JP5105278B2 - Magnetic chitosan-based enzyme immobilization carrier and method for producing the same - Google Patents

Magnetic chitosan-based enzyme immobilization carrier and method for producing the same Download PDF

Info

Publication number
JP5105278B2
JP5105278B2 JP2007185683A JP2007185683A JP5105278B2 JP 5105278 B2 JP5105278 B2 JP 5105278B2 JP 2007185683 A JP2007185683 A JP 2007185683A JP 2007185683 A JP2007185683 A JP 2007185683A JP 5105278 B2 JP5105278 B2 JP 5105278B2
Authority
JP
Japan
Prior art keywords
chitosan
mol
carrier
enzyme
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007185683A
Other languages
Japanese (ja)
Other versions
JP2009022169A (en
Inventor
章子 佐藤
大輔 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP2007185683A priority Critical patent/JP5105278B2/en
Publication of JP2009022169A publication Critical patent/JP2009022169A/en
Application granted granted Critical
Publication of JP5105278B2 publication Critical patent/JP5105278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、酵素固定化用担体としての性能を維持しながらも、磁力による捕集が可能な磁性を有するキトサン系酵素固定化用担体およびその製造方法に関する。   The present invention relates to a chitosan-based enzyme immobilization carrier having magnetism that can be collected by magnetic force while maintaining the performance as an enzyme immobilization carrier and a method for producing the same.

従来、酵素をバイオリアクターやバイオセンサーに利用する場合、酵素を繰り返し利用すべく、溶媒不溶性にする固定化技術が用いられる。固定化法としては、酵素を直接架橋し、不溶化する方法もあるが、ガラス、アルミナ、シリカゲル、セルロース及びその誘導体、キトサン及びその誘導体、合成イオン交換樹脂などの酵素固定化用担体と複合化する系が主流である。特にキトサン及びその誘導体は、分子内に多様な官能基を有するため、酵素が静電的、あるいは物理的に吸着、固定化しやすく、しかも、変性や失活が起こりにくいので、近年、その利用例が増えつつある。中でも、本出願人らが開示している粒状多孔質化し架橋化したキトサン系の担体(特許文献1参照)は、粒子内での物質拡散性、および物理的強度にも優れたものとして、広く使用されている。   Conventionally, when an enzyme is used in a bioreactor or biosensor, an immobilization technique for making the solvent insoluble is used so that the enzyme can be repeatedly used. As immobilization methods, there are methods of directly cross-linking and insolubilizing enzymes, but they are combined with enzyme immobilization carriers such as glass, alumina, silica gel, cellulose and derivatives thereof, chitosan and derivatives thereof, and synthetic ion exchange resins. The system is mainstream. In particular, chitosan and its derivatives have various functional groups in the molecule, so that the enzyme is easily adsorbed and immobilized electrostatically or physically, and it is difficult to denature or deactivate. Is increasing. Among them, the granular porous and cross-linked chitosan-based carrier disclosed by the present applicants (see Patent Document 1) is widely used as a substance having excellent substance diffusibility and physical strength in the particles. in use.

他方、固定化酵素と反応生成物の分離・回収を、迅速かつ容易に行いたいという要望が、スケールアップや実用化における使い勝手の面からあり、磁力により回収すべく、磁性を付与した酵素固定化用担体を用いる方法が開示されている(特許文献2、3参照)。キトサンに磁性を付与し、酵素固定化用担体とする方法については、キトサンを酸性水溶液に溶解し、このキトサン溶液に磁性を有する粒子を分散させ、この分散液を塩基性溶液により中和して成形するといった提案がいくつかなされている(特許文献4、5参照)。
特公昭63-54285号公報 特開平5−268961号公報 特開平10−75780号公報 特公平6−51114号公報 特開平17−296942号公報
On the other hand, there is a demand for quick and easy separation and recovery of immobilized enzyme and reaction products from the viewpoint of ease of use in scale-up and practical application. Enzyme immobilization with magnetism to recover by magnetic force A method using a carrier for use is disclosed (see Patent Documents 2 and 3). For the method of imparting magnetism to chitosan and using it as an enzyme immobilization carrier, chitosan is dissolved in an acidic aqueous solution, magnetic particles are dispersed in this chitosan solution, and this dispersion is neutralized with a basic solution. Several proposals have been made (see Patent Documents 4 and 5).
Japanese Examined Patent Publication No. 63-54285 Japanese Patent Laid-Open No. 5-268611 JP-A-10-75780 Japanese Examined Patent Publication No. 6-51114 Japanese Patent Laid-Open No. 17-296942

