JPH02180707A - Production of phosphorus compound grain assemblage - Google Patents
Production of phosphorus compound grain assemblageInfo
- Publication number
- JPH02180707A JPH02180707A JP63333920A JP33392088A JPH02180707A JP H02180707 A JPH02180707 A JP H02180707A JP 63333920 A JP63333920 A JP 63333920A JP 33392088 A JP33392088 A JP 33392088A JP H02180707 A JPH02180707 A JP H02180707A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- vessel
- lid
- container
- assemblage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 phosphorus compound Chemical class 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 title abstract 2
- 239000011574 phosphorus Substances 0.000 title abstract 2
- 239000002002 slurry Substances 0.000 claims abstract description 36
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 5
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 5
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 34
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 23
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 23
- 238000010792 warming Methods 0.000 claims 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 abstract description 6
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 abstract description 3
- 239000000498 cooling water Substances 0.000 abstract description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 13
- 238000000926 separation method Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 238000005469 granulation Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 210000004102 animal cell Anatomy 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241001391944 Commicarpus scandens Species 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 101100535994 Caenorhabditis elegans tars-1 gene Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/455—Phosphates containing halogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
- C01B25/327—After-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、リン酸化合物粒子集合体の製造方法に関す
る。この発明の方法により製造されるリン酸化合物粒子
集合体は、細胞や生理活性物質の分離吸着のためのクロ
マトグラフィー充填剤及び動物細胞の培養用支持体、酵
素の支持又は固定化担体として用いることができる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a phosphoric acid compound particle aggregate. The phosphoric acid compound particle aggregate produced by the method of the present invention can be used as a chromatography filler for separating and adsorbing cells and physiologically active substances, a support for culturing animal cells, and a support or immobilization carrier for enzymes. Can be done.
[従来の技術]
従来より、ヒドロキシアパタイト等のリン酸化合物は、
細胞や生理活性物質の分離吸着、動物細胞の培養用支持
体、酵素や細胞の固定化担体として用い、られている、
しかしながら、このような分離材や支持体として特に適
した粒径、表面積、細孔容積、粒子形状、圧縮強度、カ
サ比重等の組合わせは知られてはいない。[Conventional technology] Conventionally, phosphoric acid compounds such as hydroxyapatite,
It is used for the separation and adsorption of cells and physiologically active substances, as a culture support for animal cells, and as an immobilization carrier for enzymes and cells.
However, a combination of particle size, surface area, pore volume, particle shape, compressive strength, bulk specific gravity, etc. that is particularly suitable for such separation materials and supports is not known.
また、特定の粒径、比表面積、細孔容積、粒子形状、圧
縮強度、カサ比重等の組合わせを有するリン酸化合物粒
子を再現性良く製造する方法も知られてはいない、すな
わち、従来より、平均粒径1LL11から1100u程
度のリン酸化合物粒子は、遠心力法又は噴霧造粒法によ
り製造されている。しかしながら、遠心力法又は噴霧造
粒法によっては100μ蹟を超える平均粒径を有する大
粒径のリン酸化合物粒子を製造することはできない。Furthermore, there is no known method for producing phosphoric acid compound particles having a specific combination of particle size, specific surface area, pore volume, particle shape, compressive strength, bulk specific gravity, etc. with good reproducibility. Phosphoric acid compound particles having an average particle size of about 1LL11 to about 1100U are produced by a centrifugal force method or a spray granulation method. However, large-sized phosphoric acid compound particles having an average particle size exceeding 100 μm cannot be produced by the centrifugal force method or the spray granulation method.
一方、平均粒径100μmないし2000μ■のリン酸
化合物粒子は、有機バインダーを添加した転勤造粒法に
より製造されている。しかしながら。On the other hand, phosphoric acid compound particles having an average particle diameter of 100 μm to 2000 μm are produced by a transfer granulation method in which an organic binder is added. however.
従来の転勤造粒法では、有機バインダーを添加するため
に、焼成工程が必須となり、この工程中、バインダーの
破裂により収率が低下したり、粒子性状1例えば細孔容
積、比表面積等の制御が困難になるというような問題が
ある。In the conventional transfer granulation method, a firing step is essential in order to add an organic binder, and during this step, the yield may decrease due to rupture of the binder, and particle properties 1 such as pore volume and specific surface area may be controlled. There are some problems that make it difficult.
