copper, and oxygen (L
Since the discovery of high-temperature superconductivity in a-Ba-Cu-0) based oxide ceramics, research has progressed and led to the discovery of superconducting ceramics with a critical temperature (Tc) of approximately 90. Research on practical application is currently underway.

さて、大量の情報を高速に処理する情報処理装置、特に
高速化を必要とする電算機部門には高電子移動度トラン
ジスタ(略称HEMT)や共鳴トンネリング・ホットエ
レクトロン・トランジスタ(略称1?1IET)など、
ガリウム・砒素(GaAs)からなる半導体素子が導入
されつ\あるが、これらの半導体素子は液体窒素(N2
)の温度で特性を発揮することから、か−る半導体素子
が搭載される電子回路を超伝導材料で形成し、超伝導状
態で使用すれば極めて効果的である。
Now, information processing devices that process large amounts of information at high speed, especially in the computer sector that requires high speed, include high electron mobility transistors (abbreviated as HEMT) and resonant tunneling hot electron transistors (abbreviated as 1?1 IET). ,
Semiconductor elements made of gallium arsenide (GaAs) are being introduced, but these semiconductor elements cannot be manufactured using liquid nitrogen (N2).
), it is extremely effective to form an electronic circuit in which such a semiconductor element is mounted using a superconducting material and use it in a superconducting state.

本発明はこの超伝導回路を形成するセラミック基板に関
するものである。
The present invention relates to a ceramic substrate forming this superconducting circuit.

〔従来の技術] 基板材料として一般的なアルミナ(α−Ap、2o。[Conventional technology] Alumina (α-Ap, 2O) is commonly used as a substrate material.

)は比誘電率が9.34と比較的低く、融点が2050
°Cと極めて高く、化学的にも安定な酸化物である。
) has a relatively low dielectric constant of 9.34 and a melting point of 2050
It is a chemically stable oxide with an extremely high temperature of °C.

アルミナ基板は酸化アルミニウム(α−Aj2.O8)
を主構成分とするグリンシートを作り、これを高温焼成
して焼結せしめてアルミナ基板が製造されている。
Alumina substrate is aluminum oxide (α-Aj2.O8)
An alumina substrate is manufactured by making a green sheet whose main component is alumina, and sintering it by firing at a high temperature.

そして、このアルミナ基板の両面或いは片面にスクリー
ン印刷などの方法により、銀・パラジウム(Ag−I’
d)などの導電性ペーストからなる導体パターンを作り
、これを焼成して電子回路を形成すると共に、rcやL
SIなどの集積回路の搭載が行われている。
Silver/palladium (Ag-I'
A conductive pattern made of conductive paste such as d) is made and fired to form an electronic circuit.
Integrated circuits such as SI are being installed.

なお、高密度実装の見地から両面配線が行われることが
多いが、その場合にはグリンシートの段階で上下の回路
を結ぶ配線位置をパンチなどで穴開けして後に焼成する
か、或いは焼成基板にレーザを照射して六開けを行い、
導電性ペーストをスクリーン印刷する際に上下の回路接
続を行い、これを焼成することによりセラミック回路基
板が作られている。
Note that double-sided wiring is often performed from the standpoint of high-density packaging, but in that case, holes are punched at the wiring positions that connect the upper and lower circuits at the green sheet stage, and then they are fired, or the fired board is A laser beam is irradiated to make six openings,
Ceramic circuit boards are made by making upper and lower circuit connections when screen printing conductive paste, and then firing this.

そのため、超伝導配線回路を形成するに当たっても、超
伝導組成のペーストを用い、これをスクリーン印刷して
電子回路パターンを作り、これを焼成すれば、超伝導回
路が形成できる筈である。
Therefore, when forming a superconducting wiring circuit, a superconducting circuit can be formed by using a paste with a superconducting composition, screen-printing this to form an electronic circuit pattern, and firing this.

然し、このようにして形成した超伝導回路の臨界温度(
Tc)は期待した値よりも遥かに低い。
However, the critical temperature (
Tc) is much lower than expected.

