JP4831313B2 - Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same - Google Patents

Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same Download PDF

Info

Publication number
JP4831313B2
JP4831313B2 JP2006010046A JP2006010046A JP4831313B2 JP 4831313 B2 JP4831313 B2 JP 4831313B2 JP 2006010046 A JP2006010046 A JP 2006010046A JP 2006010046 A JP2006010046 A JP 2006010046A JP 4831313 B2 JP4831313 B2 JP 4831313B2
Authority
JP
Japan
Prior art keywords
chitosan
carrier
magnetic
immobilizing
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006010046A
Other languages
Japanese (ja)
Other versions
JP2007189932A (en
JP2007189932A5 (en
Inventor
大輔 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP2006010046A priority Critical patent/JP4831313B2/en
Publication of JP2007189932A publication Critical patent/JP2007189932A/en
Publication of JP2007189932A5 publication Critical patent/JP2007189932A5/ja
Application granted granted Critical
Publication of JP4831313B2 publication Critical patent/JP4831313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation

Description

本発明は、微生物固定化用担体等としての性能を維持し、かつ磁力による捕集が可能な磁性を有するキトサン系微生物固定化用担体およびその製造方法に関する。   The present invention relates to a carrier for immobilizing a chitosan-based microorganism having a magnetic property that can maintain performance as a carrier for immobilizing microorganisms and that can be collected by magnetic force, and a method for producing the same.

近年、バイオテクノロジー関連の大きな技術的進展に伴い微生物を利用した精密有機合成等、バイオリアクターシステムの利用が盛んになってきている。そして、その固定化担体として、粒状多孔質体、中でもキトサン由来の微生物固定化担体の利用が盛んになってきている。
キトサン由来の微生物固定化担体は、a)素材が天然由来であり安全性に優れていること、b)合成樹脂系担体に比べ、大きな細孔が担体の表面から内部まで均一に存在し基質の拡散に優れていること、c)酵素の共有結合による固定化や重金属のキレートによる固定化に有利なアミノ基を分子内に有すること、そして、d)キトサンそのものが酵素や微生物と親和性が高く固定化可能量の多いことなど、多くの長所を有しており、例として、特公昭63−54285号で開示されている粒状多孔質キトサンを挙げることができる。
In recent years, bioreactor systems, such as precision organic synthesis using microorganisms, have become increasingly popular with major technological advances related to biotechnology. As the immobilization carrier, the use of a granular porous material, in particular, a microorganism immobilization carrier derived from chitosan has been actively used.
The microorganism-immobilized carrier derived from chitosan has a) that the material is naturally derived and excellent in safety, and b) that the large pores are uniformly present from the surface to the inside of the carrier compared to the synthetic resin-based carrier. It has excellent diffusion, c) has an amino group advantageous for immobilization by enzyme covalent bond and heavy metal chelate, and d) chitosan itself has high affinity with enzymes and microorganisms. It has many advantages, such as a large amount that can be immobilized, and examples thereof include granular porous chitosan disclosed in JP-B-63-54285.

最近、上記の理由によって、これらキトサン由来の微生物固定化担体の利用がビーカースケールを中心に活発化してきているが、海洋、河川、および、廃水処理などへの応用を意図した例が増えてきており、近い将来、大規模かつ開空間で使用されるケースが想定できる。しかし、この様な広い空間で使用した場合、従来の系では、担体の散逸が大きく、捕集に大きな設備を要することが課題となる。また、ビーカースケールでの作業においても、微生物保存用器具などへの応用を意図し、固液分離が容易な担体の開発が求められている。   Recently, the use of chitosan-derived microorganism-immobilized carriers has been activated mainly on the beaker scale for the above-mentioned reasons, but there are an increasing number of examples intended for application to marine, river, and wastewater treatment. In the near future, large-scale and open space cases can be assumed. However, when used in such a wide space, in the conventional system, the dissipation of the carrier is large, and it is a problem that a large facility is required for collection. In addition, in the operation at the beaker scale, the development of a carrier that can be easily separated into a solid and a liquid is desired for the purpose of application to an apparatus for storing microorganisms.