また、無機物スラリーを原料とした一般的な造粒法とし
て、液中造粒法が知られている。この方法では、無機物
スラリーに高分子凝集材又は液体架橋剤を加え、スラリ
ーを撹拌することによってスラリーを造粒する。しかし
ながら、この方法をリン酸化合物粒子の造粒に適用する
と、高分子凝集剤又は液体架橋剤の故に、転勤造粒法に
ついて述べたのと同様な問題を生じる。In addition, a submerged granulation method is known as a general granulation method using an inorganic slurry as a raw material. In this method, a polymer flocculant or a liquid crosslinking agent is added to an inorganic slurry, and the slurry is granulated by stirring the slurry. However, when this method is applied to the granulation of phosphate compound particles, problems similar to those described for the transfer granulation method arise due to the polymeric flocculant or liquid crosslinking agent.
このように、従来技術においては、平均粒径が20μI
ないし5000μl程度のリン酸化合物粒子集合体を、
その孔体積、表面積等を精度良く制御しながら製造する
方法は知られていない。In this way, in the conventional technology, the average particle size is 20 μI.
or about 5000 μl of phosphoric acid compound particle aggregate,
There is no known method for manufacturing it while controlling its pore volume, surface area, etc. with high precision.
本願発明者らは、上記事情に鑑み、先に、高分子凝集剤
又は液体架橋剤を含まないスラリーを回転翼を用いて撹
拌することにより、上記従来技術の諸問題を解決するこ
とができることを見出した(特願昭63−58059号
明細書)。しかしながら、容器内で生成した多孔質球状
体は、多量の水分を含んでおり、機械的強度が小さい、
従って、この方法では、回転翼を用いるため1回転速度
が速く、回転時間が長(なるほど生成した球状体は回転
翼により破壊され、その結果、より大きな粒径の球状体
が生成しにくい、破壊により球状体の収率が低下する、
破壊したフレークが除去困難な異形物として混入する、
等の問題が生じる。In view of the above circumstances, the inventors of the present application have found that the problems of the prior art described above can be solved by first stirring a slurry that does not contain a polymer flocculant or a liquid crosslinking agent using a rotary blade. (Japanese Patent Application No. 63-58059). However, the porous spheres produced inside the container contain a large amount of water and have low mechanical strength.
Therefore, in this method, since the rotary blade is used, the speed of one rotation is high and the rotation time is long (I see, the generated spherical bodies are destroyed by the rotary blade, and as a result, it is difficult to generate spherical bodies with a larger particle size. The yield of spheroids decreases due to
Destroyed flakes become mixed in as irregular objects that are difficult to remove.
Problems such as this arise.
[発明が解決しようとする問題点]
従って、本発明の目的は、クロマトグラフィーの充填剤
や動物細胞の支持体として用いた場合に優れた効果を発
揮する、特定の諸物性を有するリン酸化合物粒子集合体
を再現性良(製造することができる製造方法を提供する
ことである。[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a phosphoric acid compound having specific physical properties that exhibits excellent effects when used as a chromatography filler or a support for animal cells. The object of the present invention is to provide a manufacturing method that allows particle aggregates to be manufactured with good reproducibility.
[問題点を解決するための手段]
本願発明者らは、鋭意研究の結果、クロマトグラフィー
の充填剤や動物細胞の支持体として用いた場合に優れた
効果を発揮する諸物性の組合わせを見出し、かつ、容器
自体を回転して原料スラリーを撹拌することによりそれ
らが再現性良く得られることを見出し本発明を完成した
。[Means for Solving the Problems] As a result of intensive research, the inventors of the present application have discovered a combination of physical properties that exhibits excellent effects when used as a chromatography filler or a support for animal cells. The present invention was completed based on the discovery that these can be obtained with good reproducibility by rotating the container itself and stirring the raw material slurry.
すなわち、有機バインダーを含まないリン酸カルシウム
化合物のスラリーを、傾斜した回転軸を有する容器に装
填する工程と、該容器を室温以上に加温し、かつ、上記
スラリーを濃縮しながら回転させる工程とを含む多孔性
リン酸化合物粒子集合体の製造方法を提供する。That is, it includes a step of loading a slurry of a calcium phosphate compound containing no organic binder into a container having an inclined rotation axis, and a step of heating the container above room temperature and rotating the slurry while concentrating it. A method for producing a porous phosphate compound particle aggregate is provided.