この原因はアルミナ基板のへ!原子と超伝導セラミック
スとが反応するためであり、発明者等はこれを確認して
いる。
The cause of this is the alumina substrate! This is because atoms and superconducting ceramics react, and the inventors have confirmed this.

(H,Yokoyama他、 M RS Intern
ational Meetingon  Advanc
ed  Materials、D2−8.1988)例
えば、酸化イツトリウム(YzOa)、酸化バリウム(
Bad) 、酸化銅(Cub)からなる超伝導セラミッ
クペーストを用いてなる超伝導セラミックスの臨界温度
(Tc)は90にであるが、アルミナ基板上に形成する
場合には54にへと低下する。
(H, Yokoyama et al., M RS Intern
ational Meeting Advance
ed Materials, D2-8.1988) For example, yttrium oxide (YzOa), barium oxide (
The critical temperature (Tc) of a superconducting ceramic using a superconducting ceramic paste made of copper oxide (Cub) is 90, but decreases to 54 when formed on an alumina substrate.

このように、アルミナ基板上に形成した超伝導セラミッ
クスは^l原子の影響を受けて特性が劣化することから
、従来は特性劣化の少ないジルコニア(ZrO□)基板
やマグネシア(MgO)基板が使用されていた。
In this way, the characteristics of superconducting ceramics formed on an alumina substrate deteriorate due to the influence of ^l atoms, so conventionally zirconia (ZrO□) or magnesia (MgO) substrates, which have less characteristic deterioration, have been used. was.

然し、これらの基板の価格はアルミナ基板に較べて一桁
以上高いために超伝導回路を実用化する上で大きな障害
となっていた。
However, the cost of these substrates is more than an order of magnitude higher than that of alumina substrates, which has been a major obstacle to the practical application of superconducting circuits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

アルミナ基板は集積回路形成用基板として使用されてお
り、比誘電率が比較的小さく、表面が平滑な基板も実用
化されており、また価格もジルコニア基板やマグネシア
基板に較べると遥かに廉価である。
Alumina substrates are used as substrates for forming integrated circuits, and substrates with relatively low dielectric constants and smooth surfaces have also been put into practical use, and they are also much cheaper than zirconia and magnesia substrates. .

然し、基板を構成するAN原子が超伝導セラミックス中
に拡散して特性を劣化させ、臨界温度(Te)を低下さ
せるので、そのま\では使用することはできない。
However, the AN atoms constituting the substrate diffuse into the superconducting ceramic, degrading its properties and lowering its critical temperature (Te), so it cannot be used as is.

そこで、アルミナ基板を使用できるようにすることが課
題である。
Therefore, the challenge is to make it possible to use alumina substrates.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題はバイア形成用の貫通孔を形成したアルミナ
基板を流動状をしたバッファ層形成材料に浸漬した後に
焼成し、バッファ層を貫通孔を含むアルミナ基板上に膜
形成する工程と、アルミナ基板の貫通孔に超伝導組成の
粉末を充填する工程と、アルミナ基板の両面に超伝導組
成のペーストからなる配線パターンを形成する工程と、
このアルミナ基板を焼成する工程を含む超伝導回路基板
の製造方法により解決することができる。
The above-mentioned problem involves the process of immersing an alumina substrate with through holes for forming vias into a fluidized buffer layer forming material and then firing it to form a buffer layer on the alumina substrate including the through holes, and the alumina substrate. a step of filling the through-hole with a powder having a superconducting composition; a step of forming a wiring pattern made of a paste having a superconducting composition on both sides of the alumina substrate;
This problem can be solved by a method for manufacturing a superconducting circuit board that includes a step of firing this alumina substrate.

〔作用〕[Effect]

発明者等はアルミナ基板を構成するAn原子が超伝導セ
ラミックスの中に拡散する距離は高々5μm以下である
ことから、アルミナ基板の上に厚さが5μm程度のバッ
ファ層を設ければ、超伝導セラミックスの劣化を防止で
きると考えた。
The inventors believe that since the distance that An atoms constituting an alumina substrate diffuse into superconducting ceramics is at most 5 μm or less, if a buffer layer with a thickness of about 5 μm is provided on the alumina substrate, superconductivity can be achieved. The idea was that it would prevent the deterioration of ceramics.