担体の捕集を目的としたものとしてはキトサン等の天然多糖類、および、それら誘導体中に磁性体や磁性粒子を練り込む方法、磁性体や磁性粒子を混合させてから成形する方法、そして、天然多糖類等で磁性体や磁性粒子表面を被覆する方法などがある。例えば、特開平3−278834号(特許文献1)では磁性微粒子をキトサン溶液中で分散させた後、同時に凝固再生させてキトサン複合体とする方法が、特開平10−99843号(特許文献2)では、磁性体を核とし、その表面をキトサン混合物によって被覆する方法が提示されているが、これらは、比較的分子量の低い化合物の吸着剤としての応用を意図したものであり、微生物等、マクロな物質の固定化や培養向けの担体としては、不向きであった。例えば、性能を視点にして考えた場合、微生物固定化担体では5μm〜最大で100μmにも及ぶ大きな孔径を有すること、そして、微生物固定化担体内部までマクロな孔が形成されていることなど、孔のサイズや構造などの制御が求められるが、上記の方法では、マクロな物質の固定化や培養向けの利用には対応できない。また、上記方法では装置汚染や成型時のロスが大きく、磁性担体を製造するために専用の製造設備が必要であり、小さなロットへの対応や菌種に見合った多品種化ができない等の諸問題があった。
特開平3−278834号 特開平10−99843号
For the purpose of collecting the carrier, natural polysaccharides such as chitosan, and a method of kneading a magnetic substance or magnetic particles in their derivatives, a method of molding after mixing the magnetic substance or magnetic particles, and There are methods such as coating the surface of magnetic materials and magnetic particles with natural polysaccharides. For example, in JP-A-3-278834 (Patent Document 1), a method in which magnetic fine particles are dispersed in a chitosan solution and simultaneously coagulated and regenerated to form a chitosan composite is disclosed in JP-A-10-99843 (Patent Document 2). Have proposed a method in which a magnetic material is used as a nucleus and the surface thereof is coated with a chitosan mixture, but these are intended for application as adsorbents of compounds having a relatively low molecular weight. It was unsuitable as a carrier for immobilizing various substances and culturing. For example, when considering from the viewpoint of performance, the microorganism-immobilized support has a large pore diameter ranging from 5 μm to a maximum of 100 μm, and macropores are formed inside the microorganism-immobilized support. However, the above method cannot cope with immobilization of macro substances or use for culture. In addition, the above method has a large amount of equipment contamination and loss during molding, and a dedicated manufacturing facility is necessary to manufacture the magnetic carrier. There was a problem.
JP-A-3-278834 JP-A-10-99843

本発明は、微生物固定化用担体としての性能を維持しながらも、磁力による捕集が可能なキトサン系微生物固定化用担体とその製造方法を提供することを目的とする。   An object of the present invention is to provide a chitosan-based microorganism immobilization carrier capable of being collected by magnetic force while maintaining the performance as a microorganism immobilization carrier and a method for producing the same.

上記の問題点を解決するために、本発明者は、鋭意検討した結果、本発明に至った。
即ち、本発明における第一の発明は、第一鉄イオンと第二鉄イオンよりなる磁性化物由来の灰分率の増分が4%〜25%の範囲となるように、粒状多孔質架橋キトサン表面に磁性化粒子を形成させてなる、磁性を有するキトサン系微生物固定化用担体であり、第二の発明は粒状多孔質架橋キトサンを第一鉄イオンと第二鉄イオンを含む溶液中に混合した後、アルカリ水溶液により処理し、粒状多孔質架橋キトサンに磁性化粒子を形成させることを特徴とする磁性を有するキトサン系微生物固定化用担体の製造方法である。第三の発明は該粒状多孔質架橋キトサンの処理液の塩化第一鉄水和物のモル数の比率が、水和物モル数の25mol%から75mol%とした磁性を有するキトサン系微生物固定化用担体の製造方法である。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the present invention.
That is, the first invention in the present invention, as in the monoferric ion and ash content increment from magnetic products made of ferric ion is in the range of 4% to 25%, the particulate porous cross-linked chitosan surface A support for immobilizing chitosan-based microorganisms having magnetism formed by forming magnetized particles. The second invention is a method in which granular porous crosslinked chitosan is mixed in a solution containing ferrous ions and ferric ions. A method for producing a carrier for immobilizing a chitosan-based microorganism having magnetism, characterized in that it is treated with an alkaline aqueous solution to form magnetized particles in granular porous crosslinked chitosan. A third invention is the immobilization of magnetic chitosan-based microorganisms in which the ratio of the number of moles of ferrous chloride hydrate in the treatment solution of the granular porous crosslinked chitosan is 25 mol% to 75 mol% of the number of moles of hydrate. This is a method for producing a chemical carrier.

本発明の磁性を有するキトサン系微生物固定化用担体は、微生物固定化能と磁性を実用に供しうるレベルで具備しているので、微生物の純粋培養担体、新規微生物の探索用担体、磁性細菌の捕集、活性汚泥代替物、精密有機合成など、バイオ関連技術分野の様々な用途に使用、応用することができ、しかも、使用後は、磁力によって捕集可能な担体である。   Since the carrier for immobilizing chitosan-based microorganisms of the present invention has a microorganism immobilizing ability and magnetism at a level that can be used practically, it is a pure culture carrier for microorganisms, a carrier for searching for new microorganisms, It is a carrier that can be used and applied for various uses in the field of biotechnology such as collection, activated sludge substitute, and precision organic synthesis, and can be collected by magnetic force after use.

以下に本発明について詳細に説明する。
本発明においてベースとなる粒状多孔質キトサンとしては、特公平1−16420などで開示された粒状多孔質キトサンを使用することが好ましい。微生物固定化酵素担体では、大孔径の孔が担体の表層から中心部まで均一に存在している必要がある。適切な孔径としては、5μm以上で、上限はないが製造安定性の観点から1,000μm以下が好ましい。
The present invention is described in detail below.
As the granular porous chitosan used as the base in the present invention, it is preferable to use the granular porous chitosan disclosed in Japanese Patent Publication No. 1-16420. In the microorganism-immobilized enzyme carrier, it is necessary that the large pores are uniformly present from the surface layer to the center of the carrier. The appropriate pore size is 5 μm or more and has no upper limit, but is preferably 1,000 μm or less from the viewpoint of production stability.