[発明の効果]
本発明により、細胞や生理活性物質の分離剤、支持体と
して用いることにより優れた効果を発揮するリン酸化合
物粒子集合体の製造方法が提供された。この発明の方法
によると、有機バインダーを用いることなく、平均粒径
20u■ないし5000μlのリン酸化合物粒子集合体
を製造することができる。この発明の方法では、有機バ
インダー等の不純物を添加しないので、リン酸化合物粒
子を焼成することなくそのまま分離剤や担体として用い
ることが可能になる。また、有機バインダーの破裂によ
る収率の低下がなく、細孔容積、比表面積等の制御を容
易に行なうことができる。[Effects of the Invention] The present invention provides a method for producing a phosphoric acid compound particle aggregate that exhibits excellent effects when used as a separating agent and support for cells and physiologically active substances. According to the method of the present invention, a phosphoric acid compound particle aggregate having an average particle size of 20 μl to 5000 μl can be produced without using an organic binder. In the method of the present invention, since impurities such as an organic binder are not added, it is possible to use the phosphoric acid compound particles as they are as a separating agent or a carrier without baking them. Further, there is no decrease in yield due to rupture of the organic binder, and pore volume, specific surface area, etc. can be easily controlled.
本発明の方法により製造されるリン酸化合物粒子集合体
は比較的巨大であり、かつ実質的に球状であるので、こ
れを分離剤として用いると、サイズの大きな細胞等の分
離を効率良(行なうことができ、バイオテクノロジー分
野におけるダウンストリームプロセッシングに大いに貢
献する。The phosphoric acid compound particle aggregate produced by the method of the present invention is relatively large and substantially spherical, so when used as a separation agent, it is possible to efficiently separate large cells, etc. can greatly contribute to downstream processing in the biotechnology field.
さらに、上記諸物性を有する、本発明の方法により製造
される粒子集合体は、生化学分野における支持体、担体
として、すなわち、例えば動物細胞の培養用支持体、酵
素、細胞の固定化用担体等として特に有用である。Furthermore, the particle aggregate produced by the method of the present invention having the above-mentioned physical properties can be used as a support or carrier in the biochemical field, for example, as a support for culturing animal cells, or as a support for immobilizing enzymes or cells. It is particularly useful as
さらに1本発明の方法により製造される粒子集合体は、
回転翼を用いることなく製造されるので、粒子の破片等
の異形混入物を実質的に含まなしA 。Furthermore, the particle aggregate produced by the method of the present invention is
Since it is manufactured without the use of rotary blades, it is virtually free of foreign contaminants such as particle fragments.
[発明の詳細な説明]
本発明の方法により製造されるリン酸化合物粒子集合体
の平均粒径は、20μIないし5000μm、好ましく
は2000μIないし5000μmである。平均粒径が
20μmよりも小さいと、細胞培養の支持体としては小
さすぎて効果が少なく、5000μIを超えると、細胞
培養の支持体としては大きすぎて効果が少ない。[Detailed Description of the Invention] The average particle size of the phosphoric acid compound particle aggregate produced by the method of the present invention is from 20 μI to 5000 μm, preferably from 2000 μI to 5000 μm. If the average particle diameter is smaller than 20 μm, it is too small to be effective as a support for cell culture, and if it exceeds 5000 μI, it is too large to be effective as a support for cell culture.
本発明の方法により製造される粒子集合体の全細孔容積
は水銀圧入法で測定して0.01 m17gないし1.
0 m17g、好ましくは0.1 +++I/gないし
0.6■l/gである。全細孔体積が0.01 m17
g未満では緻密性が高(分離能が低く、細胞分離効果が
少ない、また、1.0 +al/gを超えると多孔性が
高く、脆くなり、細胞培養の支持体、細胞分離剤として
の強度が十分でない。The total pore volume of the particle aggregate produced by the method of the present invention is between 0.01 m17 g and 1.0 g as measured by mercury porosimetry.
0 m17g, preferably 0.1 +++ I/g to 0.6 ■l/g. Total pore volume is 0.01 m17
If it is less than 1.0 +al/g, it will have high density (low separation ability and little cell separation effect), and if it exceeds 1.0+al/g, it will be highly porous and brittle, resulting in poor strength as a support for cell culture or a cell separation agent. is not enough.