こ\で、バッファ層の必要条件はアルミナ基板との密着
性がよく、耐熱性に優れた無機材料であれば良い筈であ
るが、問題はアルミナ基板にバイア形成用に数多く開け
られている直径が0.2mmΦ程度の穴の中にもバッフ
ァ層を形成し、へ!原子の超伝導セラミックスへの拡散
を阻止しなければならぬことである。
In this case, the necessary conditions for the buffer layer should be an inorganic material that has good adhesion to the alumina substrate and has excellent heat resistance, but the problem is that the diameter of the many holes made in the alumina substrate for forming vias should be sufficient. Forms a buffer layer inside the hole of about 0.2mmΦ, and then! The diffusion of atoms into the superconducting ceramic must be prevented.

発明者等は穴を含めてアルミナ基板上にバッファ層を形
成する方法として、 ■ 超伝導組成の溶液に浸漬した後に焼成してアルミナ
基板−ヒに超伝導薄膜を形成してバッファ層とする方法
The inventors have proposed two methods for forming a buffer layer on an alumina substrate including holes: ■ A method of forming a superconducting thin film on an alumina substrate by immersing it in a solution with a superconducting composition and then firing it to form a buffer layer. .

■ マグネシウム塩の溶液に浸漬した後に焼成し、Mg
OとAfz(hとが反応してできるスピネルをバッファ
層とする方法。
■ Calcinate after immersing in a solution of magnesium salt, and
A method in which spinel, which is formed by the reaction of O and Afz(h), is used as a buffer layer.

■ 粘度を下げた超伝導セラミックスラリ−の中に浸漬
して後に焼成してバッファ層とする方法。
■ A method in which the material is immersed in a superconducting ceramic slurry of reduced viscosity and then fired to form a buffer layer.

の三者について実行し、良い結果を得た。We carried out three tests and obtained good results.

第1図は本発明に係る製造方法を示す断面図であって、
グリンシートをパンチングして孔開けした後に焼成して
アルミナ基板を作るか、或いはアルミナ基板上の表面と
裏面にパターン形成する電子回路の接続予定位置を、レ
ーザ光照射により孔開けして貫通孔lを備えたアルミナ
基板2を準備する。(以上同図A) 次に、上記■〜■の何れかの方法により貫通孔lを含め
てアルミナ基板2の上にバッファ層3を形成する。(以
上同図B) 次に、バッファ層3を設けた貫通孔1の中に超伝導セラ
ミックスよりなる粉末4を充填して孔埋めを行う。(以
上同図C) 次に、超伝導セラミックスよりなるペースト5をスクリ
ーン印刷して電子回路パターンを形成した後、高温焼成
することにより、超伝導セラミック回路ができあがる。
FIG. 1 is a sectional view showing the manufacturing method according to the present invention,
An alumina substrate is created by punching holes in a green sheet and then firing the alumina substrate, or by laser beam irradiation to make holes at the intended connection locations for electronic circuits that are patterned on the front and back surfaces of the alumina substrate. An alumina substrate 2 is prepared. (A in the same figure) Next, the buffer layer 3 is formed on the alumina substrate 2 including the through hole 1 by any of the methods ① to ② described above. (See Figure B) Next, the through hole 1 provided with the buffer layer 3 is filled with powder 4 made of superconducting ceramics to fill the hole. (C in the same figure) Next, a superconducting ceramic circuit is completed by screen printing the paste 5 made of superconducting ceramic to form an electronic circuit pattern and then firing it at a high temperature.

(以上同図D) なお、本発明を実施する場合の必要条件はバッファ層3
がアルミナ基板上に一様に形成されることであり、その
ためには濡れ性を向上しておくことが必要であり、親水
性の界面活性剤をアルミナ基板に塗布しておくと効果的
である。
(The above is D in the same figure) Note that the necessary condition for implementing the present invention is that the buffer layer 3
is formed uniformly on the alumina substrate, and for this purpose it is necessary to improve the wettability, and it is effective to apply a hydrophilic surfactant to the alumina substrate. .