本発明においてベースとなる微生物固定化用粒状多孔質キトサンは、架橋構造が導入されている、あるいは、汎用の溶剤に不溶化されていなければならない。架橋化時の架橋剤や改質剤は特に限定されないが、例えば、ジイソシアネート化合物、ビスエポキシド化合物、および、酸無水物などが挙げられる。特に、ヘキサメチレンジイソシアネート、4,4´−ジフェニルメタンジイソシアネート、および、それらの変性体、3−クロロ−2−ヒドロキシプロピルトリメチルアンモニウムクロリド、ポリエチレングリコールジグリシジルエーテル化合物(エチレングリコール部の鎖長は1以上で任意)、ポリプロピレングリコールジグリシジルエーテル化合物(プロピレングリコール部の鎖長は1以上で任意)、そして、無水酢酸や無水コハク酸などが好ましい。   The granular porous chitosan for immobilizing microorganisms as a base in the present invention must have a cross-linked structure or be insolubilized in a general-purpose solvent. Although the crosslinking agent and modifier at the time of crosslinking are not particularly limited, examples thereof include diisocyanate compounds, bisepoxide compounds, and acid anhydrides. In particular, hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and modified products thereof, 3-chloro-2-hydroxypropyltrimethylammonium chloride, polyethylene glycol diglycidyl ether compound (the chain length of the ethylene glycol portion is 1 or more) Arbitrary), a polypropylene glycol diglycidyl ether compound (the chain length of the propylene glycol portion is 1 or more is arbitrary), and acetic anhydride, succinic anhydride, and the like are preferable.

本発明において、磁性粒子を後加工により粒状多孔質架橋キトサンに形成させる際、第一鉄イオンおよび第二鉄イオンを含む溶液中で、粒状多孔質架橋キトサンを処理する必要がある。第一鉄イオンおよび第二鉄イオンは、キトサン系の吸着担体との親和性が高く、系が均一になり易い。そのイオン源としては、これら鉄イオンの塩酸塩、硫酸塩、クエン酸塩、および、酢酸塩など、それぞれに相当する汎用、市販の塩であれば、何れも使用できるが、コストや入手簡便性の観点から、それぞれの塩化物であることが好ましい。 In the present invention, when to be formed in particulate porous cross-linked chitosan by post-processing the magnetic particles, in a solution containing a first monoferric ion and ferric ion, it is necessary to process the particulate porous cross-linked chitosan. Ferrous ions and ferric ions have high affinity with chitosan-based adsorption carriers, and the system tends to be uniform. As the ion source, any of general-purpose and commercially available salts corresponding to these iron ions such as hydrochloride, sulfate, citrate, and acetate can be used. From the viewpoint of the above, each chloride is preferable.

本発明における第一鉄イオンおよび第二鉄イオンを含む溶液は、塩化第一鉄単独、あるいは、塩化第一鉄と塩化第二鉄の混合水溶液であることが好ましく、混合液の塩化第一鉄の比率としては水和物のモル数から計算したとき、25mol%〜75mol%の範囲にあることが好ましい。この範囲内にあると、微生物固定化担体としての性能と磁力による捕集が可能な担体の性能を併せ持つため、本発明の目的を十分に満足することが出来る。この範囲から外れると、すなわち、塩化第二鉄のみで調製した場合や塩化第一鉄が25モル%未満の場合は、磁石に近づけても処理した粒子が磁石の周りに付着しない、又は、付着力が弱いなど、本件の目的を果たすことが出来ない。 The solution containing the first monoferric ion and ferric ion that put the present invention, ferrous alone chloride, or preferably the ferrous chloride is mixed aqueous solution of ferric chloride, the mixture first chloride The ratio of ferrous iron is preferably in the range of 25 mol% to 75 mol% when calculated from the number of moles of hydrate. Within this range, both the performance as a microorganism-immobilized support and the performance of a support capable of being collected by magnetic force are combined, so that the object of the present invention can be sufficiently satisfied. When it is out of this range, that is, when it is prepared only with ferric chloride or when ferrous chloride is less than 25 mol%, the treated particles do not adhere around the magnet even if it is close to the magnet, or attached. The purpose of this case cannot be fulfilled, such as weakness.