本発明の方法により製造される粒子集合体の比表面積は
5 rm2/gないし100 m”7g、好ましくは4
0 rm”7gないし80 m”7gである。比表面積
が5ra”1g未満では、緻密性が高く分離能が低く細
胞分離剤としての効果が少ない、また、100 m”7
gを超えると吸着性が多様化し、選択的な細胞分離が困
難になる。The specific surface area of the particle aggregates produced by the method of the invention is between 5 rm2/g and 100 m''7g, preferably 4.
0 rm"7g to 80 m"7g. If the specific surface area is less than 5ra"1g, the density will be high, the separation ability will be low, and the effect as a cell separation agent will be low.
When the amount exceeds 100 g, adsorption properties become diverse and selective cell separation becomes difficult.
本発明の方法により製造される粒子集合体の圧縮強度は
、0.1 kg/mm”ないし5.0 kg/++m”
、好ましくは0.2 kg/mm”ないし3.0 kg
/man”である。圧縮強度が0.1 kg/mm”よ
りも小さいと、圧縮強度が小さすぎてクロマトグラフィ
ー充填剤として用いた際に破壊され易く、また、圧縮強
度が5.0 kg/m+s”を超えると、必然的に緻密
性が高まり、分離能が低下する。The compressive strength of the particle aggregate produced by the method of the present invention is 0.1 kg/mm" to 5.0 kg/++m"
, preferably 0.2 kg/mm” to 3.0 kg
/man''.If the compressive strength is less than 0.1 kg/mm'', the compressive strength will be too small and it will be easily destroyed when used as a chromatography packing material; If it exceeds "m+s", the density will inevitably increase and the separation power will decrease.
本発明の方法により製造される粒子集合体の平均カサ比
重は0,4ないし2.5、好ましくは0.5ないし10
である。カサ比重が0.4よりも小さいと、多孔性が高
まり、機械強度の低下をもたらし、破壊され易く、2,
5よりも大きいと緻密性が高まり分離能が低下する。The particle aggregate produced by the method of the present invention has an average bulk specific gravity of 0.4 to 2.5, preferably 0.5 to 10.
It is. If the bulk specific gravity is less than 0.4, the porosity will increase, resulting in a decrease in mechanical strength, making it easy to break.2.
When it is larger than 5, the density increases and the separation ability decreases.
本発明の方法により製造される粒子集合体の平均気孔率
は1%ないし85%、好ましくは40%ないし70%で
ある。平均気孔率が1%よりも小さいと緻密性が高まり
、分離能が低下し、85%よりも大きいと機械強度が小
さすぎて破壊され易い、なお、ここで、気孔率とは粒子
集合体における細孔の占める容積率である。The average porosity of the particle aggregates produced by the method of the invention is between 1% and 85%, preferably between 40% and 70%. If the average porosity is less than 1%, the density increases and the separation ability decreases, and if it is more than 85%, the mechanical strength is too small and it is easy to break. This is the volume ratio occupied by pores.
本発明の方法により製造される粒子集合体は実質的に球
状であり、球状以外の粒子、例えば粒子破片のような異
形粒子を実質的に含まない、このような異形粒子を含む
と、分離剤として用いた場合の分離能にばらつきが生じ
る。The particle aggregate produced by the method of the present invention is substantially spherical and substantially free of irregularly shaped particles such as particles other than spherical, for example, particle fragments. There will be variations in resolution when used as a
本発明における「リン酸化合物」とは、ヒドロキシアパ
タイト、リン酸カルシウム及びフッ素アパタイトを包含
する。The "phosphoric acid compound" in the present invention includes hydroxyapatite, calcium phosphate, and fluoroapatite.
上記した粒子集合体は、以下のようにして製造すること
ができる。The particle aggregate described above can be manufactured as follows.