〔実施例〕〔Example〕

実施例1: (第2請求項関連) 粒子径がそれぞれ約1μmの酸化イツ) IJウム(Y
zO+)  1モルと、酸化バリウム(Bad) 2モ
ルと、酸化銅(Cub) 3モルをボールミルで48時
間混合した後、950°Cで12時間焼成し、これを粉
砕して粒子径が約2μmの超伝導セラミックよりなる原
料粉末を作った。
Example 1: (Related to the second claim)
zO+), 2 moles of barium oxide (Bad), and 3 moles of copper oxide (Cub) were mixed in a ball mill for 48 hours, calcined at 950°C for 12 hours, and pulverized to a particle size of about 2 μm. We made raw material powder made of superconducting ceramic.

次に、この原料粉末100 gにポリメチルメタクリエ
ート(略称PMMA樹脂)Log、テルピネオール25
gおよびチタンカップリング剤1gにメチルエチルケト
ン100gを加え、ボールミルで72時間に亙って混合
した。
Next, polymethyl methacrylate (abbreviated PMMA resin) Log and terpineol 25 g were added to 100 g of this raw material powder.
100 g of methyl ethyl ketone was added to g and 1 g of the titanium coupling agent, and the mixture was mixed in a ball mill for 72 hours.

その後、刺通製の播解器で3時間混練し、低沸点溶剤で
あるメチルエチルケトンを飛散させ、更に三本ロールミ
ルで混練して粘度が1500〜2000ボイズの超伝導
セラミックペーストを作った。
Thereafter, the mixture was kneaded for 3 hours using a disintegrator manufactured by Shitsutsu Corporation to scatter methyl ethyl ketone, which is a low boiling point solvent, and further kneaded using a three-roll mill to produce a superconducting ceramic paste with a viscosity of 1500 to 2000 voids.

次に、ナフテン酸銅、ナフテン酸バリウムおよびステア
リン酸イツトリウムをモル比で1=2:3となるように
混合した後、メチルアルコールに溶解し、粘度が50ポ
イズの超伝導組成の溶液を作った。
Next, copper naphthenate, barium naphthenate, and yttrium stearate were mixed in a molar ratio of 1=2:3, and then dissolved in methyl alcohol to create a superconducting solution with a viscosity of 50 poise. .

次に、厚さが0.65mmの高純度アルミナ基板(富士
通製ファインブレンド・アルミナ基板)にYAG(イツ
トリウム・アルミニウム・ガーネット)レーザを用いで
バイア形成予定位置に直径が0.4mmの孔を開け、良
く洗滌した後に、この基板をチタンカップリング剤(品
名KR9S、味の素■)の10%テルピネオール溶液に
1分間浸漬した後、130″Cで10分間乾燥する処理
を施して親水性とした。
Next, use a YAG (yttrium aluminum garnet) laser to drill holes with a diameter of 0.4 mm on a high-purity alumina substrate (Fujitsu fine blend alumina substrate) with a thickness of 0.65 mm at the locations where vias will be formed. After thorough washing, this substrate was immersed in a 10% terpineol solution of a titanium coupling agent (product name KR9S, Ajinomoto ■) for 1 minute, and then dried at 130''C for 10 minutes to make it hydrophilic.

このアルミナ基板は超伝導組成の溶液に5分間浸漬し、
80°Cで10分乾燥した後、1050°Cで10分間
大気中で焼成して孔開は部を含め、約5μmの厚さのバ
ッファ層を形成した。
This alumina substrate was immersed in a solution with a superconducting composition for 5 minutes,
After drying at 80° C. for 10 minutes, it was fired in the air at 1050° C. for 10 minutes to form a buffer layer with a thickness of about 5 μm including the pores.

次に、基板の孔に超伝導組成の原料粉末を充填した後、
超伝導セラミンクペーストを用いて基板の両面に幅3m
m、厚さが100μmの配線パターンをスクリーン印刷
し、乾燥させた後、大気中で昇温速度5°C/分で10
00°Cまで上げ、この温度で1゜分間焼成した後に5
°C/分の条件で降温して超伝導回路基板ができあがっ
た。
Next, after filling the holes in the substrate with raw material powder of superconducting composition,
3m width on both sides of the board using superconducting ceramic paste
After screen printing a wiring pattern with a thickness of 100 μm and drying it, it was heated at a heating rate of 5 °C/min in the atmosphere for 10
After raising the temperature to 00°C and baking at this temperature for 1°,
A superconducting circuit board was completed by lowering the temperature at a rate of °C/min.