本発明における塩化第一鉄と塩化第二鉄の混合物の仕込み量は、25mlの湿潤状態の粒状多孔質架橋キトサンを例に取った場合、0.003mol以上であることが好ましく、より好ましくは0.003mol以上0.02mol以下の範囲にあることが好ましい。この場合、磁性化物による灰分率(測定法を以下に詳細に記載する)の増加分は、4%以上あることが好ましく、より好ましくは4%以上15%以内の範囲である。4%未満の場合、微生物固定化担体としては申し分ないが、磁性が弱く磁石を近づけてもその周りに付着せず、本発明の目的を果たすことが出来ない。逆に15%を超えると磁性体としての性能は発現するが、固定化菌数の減少が生じる上、仕込み量を非常に高い濃度に設定しても、灰分率は25%程度で上げ止まるため、経済性の観点からも好ましくない。第一鉄イオンと第二鉄イオンを含む溶液中に粒状多孔質架橋キトサンを混合した後、アルカリ水溶液で処理し、粒状多孔質架橋キトサンに磁性粒子を形成させるが、この時に使用されるアルカリ水溶液は、従来既存の塩基性物質の水溶液であれば何れも使用できるが、アンモニア水や水酸化ナトリウム水溶液を使用することが好ましい。なお、アルカリ水溶液の量は、反応系のpHが8以上になるように適宜選択すればよいが、アンモニア水の仕込み量を過度に用いると、粒状多孔質架橋キトサンの架橋基や改質基の脱離、および、孔の収縮が起こり、磁性担体の固定化菌数が急激に減少することがあるため好ましくない。 Charge of a mixture of put that salts of ferrous and ferric chloride in the present invention, when taking the granular porous cross-linked chitosan in the wet state of 25ml example, is preferably at least 0.003 mol, more Preferably it is in the range of 0.003 mol or more and 0.02 mol or less. In this case, the increase in the ash content (measurement method is described in detail below) due to the magnetized material is preferably 4% or more, more preferably 4% or more and 15% or less. If it is less than 4%, it is satisfactory as a microorganism-immobilized carrier, but it is weak in magnetism and does not adhere to the magnet even if it is brought close to it, so that the object of the present invention cannot be achieved. On the contrary, if it exceeds 15%, the performance as a magnetic material will be manifested, but the number of immobilized bacteria will decrease, and even if the charging amount is set to a very high concentration, the ash content will stop rising at about 25%. From the viewpoint of economy, it is not preferable . After mixing the particulate porous cross-linked chitosan in a solution containing a first monoferric ion and ferric ion, an alkaline aqueous solution is treated with an alkaline aqueous solution, but to form magnetic particles, particulate, porous crosslinked chitosan, which is used when the Any conventional aqueous solution of a basic substance can be used, but it is preferable to use aqueous ammonia or aqueous sodium hydroxide. The amount of the aqueous alkali solution may be appropriately selected so that the pH of the reaction system is 8 or more. However, if the amount of aqueous ammonia is excessively used, the cross-linking groups and modifying groups of the granular porous cross-linked chitosan Desorption and shrinkage of the pores occur, and the number of immobilized bacteria on the magnetic carrier may decrease rapidly, which is not preferable.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、実施例、および、比較例において、反応ムラ、磁性、微生物固定化担体の形態、灰分率、および、固定化菌数については、以下の方法より測定、または、評価した。
(1) 反応ムラ(外観評価) 実施例に示す方法で調製した担体の色調を目視観察し、そのムラから反応ムラを評価した。色むらが無く均質性に優れる場合は○、色むらはあるが品質的に許容できる範囲内である場合は△、色むらが大きく、品質的に許容できない場合は×として評価した。
(2) 磁石への付着(外観評価) 実施例に示す方法で調製した担体をガラスシャーレに移し、担体が水没するまでRO水(逆浸透水)を加えた後、磁束密度0.3Tの回転子取り出し棒(アズワン社製)を系中に挿入して磁石への付着状況、および、引き寄せられる状況を目視観察により評価した。評価結果は、付着する場合は○、付着しない、あるいは、系外に取り出すことが出来ない場合は×で示した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, the reaction unevenness, magnetism, the form of the microorganism-immobilized support, the ash content, and the number of immobilized bacteria were measured or evaluated by the following methods.
(1) Reaction unevenness (appearance evaluation) The color tone of the carrier prepared by the method shown in the examples was visually observed, and the reaction unevenness was evaluated from the unevenness. A case where there was no color unevenness and excellent uniformity was evaluated as ◯, a case where there was color unevenness but within a range acceptable in quality, Δ, and a case where color unevenness was large and quality was unacceptable as x.
(2) Adhesion to magnet (appearance evaluation) Transfer the carrier prepared by the method shown in the example to a glass petri dish, add RO water (reverse osmosis water) until the carrier is submerged, and then rotate at a magnetic flux density of 0.3T. A child take-out rod (manufactured by ASONE Co., Ltd.) was inserted into the system, and the state of adhesion to the magnet and the state of being attracted were evaluated by visual observation. The evaluation results are indicated by ○ when attached, and × when not attached or cannot be taken out of the system.