まず、リン酸化合物のスラリーを調製し、それを回転軸
が傾斜した容器に入れる。リン酸化合物のスラリーは、
従来よりこの分野において周知のものを用いることがで
きる。もつとも、本発明の方法において、スラリーの濃
度は製造される粒子の粒径に影響を与え、濃度が高いほ
ど大きな粒径の粒子が製造される。後述のように、容器
の回転速度や回転時間も粒径に影響を与えるので、スラ
リーの濃度は、所望する粒径及び回転速度と回転時間と
のかね合いにより適宜選択される。もっとも、スラリー
中のリン酸化合物濃度が余りに低過ぎても高すぎてもリ
ン酸化合物の造粒が困難になるので、適当な水性スラリ
ーの濃度は10重量%ないし60重量%、特には20重
量%ないし50重量%程度である。スラリーの媒体は水
が最も好ましいが、製造される粒子の性能に怒影響を与
えないならば、水辺外の物質又は不純物を含んでいても
良い。First, a slurry of a phosphoric acid compound is prepared and placed in a container with an inclined rotation axis. Slurry of phosphoric acid compound is
Those conventionally known in this field can be used. However, in the method of the present invention, the concentration of the slurry influences the particle size of the particles produced, and the higher the concentration, the larger the particles produced. As described below, the rotation speed and rotation time of the container also affect the particle size, so the concentration of the slurry is appropriately selected depending on the desired particle size, rotation speed, and rotation time. However, if the phosphoric acid compound concentration in the slurry is too low or too high, it will be difficult to granulate the phosphoric acid compound, so the appropriate concentration of the aqueous slurry is 10% by weight to 60% by weight, especially 20% by weight. % to about 50% by weight. The slurry medium is most preferably water, but may contain extra-aquatic materials or impurities provided they do not adversely affect the performance of the particles produced.
次に、上記容器を室温以上の温度に加温しながら、容器
を上記回転軸の回りに回転させる。容器の温度は室温か
ら100℃程度が好ましい、容器の加温は、例えば、容
器を恒温槽内で回転させることにより行なうことができ
る。容器の回転速度は粒子の粒径に影響を与え、回転速
度が大きくなるほど粒径が小さくなる8回転速度は5
rpmないし300 rpm 、特にはlorpm+な
いし100 rp+mが好ましい、また、スラリーの濃
縮は、例えば、容器を減圧で引くことにより行なうこと
ができる。スラリ−濃縮のための容器内の圧力を0.O
1気圧ないし1.0気圧、特には0.05気圧ないし0
.5気圧にすることが好ましい。Next, the container is rotated around the rotation axis while heating the container to a temperature equal to or higher than room temperature. The temperature of the container is preferably from room temperature to about 100° C. The container can be heated, for example, by rotating the container in a constant temperature bath. The rotation speed of the container affects the particle size of the particles, and the higher the rotation speed, the smaller the particle size.8 The rotation speed is 5.
rpm to 300 rpm, especially lorpm+ to 100 rpm+m are preferred, and the slurry can be concentrated, for example, by pulling the container under vacuum. The pressure in the vessel for slurry concentration was set to 0. O
1 atm to 1.0 atm, especially 0.05 atm to 0
.. Preferably, the pressure is 5 atm.
撹拌時間もまた、得られる粒子の粒径に影響を与え、攪
拌時間が長いほど得られる粒子の粒径が太き(なる、従
って、撹拌時間は、所望する粒径及びスラリー濃度と撹
拌速度とのかね合いにより適宜選択される。もっとも、
撹拌時間が余りにも短いと造粒の収率が悪いので、攪拌
時間は1時間以上であることが好ましい、加温すること
により撹拌時間を短くすることができる。また、攪拌時
間が20時間以上になると、粒径の成長がほぼ停止する
ので、経済性の観点から攪拌時間は20時間以下が好ま
しい。The stirring time also influences the particle size of the resulting particles; the longer the stirring time, the larger the resulting particles (thus, the stirring time depends on the desired particle size and slurry concentration and the stirring speed). The choice will be made as appropriate depending on the balance.However,
If the stirring time is too short, the yield of granulation will be poor, so the stirring time is preferably one hour or more.The stirring time can be shortened by heating. Furthermore, if the stirring time is 20 hours or more, the growth of particle size will almost stop, so from the economic point of view, the stirring time is preferably 20 hours or less.
上記方法により、上記した多孔性リン酸化合物粒子集合
体が上記容器内に効率良くかつ再現性良く得られる。By the above method, the porous phosphoric acid compound particle aggregate described above can be efficiently and reproducibly obtained in the container.