か\る回路基板について液体ヘリウム(lle)温度か
ら室温までの電気抵抗を四端子法で測定した結果、臨界
温度(Tc)は65にであり、従来のアルミナ基板につ
いての54Kに較べ遥かに高い温度を得ることができた
As a result of measuring the electrical resistance of such a circuit board from liquid helium (LLE) temperature to room temperature using the four-probe method, the critical temperature (Tc) was found to be 65, which is much higher than 54K for a conventional alumina board. I was able to get the temperature.

実施例2: (請求項3関連) バッファ層形成材料としてステアリン酸マグネシウムを
メチルアルコールに溶解して粘度が5oポイズのマグネ
シウム溶液を作った。
Example 2: (Related to Claim 3) Magnesium stearate was dissolved in methyl alcohol as a buffer layer forming material to prepare a magnesium solution having a viscosity of 5o poise.

実施例1と同様にして孔開けした基板を界面活性剤溶液
に浸漬する処理を施して親水性とした後、このマグネシ
ウム塩溶液に5分間浸漬し、80”Cで10分間乾燥し
たの後、大気中で1500″Cで1時間焼成し、孔を含
めた基板上に厚さが約5μmのバッファ層を形成した。
A substrate with holes drilled in the same manner as in Example 1 was immersed in a surfactant solution to make it hydrophilic, then immersed in this magnesium salt solution for 5 minutes, and dried at 80"C for 10 minutes. It was baked in the air at 1500''C for 1 hour to form a buffer layer with a thickness of about 5 μm on the substrate including the holes.

以後は実施例1と同様にしてこの上に超伝導回路基板を
形成した。
Thereafter, a superconducting circuit board was formed on this in the same manner as in Example 1.

このようにして形成した超伝導セラミック回路の臨界温
度(Tc)は65にであった。
The critical temperature (Tc) of the superconducting ceramic circuit thus formed was 65.

実施例3: (請求項4関連) バッファ層形成材料として超伝導セラミックペーストに
メチルエチルケトンを加え、粘度が2゜ポイズのスラリ
ーを作った。
Example 3: (Related to Claim 4) Methyl ethyl ketone was added to superconducting ceramic paste as a buffer layer forming material to prepare a slurry having a viscosity of 2° poise.

実施例1と同様にして孔開けした基板を界面活性剤溶液
に浸漬する処理を施して親水性とした後、このスラリー
に1分間浸漬し、120℃で30分間乾燥したの後、大
気中で900°Cで10分間焼成し、孔を含めた基板上
に厚さが約5μmのバッファ層を形成した。
A substrate with holes drilled in the same manner as in Example 1 was immersed in a surfactant solution to make it hydrophilic, then immersed in this slurry for 1 minute, dried at 120°C for 30 minutes, and then exposed to air. It was baked at 900°C for 10 minutes to form a buffer layer with a thickness of about 5 μm on the substrate including the holes.

以後は実施例1と同様にしてこの上に超伝導回路基板を
形成した。
Thereafter, a superconducting circuit board was formed on this in the same manner as in Example 1.

このようにして形成した超伝導セラミック回路の臨界温
度(Tc)は65にであった。
The critical temperature (Tc) of the superconducting ceramic circuit thus formed was 65.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により、超伝導セラミック回路基板として
アルミナ基板の使用が可能となり、これによりコストダ
ウンが可能となると共に超伝導デバイスの実用化を促進
することができる。
By carrying out the present invention, it becomes possible to use an alumina substrate as a superconducting ceramic circuit board, thereby making it possible to reduce costs and promoting the practical use of superconducting devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る製造方法を説明する断面図である
。 図において、 1は貫通孔、       2はアルミナ基板、3はバ
ッファ層、     4は粉末、5はペースト、 である。
FIG. 1 is a sectional view illustrating the manufacturing method according to the present invention. In the figure, 1 is a through hole, 2 is an alumina substrate, 3 is a buffer layer, 4 is a powder, and 5 is a paste.