(3) 走査型電子顕微鏡(SEM)観察 実施例に示す方法で調製した担体をRO水、メタノール、エタノール、そして、t−ブチルアルコールの順に洗浄、溶媒交換し、凍結乾燥した。凍結乾燥後、ゲルに金を常法に従ってスパッタリングし、日本電子製JSM6060LVを用いて、300倍で観察した。なお、菌体を粒状多孔質架橋キトサンで増殖させたものについては、0.1Mリン酸バッファー(pH7.0)で洗浄した後、グルタルアルデヒドで架橋処理してから工程に供し、1000倍で観察した。
(4) 灰分率測定 熱風循環式乾燥器中、105℃、4時間の条件で絶乾した試料を風袋重量既知のセラミックるつぼに入れた後、電気炉中で600℃、5時間の条件で灰化した。灰化後は、速やかにデシケータに入れ、デシケータ中で室温まで放冷後、重量を計測し、下式から灰分率を求めた。
灰分率(%)=焼成残分重量(g)/絶乾試料重量(g)×100
(5) イースト酵母の前培養 108培地(グルコース10g/l、ペプトン5g/l、酵母エキス3g/l、麦芽エキス3g/lLの割合でなる水溶液)25mlをオートクレーブ中、121℃、20分間の条件で滅菌した後、室温まで放冷し、1白金耳のイースト酵母(Candida albicans NBRC1385)を植菌し、24℃で24時間振盪(70rpm)培養した。
(3) Scanning electron microscope (SEM) observation The carrier prepared by the method shown in the examples was washed with RO water, methanol, ethanol, and t-butyl alcohol in this order, solvent exchanged, and lyophilized. After freeze-drying, gold was sputtered onto the gel according to a conventional method, and observed at 300 times using JEOL JSM6060LV. In addition, for cells grown with granular porous cross-linked chitosan, after washing with 0.1 M phosphate buffer (pH 7.0), cross-linking treatment with glutaraldehyde was performed for the process and observed at 1000 times did.
(4) Ash content measurement In a hot air circulating drier, a sample completely dried under conditions of 105 ° C and 4 hours was placed in a ceramic crucible with a known tare weight and then ashed under conditions of 600 ° C and 5 hours in an electric furnace. Turned into. After ashing, it was immediately put into a desiccator, allowed to cool to room temperature in the desiccator, weighed, and determined the ash content from the following formula.
Ash content (%) = calcined residue weight (g) / absolute dry sample weight (g) × 100
(5) Pre-culture of yeast yeast 25 ml of 108 medium (aqueous solution comprising glucose 10 g / l, peptone 5 g / l, yeast extract 3 g / l, malt extract 3 g / l L) in an autoclave at 121 ° C. for 20 minutes After being sterilized, the mixture was allowed to cool to room temperature, inoculated with 1-platinum yeast yeast (Candida albicans NBRC1385), and cultured at 24 ° C. for 24 hours with shaking (70 rpm).

(6) 担体中でのイースト酵母の培養 キトサンビーズ2.5g(含水率約80%)を100mlの三角フラスコ中に入れた後、108培地を25ml加え、オートクレーブ中、121℃、20分間の条件で滅菌した。室温まで放冷した後、50μlの前培養液を系に添加し、24℃で40時間振盪(振盪速度:70rpm)培養した。
(7) 生息酵母数の定量 培養後のビーズを生理食塩水で洗浄した後、固定化済みビーズ20粒を取り、1mlの生理食塩水とともに10mlのメスシリンダーに入れた。シリンダー中でガラス棒を用いてビーズを破壊し、40Hzの超音波を10分間照射した後、生理食塩水で10mlにメスアップした。酵母数は血球計(日本臨床器械工業(株)社製)を用いて、常法に従ってカウントした。
(6) Cultivation of yeast yeast in carrier After putting 2.5 g of chitosan beads (water content about 80%) into a 100 ml Erlenmeyer flask, 25 ml of 108 medium was added, and the condition of 121 ° C. for 20 minutes in an autoclave Sterilized with. After allowing to cool to room temperature, 50 μl of the preculture was added to the system and cultured at 24 ° C. for 40 hours with shaking (shaking speed: 70 rpm).
(7) Quantification of the number of inhabiting yeasts After the cultured beads were washed with physiological saline, 20 immobilized beads were taken and placed in a 10 ml graduated cylinder together with 1 ml of physiological saline. The beads were broken using a glass rod in the cylinder, irradiated with 40 Hz ultrasonic waves for 10 minutes, and then diluted to 10 ml with physiological saline. The number of yeasts was counted according to a conventional method using a hemocytometer (manufactured by Nippon Clinical Instrument Co., Ltd.).

〔実施例1〕
粒状多孔質架橋キトサンとして、富士紡ホールディングス社製商品名キトパールHP−5020(粒径800〜1,200μm、比表面積20〜30m2/g)25mlをプラスチック製の密閉容器に秤取り、20μmのシーブを先端に付けたスポイトで水分を軽く除去した。ここに、あらかじめ調製しておいた塩化第一鉄・四水和物1.625g、および、塩化第二鉄・六水和物2.5gを45gのRO水に溶解させた溶液を全量投入し、良く混合した。次いで、反応系を振盪恒温水槽を用いて60℃に昇温し、130ストローク/分で2時間、振盪混合した。所定時間経過後、空気をバブリングしながら、反応系に28%アンモニア水(和光純薬製)3.75gを21.25gのRO水で希釈した溶液を添加し、良く混合した。なお、この時点で系は褐色化した。その後、再び、振盪恒温水槽を用いて反応系を60℃に昇温し、130ストローク/分で1時間振盪、混合した。所定時間経過後、濾別、水洗して目的物を得た。保管はRO水中、5℃で行った。
[Example 1]
As a granular porous crosslinked chitosan, 25 ml of Fujibo Holdings' brand name Chitopearl HP-5020 (particle size 800 to 1,200 μm, specific surface area 20 to 30 m 2 / g) was weighed in a plastic sealed container, and a 20 μm sieve was obtained. The water was lightly removed with a dropper attached to the tip. The whole amount of a solution prepared by dissolving 1.625 g of ferrous chloride / tetrahydrate and 2.5 g of ferric chloride / hexahydrate in 45 g of RO water was added here. Mix well. Subsequently, the reaction system was heated to 60 ° C. using a shaking water bath and shake mixed at 130 strokes / minute for 2 hours. After elapse of a predetermined time, a solution obtained by diluting 3.75 g of 28% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) with 21.25 g of RO water was added to the reaction system while bubbling air and mixed well. At this point, the system turned brown. Thereafter, the temperature of the reaction system was raised to 60 ° C. again using a shaking water bath, and the mixture was shaken and mixed at 130 strokes / minute for 1 hour. After a predetermined time, the product was obtained by filtration and washing with water. Storage was performed in RO water at 5 ° C.