上記方法により得られた多孔性リン酸化合物粒子集合体
は、そのまま分離剤又は細胞培養用支持体として用いる
こともできるが、さらに焼成することもできる。焼成す
ることにより、細孔径分布の制御が容易になり、機械強
度が向上するという効果が得られる。焼成条件は特に限
定されないが、200℃ないし1200℃、特には30
0℃ないし900℃で1時間ないし50時間、特には3
時間ないし10時間行なうことが好ましい。The porous phosphoric acid compound particle aggregate obtained by the above method can be used as it is as a separating agent or a support for cell culture, but it can also be further calcined. By firing, the pore size distribution can be easily controlled and mechanical strength can be improved. Firing conditions are not particularly limited, but 200°C to 1200°C, particularly 30°C.
1 hour to 50 hours at 0℃ to 900℃, especially 3
It is preferable to carry out the treatment for 10 hours to 10 hours.
上記本発明の方法は、例えば1図に模式的に示すような
装置を用いて行なうことができる。容器10内にはリン
酸化合物スラリー供給管12が導入され、供給管12の
端部はリン酸化合物スラリー供給ポンプ13に接続され
ており、図示しないスラリータンクからスラリーが供給
管12を介して容器lO内に装填される6図中、14は
このようにして供給されたリン酸化合物スラリーを示す
、容器lOの少なくともスラリー14が入っている部分
は恒温槽16中に浸漬されている。容器lOの頂部には
容器蓋18が設けられ、容器蓋18は支持棒としての機
能を兼ねる。容器蓋18は回転軸受20に枢支され、支
持台22上に支持されながら、矢印の方向に回転する。The method of the present invention described above can be carried out using, for example, an apparatus as schematically shown in FIG. A phosphate compound slurry supply pipe 12 is introduced into the container 10, and the end of the supply pipe 12 is connected to a phosphate compound slurry supply pump 13. Slurry is supplied from a slurry tank (not shown) to the container via the supply pipe 12. In FIG. 6, 14 indicates the phosphoric acid compound slurry supplied in this way.At least the portion of the container IO containing the slurry 14 is immersed in a constant temperature bath 16. A container lid 18 is provided at the top of the container IO, and the container lid 18 also functions as a support rod. The container lid 18 is pivoted on a rotation bearing 20 and rotates in the direction of the arrow while being supported on a support base 22.
さらに、容器蓋18には、トラップ管24が分枝してお
り、トラップ管24はその一部が冷却水槽26に浸漬さ
れている。トラップ管24の端部には真空ポンプ28が
接続されており、この真空ポンプ28を作動させて容器
10内を減圧に引<、トラップ管24内にトラップされ
たスラリーは、再利用される。Further, a trap pipe 24 is branched from the container lid 18, and a portion of the trap pipe 24 is immersed in a cooling water tank 26. A vacuum pump 28 is connected to the end of the trap pipe 24, and when the vacuum pump 28 is operated to reduce the pressure inside the container 10, the slurry trapped in the trap pipe 24 is reused.
以下、本発明を実施例に基づき説明する0本発明は実施
例に限定されるものではない。Hereinafter, the present invention will be explained based on Examples; however, the present invention is not limited to the Examples.
[実施例]
11皿にA
図に示す装置を用い、表1に示す製造条件により球状粒
子集合体を製造した。用いたリン酸化合物スラリーはヒ
ドロキシアパタイト水性スラリーであり、そのヒドロキ
シアパタイト濃度は表1に示すとおりであった。製造後
1粒子を50℃で10時間乾燥させた。得られた粒子の
平均粒径を測定した。結果を表1に合わせて示す、なお
、平均粒径は、光学顕微鏡写真を撮り、その写真より測
定した。顕微鏡は対物レンズが0.7〜4倍、接眼レン
ズがlO倍程度のものを用いた。[Example] Using the apparatus shown in Figure A, spherical particle aggregates were produced in 11 dishes under the production conditions shown in Table 1. The phosphoric acid compound slurry used was a hydroxyapatite aqueous slurry, and the hydroxyapatite concentration was as shown in Table 1. After production, one particle was dried at 50°C for 10 hours. The average particle diameter of the obtained particles was measured. The results are shown in Table 1. The average particle diameter was measured by taking an optical microscope photograph. The microscope used had an objective lens of 0.7 to 4 times magnification and an eyepiece lens of approximately 10 times magnification.