Claims (4)

【特許請求の範囲】[Claims] (1)バイア形成用の貫通孔を形成したアルミナ基板を
流動状をしたバッファ層形成材料に浸漬した後に焼成し
、バッファ層を前記貫通孔を含むアルミナ基板上に膜形
成する工程と、 該アルミナ基板の貫通孔に超伝導組成の粉末を充填する
工程と、 該アルミナ基板の両面に超伝導組成のペーストからなる
配線パターンを形成する工程と、 配線パターンを形成した該アルミナ基板を焼成する工程
を含むことを特徴とする超伝導回路基板の製造方法。
(1) A step of immersing an alumina substrate with through holes for forming vias in a fluidized buffer layer forming material and then firing it to form a buffer layer on the alumina substrate including the through holes; A step of filling a through-hole of a substrate with powder of a superconducting composition, a step of forming a wiring pattern made of a paste of a superconducting composition on both sides of the alumina substrate, and a step of firing the alumina substrate with the wiring pattern formed thereon. A method for manufacturing a superconducting circuit board, comprising:
(2)請求項1記載の流動状をしたバッファ層形成材料
が超伝導組成の金属塩からなることを特徴とする超伝導
回路基板の製造方法。
(2) A method for manufacturing a superconducting circuit board, characterized in that the fluid buffer layer forming material according to claim 1 is made of a metal salt having a superconducting composition.
(3)請求項1記載の流動状をしたバッファ層形成材料
がマグネシウム塩からなることを特徴とする超伝導回路
基板の製造方法。
(3) A method for manufacturing a superconducting circuit board, characterized in that the fluid buffer layer forming material according to claim 1 is made of a magnesium salt.
(4)請求項1記載の流動状をしたバッファ層形成材料
が超伝導セラミックスのスラリーからなることを特徴と
する超伝導回路基板の製造方法。
(4) A method for manufacturing a superconducting circuit board, characterized in that the fluid buffer layer forming material according to claim 1 comprises a slurry of superconducting ceramics.
JP1001571A 1989-01-06 1989-01-06 Manufacture of superconducting circuit board Pending JPH02181495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001571A JPH02181495A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001571A JPH02181495A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit board

Publications (1)

Publication Number Publication Date
JPH02181495A true JPH02181495A (en) 1990-07-16

Family

ID=11505209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001571A Pending JPH02181495A (en) 1989-01-06 1989-01-06 Manufacture of superconducting circuit board

Country Status (1)

Country Link
JP (1) JPH02181495A (en)

Similar Documents

Publication Publication Date Title
Scrantom et al. LTCC technology: where we are and where we're going. II
US3852877A (en) Multilayer circuits
JP3015621B2 (en) Conductive paste composition
JPH0452000B2 (en)
Wersing et al. Multilayer ceramic technology
JPH04369899A (en) Manufacture of blass ceramic multilayer circuit board
JPH02181495A (en) Manufacture of superconducting circuit board
JPH04212441A (en) Ceramic wiring board
JPH02116196A (en) Ceramic multilayer circuit board and its manufacture
CN109285786A (en) A kind of chip package base plate and production method
JPH0544840B2 (en)
JPS63300594A (en) Multilayered ceramic wiring board and manufacture thereof
JPS63306690A (en) Hybrid ic circuit using oxide ceramic superconductor
JPS61292392A (en) Manufacture of ceramic wiring board
JP2764087B2 (en) Ceramic superconductor paste and method of manufacturing ceramic superconductor wiring circuit board using the paste
Sergent Hybrid microelectronics technology
JP3198139B2 (en) AlN metallized substrate
JPH04225297A (en) Manufacture of ceramic board
JP2003277170A (en) Composition for wiring conductor
JPS6126293A (en) Ceramic multilayer circuit board and method of producing same
Scrantom et al. LTCC Technology
JPH0563115B2 (en)
CN116161967A (en) Ceramic substrate preparation method and ceramic substrate
JPH01155686A (en) Multilayer substrate of aluminum nitride and manufacture thereof
JPH01238194A (en) Multilayer ceramic wiring substrate having high thermal conductivity