処理前の粒状多孔質架橋キトサンの状態を図1、本発明により磁性化粒子形成後の微生物固定化用担体の状態を図2に示す。図1,図2は、走査型電子顕微鏡(SEM)写真であり、写真から判る様に、処理後も粒状多孔質架橋キトサンが元来有する多孔質構造がそのまま保持されていた。本発明の微生物固定化用担体を焼成、灰化した後の、灰分率を評価すると10.5%であった。なお、磁性化前の灰分率はほぼ0であった。微生物固定化用担体を焼成、灰化した後のるつぼ残存成分を観察した様子が,図3に示す走査型電子顕微鏡写真であるが、焼成により収縮がみられるものの、孔構造は残存しており、その構造は粒状多孔質架橋キトサンの形状を正確にトレースしていた。   FIG. 1 shows the state of the granular porous crosslinked chitosan before treatment, and FIG. 2 shows the state of the carrier for immobilizing microorganisms after the formation of magnetized particles according to the present invention. 1 and 2 are scanning electron microscope (SEM) photographs. As can be seen from the photographs, the porous structure inherent to the granular porous crosslinked chitosan was maintained as it was after the treatment. When the carrier for immobilizing microorganisms of the present invention was baked and incinerated, the ash content was evaluated to be 10.5%. The ash content before magnetization was almost zero. The observation of the remaining components of the crucible after firing and ashing the carrier for immobilizing microorganisms is a scanning electron micrograph as shown in FIG. 3, but the pore structure remains although shrinkage is observed by firing. The structure accurately traced the shape of the granular porous crosslinked chitosan.

処理後の湿潤状態の粒状多孔質架橋キトサンに磁石を近づけると、粒状多孔質架橋キトサンが磁石に引き寄せられ付着した。よって、磁性を有する粒状多孔質架橋キトサンが得られたと言える。イースト酵母をモデル化合物とし、その固定化量を評価したところ、8.81×105Cell/粒であった。本発明の微生物固定化用担体におけるイースト酵母の増殖具合を走査型電子顕微鏡観察すると図4に示す写真の様になっており、微生物固定化担体としての性能を十分に保持していた。評価結果は以下に記載の表1にまとめた。   When the magnet was brought close to the wet granular porous crosslinked chitosan after the treatment, the granular porous crosslinked chitosan was attracted to and adhered to the magnet. Therefore, it can be said that granular porous crosslinked chitosan having magnetism was obtained. When yeast yeast was used as a model compound and its immobilization amount was evaluated, it was 8.81 × 10 5 cells / grain. When the growth of yeast yeast in the carrier for immobilizing microorganisms of the present invention was observed with a scanning electron microscope, it was as shown in the photograph in FIG. 4 and sufficiently maintained the performance as a carrier for immobilizing microorganisms. The evaluation results are summarized in Table 1 described below.

〔実施例2〕
各塩化鉄の仕込み量、および、28%アンモニア水の仕込み量を1/5にした以外は実施例1と同様の作業を行った。結果は表1に示す様に、本発明の目的を満足する担体が得られた。
[Example 2]
The same operation as in Example 1 was performed except that the amount of each iron chloride and the amount of 28% ammonia water were reduced to 1/5. As a result, as shown in Table 1, a carrier satisfying the object of the present invention was obtained.

〔実施例3〕
鉄イオン源として、塩化第一鉄・四水和物を75mol%、塩化第二鉄・六水和物を25mol%とした以外は実施例1と同様の作業を行った。結果は表1に示す様に、本発明の目的を満足する担体が得られた。
Example 3
The same operation as in Example 1 was performed except that 75 mol% of ferrous chloride and tetrahydrate and 25 mol% of ferric chloride and hexahydrate were used as the iron ion source. As a result, as shown in Table 1, a carrier satisfying the object of the present invention was obtained.

〔実施例4〕
鉄イオン源として、塩化第一鉄・四水和物を25mol%、塩化第二鉄・六水和物を75mol%とした以外は実施例1と同様の作業を行った。結果は表1に示す様に、本発明の目的を満足する担体が得られた。
Example 4
The same operation as in Example 1 was performed except that 25 mol% of ferrous chloride / tetrahydrate and 75 mol% of ferric chloride / hexahydrate were used as the iron ion source. As a result, as shown in Table 1, a carrier satisfying the object of the present invention was obtained.