!敷且立ニュ
実施例4で得られた試料を300℃、500℃又は70
0℃で3時間焼成し、表2に示す諸物性値を測定した。! The sample obtained in Example 4 was heated at 300°C, 500°C or 70°C.
It was baked at 0° C. for 3 hours, and the physical properties shown in Table 2 were measured.
結果を表2に示す。The results are shown in Table 2.
なお、各物性値の具体的測定方法は次の通りであった。In addition, the specific measurement method of each physical property value was as follows.
比it積
カル口・エルバ[Carlo Erba1社製5por
t+5aticSeries 1800を用い、窒素ガ
スの吸脱着等温線を測定することにより算出した。Specific product Carlo Erba [5por manufactured by Carlo Erba1]
It was calculated by measuring the adsorption/desorption isotherm of nitrogen gas using t+5aticSeries 1800.
L鼠ユ11
水銀正大法に基づき、島津製作所の水銀圧入式ポロシメ
ーターrMicromeritics Auropor
e92001を用いて測定した。L Mouse Yu 11 Based on the Mercury Seitai method, Shimadzu Corporation's mercury intrusion porosimeter rMicromeritics Auropor
Measured using e92001.
も鉦皿五亘1
水銀正大法に基づき、島津製作所の水銀圧入式ポロシメ
ーターrMicroa+eritics Auropo
re9200Jを用い、細孔径分布図より決定した。こ
の細孔径分布図は「ボア・プロット・システムJ(高滓
製作所作製のソフトプログラム)を用いて得られたもの
である。Shimadzu Corporation's mercury intrusion porosimeter rMicroa+eritics Auropo based on the Mercury Seitai method
It was determined from a pore size distribution diagram using re9200J. This pore size distribution map was obtained using "Bore Plot System J" (a software program manufactured by Takasugi Seisakusho).
L1工1
粒子集合体10 mlの乾燥重量を測定し、単位体積当
り(c+a”lの重量を算出した。L1 Technique 1 The dry weight of 10 ml of the particle aggregate was measured, and the weight per unit volume (c+a''l) was calculated.
五ユ1且J
粒子集合体中に存在する全細孔の占める比率で、細孔容
積とヒドロキシアパタイトの理論密度より計算した。5YU1J This is the ratio occupied by all the pores present in the particle aggregate, calculated from the pore volume and the theoretical density of hydroxyapatite.
玉ユ圧鳳1厘
高滓製作所製造の万能試験機オートグラフAG−8を用
いて以下の測定条件により測定した。The measurement was carried out under the following measurement conditions using a universal testing machine Autograph AG-8 manufactured by Tamayu Pressure 1 Rin Takashi Seisakusho.
(テスト速度0.5 tars1分、ロードセル 10
0gf1(Test speed 0.5 tars 1 minute, load cell 10
0gf1
図は本発明のリン酸化合物粒子集合体を製造するための
製造装置の1実施例を模式的に示す図である。
10・・・容器、12・・・スラリー供給管、13・・
・スラリー供給ポンプ、14・・・スラリー、16・・
・恒温槽、18・・・容器蓋、20・・・回転軸受、2
2・・・支持台、24・・・トラップ管、26・・・水
槽、28・・・真空ポンプ
特許出願人 東亜燃料工業株式会社The figure is a diagram schematically showing one embodiment of a manufacturing apparatus for manufacturing a phosphate compound particle aggregate of the present invention. 10... Container, 12... Slurry supply pipe, 13...
・Slurry supply pump, 14...Slurry, 16...
・Thermostatic chamber, 18... Container lid, 20... Rotating bearing, 2
2... Support stand, 24... Trap pipe, 26... Water tank, 28... Vacuum pump patent applicant Toa Fuel Industries Co., Ltd.