〔比較例1〕
鉄イオン源として、塩化第一鉄・四水和物のみを使用した以外は実施例1と同様の作業を行った。結果は担体の外観に、反応ムラがみられた
〔比較例2〕
各塩化鉄の仕込み量、および、28%アンモニア水の仕込み量を2倍にした以外は実施例1と同様の作業を行った。結果は表1に示す様に、磁性化は可能であったが、固定化菌数の急激な減少が観られ、本発明の目的を満足する担体は得られなかった。
〔比較例3〕
各塩化鉄の仕込み量、および、28%アンモニア水の仕込み量を4倍にした以外は実施例1と同様の作業を行った。結果、表1に示す様に、磁性化は可能であったが、固定化菌数の急激な減少が観られ、本発明の目的を満足する担体は得られなかった。また、灰分率も比較例1と殆ど変わらず、上げ止まっており、経済性の観点からも好ましくなかった。
〔比較例4〕
各塩化鉄の仕込み量、および、28%アンモニア水の仕込み量を1/10にした以外は実施例1と同様の作業を行った。結果、表1に示す様に、固定化菌数の減少は観られなかったが、灰分率が減少し、磁石への付着が観られず、本発明の目的を満足する担体は得られなかった。
〔比較例5〕
鉄イオン源として、塩化第二鉄・六水和物を100mol%とした以外は実施例1と同様の作業を行った。結果、表1に示す様に、磁石への付着が全く観られず、本発明の目的を満足する担体は得られなかった。
[Comparative Example 1]
The same operation as in Example 1 was performed except that only ferrous chloride tetrahydrate was used as the iron ion source. As a result, reaction unevenness was observed in the appearance of the carrier .
[Comparative Example 2]
The same operation as in Example 1 was performed except that the amount of each iron chloride and the amount of 28% ammonia water were doubled. As a result, as shown in Table 1, magnetization was possible, but a rapid decrease in the number of immobilized bacteria was observed, and a carrier satisfying the object of the present invention was not obtained.
[Comparative Example 3]
The same operation as in Example 1 was performed except that the amount of each ferric chloride charged and the amount of 28% ammonia water were quadrupled. As a result, as shown in Table 1, although magnetization was possible, a sharp decrease in the number of immobilized bacteria was observed, and a carrier satisfying the object of the present invention could not be obtained. Further, the ash content was almost the same as that of Comparative Example 1 and stopped to increase, which was not preferable from the viewpoint of economy.
[Comparative Example 4]
The same operation as in Example 1 was performed except that the charged amount of each iron chloride and the charged amount of 28% ammonia water were reduced to 1/10. As a result, as shown in Table 1, no decrease in the number of immobilized bacteria was observed, but the ash content decreased, adhesion to the magnet was not observed, and a carrier satisfying the object of the present invention was not obtained. .
[Comparative Example 5]
The same operation as in Example 1 was performed except that 100 mol% of ferric chloride hexahydrate was used as the iron ion source. As a result, as shown in Table 1, no adhesion to the magnet was observed, and no carrier satisfying the object of the present invention was obtained.

表1の結果から、塩化第一鉄の比率が水和物モルのモル数の25mol%〜100mol%の範囲にあること、第一鉄イオンと第二鉄イオンよりなる磁性化粒子の灰分率の増分が4%〜25%の範囲にあり、また、アンモニア水の仕込み量が適宜であることが好ましいことが明らかとなった。   From the results of Table 1, the ratio of ferrous chloride is in the range of 25 mol% to 100 mol% of the number of moles of hydrate, and the ash content of magnetized particles composed of ferrous ions and ferric ions. It has become clear that the increment is in the range of 4% to 25%, and that the amount of ammonia water charged is appropriate.

本発明の磁性を有するキトサン系微生物固定化用担体は、孔径の制御が容易である上、必要量を加工できるので、製造安定性とともに小ロット、多品種性に対応でき、有利である。しかも微生物固定化能と磁性を実用に供しうるレベルで具備しているので、微生物の純粋培養担体、新規微生物の探索用担体、磁性細菌の捕集、活性汚泥代替物、精密有機合成場など、バイオ関連技術分野の様々な用途に使用、応用することができる。   The carrier for immobilizing a chitosan-based microorganism having magnetic properties of the present invention is advantageous in that it can easily control the pore size and can process the required amount, so that it can cope with small lots and various varieties as well as production stability. Moreover, since it has the ability to immobilize microorganisms and magnetism at a level that can be used practically, pure culture support for microorganisms, support for searching for new microorganisms, collection of magnetic bacteria, substitute for activated sludge, precision organic synthesis field, etc. It can be used and applied for various uses in the bio-related technical field.

処理前の粒状多孔質架橋キトサンの断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the granular porous bridge | crosslinking chitosan before a process. 本発明の微生物固定化用担体の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the support | carrier for microorganisms fixation of this invention. 本発明の微生物固定化用担体を焼成、灰化した後の坩堝残存成分の断面を、示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the crucible residual component after baking and ashing the support | carrier for microorganisms fixation of this invention. 本発明の微生物固定化用担体内部で増殖するイースト酵母の走査型電子顕微鏡写真である。It is a scanning electron micrograph of yeast yeast growing inside the carrier for immobilizing microorganisms of the present invention.

Claims (3)

一鉄イオンと第二鉄イオンよりなる磁性化粒子の灰分率の増分が4%〜25%の範囲となるように、粒状多孔質架橋キトサンに磁性化粒子を形成させてなる、磁性を有するキトサン系微生物固定化用担体。 As ash content increment of the monoferric ions and magnetic particles consisting of ferric ion is in the range of 4% to 25%, made by forming a magnetic particles in the particulate porous cross-linked chitosan, having magnetic A carrier for immobilizing chitosan-based microorganisms. 粒状多孔質架橋キトサンを、第一鉄イオンと第二鉄イオンを含む溶液中で混合した後、アルカリ水溶液により処理し、粒状多孔質架橋キトサンに磁性化粒子を形成させることを特徴とする磁性を有するキトサン系微生物固定化用担体の製造方法。 The particulate porous cross-linked chitosan, were mixed in a solution containing a first monoferric ions and ferric ions, it is treated with an alkaline aqueous solution, a magnetic, characterized in that to form the magnetic particles in the particulate porous cross-linked chitosan A method for producing a carrier for immobilizing chitosan-based microorganisms. 該粒状多孔質架橋キトサンの処理液の塩化第一鉄水和物のモル数の比率が、水和物モル数の25mol%から75mol%である請求項2に記載の磁性を有するキトサン系微生物固定化用担体の製造方法。 The magnetic chitosan-based microorganism according to claim 2, wherein the ratio of the number of moles of ferrous chloride hydrate in the treatment liquid of the granular porous crosslinked chitosan is from 25 mol% to 75 mol% of the number of moles of hydrate. A method for producing an immobilizing carrier.
JP2006010046A 2006-01-18 2006-01-18 Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same Active JP4831313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010046A JP4831313B2 (en) 2006-01-18 2006-01-18 Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010046A JP4831313B2 (en) 2006-01-18 2006-01-18 Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same

Publications (3)

Publication Number Publication Date
JP2007189932A JP2007189932A (en) 2007-08-02
JP2007189932A5 JP2007189932A5 (en) 2008-10-30
JP4831313B2 true JP4831313B2 (en) 2011-12-07

Family

ID=38446094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010046A Active JP4831313B2 (en) 2006-01-18 2006-01-18 Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same

Country Status (1)

Country Link
JP (1) JP4831313B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021502A1 (en) * 2007-08-16 2009-02-19 Georg Fritzmeier Gmbh & Co. Kg Lattice sphere
JP5951533B2 (en) * 2013-03-13 2016-07-13 株式会社東芝 Method and apparatus for recovering phosphorus from waste water containing phosphorus
CN109678472B (en) * 2019-03-04 2021-05-28 南京大学 Preparation method and equipment of biological magnetic ceramsite filler for water treatment
CN114426676B (en) * 2021-12-20 2023-03-24 南京师范大学 Magnetic iron-based MOF microbial carrier material and preparation method thereof
CN114409091B (en) * 2021-12-23 2022-11-15 生态环境部华南环境科学研究所 Preparation method of biological ball for ammonia nitrogen wastewater treatment based on multiple bacteria
CN115159669B (en) * 2022-06-27 2023-09-26 中国电建集团中南勘测设计研究院有限公司 Aerobic suspension carrier and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651114B2 (en) * 1990-03-28 1994-07-06 工業技術院長 Chitosan-magnetic composite particles and method for producing the same
US5864025A (en) * 1997-06-30 1999-01-26 Virginia Tech Intellectual Properties, Inc. Method of making magnetic, crosslinked chitosan support materials and products thereof
KR100375422B1 (en) * 1999-12-21 2003-03-10 한국과학기술연구원 Macroporous chitosan beads and preparation method thereof

Also Published As

Publication number Publication date
JP2007189932A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
Li et al. Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films
JP4831313B2 (en) Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same
Reddy et al. Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites
Huang et al. Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe 3 O 4 nanoparticles and ionic liquid
CN101979633B (en) Method for preparing Fe3O4 magnetotactic bacterial cellulose spheres
CN107753949A (en) Black phosphorus nanometer sheet, composite aquogel and preparation method and application
Zheng et al. The behavior of MC3T3‐E1 cells on chitosan/poly‐L‐lysine composite films: Effect of nanotopography, surface chemistry, and wettability
US7906333B2 (en) Surface modification of polysaccharide, the modified polysaccharide, and method of culturing and recovery cells using the same
GB2416777A (en) Cell culture apparatus
CN1702782A (en) Water-based magnetic liquid and method for making same
Fardjahromi et al. Mussel inspired ZIF8 microcarriers: a new approach for large-scale production of stem cells
CN112206353A (en) Chitin whisker liquid crystal elastomer modified polylactic acid composite material and preparation method and application thereof
CN103305497B (en) Immobilized enzyme microcapsule for repairing organic contamination soil and preparation method thereof
CN107522239A (en) A kind of method based on gallic acid metallic ion coordination chemical regulation nano ferriferrous oxide decentralization and particle diameter
CN113908783A (en) Magnetic polymer composite particle and preparation method and application thereof
CN113861600A (en) Bio-based porous material and preparation method and application thereof
CN108993425A (en) A kind of compound biological adsorption agent and its application
CN111001307B (en) Preparation method of composite film with replaceable active layer
CN105969758B (en) Immobilised enzymes, magnetic carbon material and preparation method thereof
Bayramoglu et al. Immobilization of Mucor miehei esterase on core-shell magnetic beads via adsorption and covalent binding: Application in esters synthesis
Ma et al. Immobilization and property of penicillin G acylase on amino functionalized magnetic Ni0. 3Mg0. 4Zn0. 3Fe2O4 nanoparticles prepared via the rapid combustion process
JP3287686B2 (en) Polymeric granular hydrogel and method for producing the same
DE102018115360A1 (en) METHOD AND COMPOSITIONS FOR REMOVING ADHERENT CELLS
Huang et al. Photochemical synthesis of silver nanoparticles/eggshell membrane composite, its characterization and antibacterial activity
JP5105278B2 (en) Magnetic chitosan-based enzyme immobilization carrier and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4831313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250