Claims (1)
ラリーを、傾斜した回転軸を有する容器に装填する工程
と、該容器を室温以上に加温し、かつ、上記スラリーを
濃縮しながら回転させる工程とを含む多孔性リン酸化合
物粒子集合体の製造方法。A porous method comprising the steps of: loading a slurry of a calcium phosphate compound without an organic binder into a container having an inclined axis of rotation; warming the container above room temperature; and rotating the slurry while concentrating it. A method for producing a phosphoric acid compound particle aggregate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63333920A JPH02180707A (en) | 1988-12-31 | 1988-12-31 | Production of phosphorus compound grain assemblage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63333920A JPH02180707A (en) | 1988-12-31 | 1988-12-31 | Production of phosphorus compound grain assemblage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02180707A true JPH02180707A (en) | 1990-07-13 |
Family
ID=18271446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63333920A Pending JPH02180707A (en) | 1988-12-31 | 1988-12-31 | Production of phosphorus compound grain assemblage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02180707A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4131375A1 (en) * | 1990-10-01 | 1992-04-02 | Mitsubishi Materials Corp | CARRIER FOR CULTIVATING CELLS IN SERUM-FREE MEDIUM AND PILLAR-FILLED DEVICE |
US5574006A (en) * | 1993-10-19 | 1996-11-12 | Dott Research Laboratory | Nasally administrable peptide compositions on hydroxyapatite carriers |
WO2001081243A1 (en) * | 2000-04-26 | 2001-11-01 | Ecole Polytechnique Federale De Lausanne (Epfl) | Calcium phosphate microgranules |
JP2020203827A (en) * | 2014-03-03 | 2020-12-24 | バイオウェイ サイエンティフィック エルエルシー | Spherical porous hydroxyapatite sorbent and methods thereof |
-
1988
- 1988-12-31 JP JP63333920A patent/JPH02180707A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4131375A1 (en) * | 1990-10-01 | 1992-04-02 | Mitsubishi Materials Corp | CARRIER FOR CULTIVATING CELLS IN SERUM-FREE MEDIUM AND PILLAR-FILLED DEVICE |
US5574006A (en) * | 1993-10-19 | 1996-11-12 | Dott Research Laboratory | Nasally administrable peptide compositions on hydroxyapatite carriers |
WO2001081243A1 (en) * | 2000-04-26 | 2001-11-01 | Ecole Polytechnique Federale De Lausanne (Epfl) | Calcium phosphate microgranules |
US7326464B2 (en) | 2000-04-26 | 2008-02-05 | Ecole polytechnique fédérale de Lausanne (EPFL) | Calcium phosphate microgranules |
JP2020203827A (en) * | 2014-03-03 | 2020-12-24 | バイオウェイ サイエンティフィック エルエルシー | Spherical porous hydroxyapatite sorbent and methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: a biocatalyst for esterification | |
FI85283B (en) | FOER FARING FRAMSTAELLNING AV IMMOBILISERADE ENZYMER. | |
Alhakawati et al. | Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam | |
CN103977715B (en) | A kind of preparation method of MIL-53 metal organic framework film material of independent self-supporting | |
EP3173437B1 (en) | Method for producing spehrical porous cellulose particles | |
CN102746022B (en) | Preparation method for Al2O3 ceramic material having controllable bimodal porous structure | |
JP2013504669A (en) | Three-dimensional porous structure | |
CN102260662B (en) | Carrier for immobilized enzyme and application thereof and the carrier for being fixed with enzyme | |
JPH01264978A (en) | Porous inorganic material | |
Betke et al. | Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials | |
JPH01230413A (en) | Production of spherical hydroxyapatite sintered form and chromatographic filler consisting thereof | |
Ren et al. | Multiscale immobilized lipase for rapid separation and continuous catalysis | |
JPH02180707A (en) | Production of phosphorus compound grain assemblage | |
JPH02180706A (en) | Phosphorus compound grain assemblage and its production | |
JP4831313B2 (en) | Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same | |
Han et al. | Fabrication and characterization of macroporous flyash ceramic pellets | |
JPH01275480A (en) | Biological carrier | |
Osman et al. | Adsorption equilibrium, kinetics and thermodynamics of α-amylase on poly (DVB-VIM)-Cu+ 2 magnetic metal-chelate affinity sorbent | |
US4980334A (en) | Macroporous alumina/diatomaceous earth bio-supports | |
Boersma et al. | Mass‐transfer effects on the rate of isomerization of d‐glucose into d‐fructose, catalyzed by whole‐cell immobilized glucose isomerase | |
JP5126774B2 (en) | A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material. | |
US4840975A (en) | Spherical grains of polyamino acid and production method thereof | |
CN108862277A (en) | Rice husk-sludge base composite activated carbon and preparation method thereof | |
JPH11505120A (en) | Method and article for producing secondary metabolites in living plant cells immobilized on a porous substrate | |
CN108889253A (en) | The preparation method of high surface finish polystyrene hollow microballoon |