上記の背景技術において、キトサン溶液に磁性を有する粒子を分散させ、この分散液を塩基性溶液により中和して成形したキトサン系酵素固定化用担体は、磁性を有する粒子が担体内部に埋もれて、捕集性能を改善しにくいという欠点がある。しかし、磁性を有する粒子の配合量を上げると、露出した粒子が脱離する、あるいはキトサンが剥離するという問題が生じ、更には、酵素の固定化部位減少や、それに伴う活性低下が起こるといった欠点がある。
したがって、本発明は、酵素固定化用担体等としての性能を維持しながらも、磁力による捕集が可能なキトサン系酵素固定化用担体、及びこれを効率よく製造する方法を提供することを目的とする。
In the above background art, the chitosan-based enzyme immobilization support formed by dispersing magnetic particles in a chitosan solution and neutralizing this dispersion with a basic solution is such that the magnetic particles are embedded inside the support. There is a drawback that it is difficult to improve the collection performance. However, increasing the blending amount of magnetic particles causes problems that the exposed particles are detached or chitosan is peeled off, and further, the enzyme immobilization sites are decreased and the activity is decreased accordingly. There is.
Accordingly, an object of the present invention is to provide a chitosan-based enzyme immobilization carrier capable of being collected by magnetic force while maintaining the performance as an enzyme immobilization carrier and the like, and a method for efficiently producing the same. And

上記の問題点を解決するために、本発明者は、鋭意検討した結果、粒状多孔質架橋キトサンに第一鉄イオンおよび第二鉄イオンの存在下でアルカリ処理する事で、酵素固定化用担体としての性能を維持しながらも、磁力による捕集が可能な磁性を有するキトサン系酵素固定化用担体が得られる事を見出し、本発明に到達した。
すなわち本発明は、粒状多孔質架橋キトサンに、第一鉄イオンと第二鉄イオンの総モル数に対する第一鉄イオンの割合が30mol%から80mol%の範囲にある鉄イオン溶液を、粒状多孔質架橋キトサン25mLに対して鉄塩の総モル数が0.4×10-2molから3.0×10-2molの範囲で接触させた後、アルカリ溶液で処理して、第一鉄イオンと第二鉄イオンよりなる磁性化粒子の灰分率の増分が2%〜23%の範囲となるように、粒状多孔質架橋キトサンに磁性化粒子を形成させてなる、磁性を有するキトサン系酵素固定化用担体およびその製造方法に係るものである。
In order to solve the above problems, the present inventor has intensively studied, and as a result, the granular porous crosslinked chitosan is subjected to alkali treatment in the presence of ferrous ions and ferric ions, thereby supporting the enzyme immobilization carrier. The present inventors have found that a carrier for immobilizing a chitosan-based enzyme having magnetism that can be collected by magnetic force while maintaining the performance as described above has been obtained, and the present invention has been achieved.
That is, the present invention provides a granular porous cross-linked chitosan with an iron ion solution in which the ratio of ferrous ions to the total number of moles of ferrous ions and ferric ions is in the range of 30 mol% to 80 mol%. After bringing the total number of moles of iron salt into a range of 0.4 × 10 −2 mol to 3.0 × 10 −2 mol with respect to 25 mL of cross-linked chitosan, treatment with an alkaline solution and ferrous ions and Immobilization of magnetized chitosan-based enzyme having magnetized particles formed in granular porous crosslinked chitosan so that the increase in the ash content of magnetized particles comprising ferric ions is in the range of 2% to 23%. The present invention relates to a carrier for use and a method for producing the same.

本発明は、固定化酵素活性に優れた粒状多孔質架橋キトサンをベースに用いているので、良好な酵素反応を得ることができる上、磁性化を後処理により付与している為、磁性体が系全体に均一且つ微細に分散しており、磁力による捕集能にも優れた性能を発揮できるので、様々なバイオリアクター、バイオセンサーへの応用が期待できる。   Since the present invention uses granular porous cross-linked chitosan having excellent immobilized enzyme activity as a base, a good enzyme reaction can be obtained, and magnetism is imparted by post-treatment. Since it is uniformly and finely dispersed throughout the system and can exhibit excellent performance in terms of magnetic collection capability, it can be expected to be applied to various bioreactors and biosensors.

以下に本発明について詳細に説明する。
本発明における粒状多孔質架橋キトサンは、例えば、キトサンを酸性水溶液に溶解した後、該溶液を塩基性溶液中に落下せしめて得た粒状多孔質キトサンを、エポキシ系やイソシアネート系等の架橋剤により架橋したものであれば、特に限定されない。ここで用いられる架橋剤としては、例えば、ヘキサメチレンビス−(2,3−エポキシプロピルジメチルアンモニウムクロライド)、ヘキサメチレンビス−(2,3−エポキシプロピルジエチルアンモニウムクロライド)、プロピレンビス−(2,3−エポキシプロピルジメチルアンモニウムクロライド)、プロピレンビス−(2,3−エポキシプロピルジエチルアンモニウムクロライド)、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、トリメチレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、エピクロロヒドリン等のエポキシ系架橋剤や、ヘキサメチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、ナフタレンジイソシアネート、1,4−シクロヘキサンジイソシアネート、1,4−フェニレンジイソシアネート、キシリレンジイソシアネート、イソフォロンジイソシアネート等のイソシアネート系架橋剤、などが挙げられる。
The present invention is described in detail below.
The granular porous cross-linked chitosan in the present invention is obtained by, for example, dissolving a granular porous chitosan obtained by dissolving chitosan in an acidic aqueous solution and then dropping the solution into a basic solution with an epoxy-based or isocyanate-based crosslinking agent. There is no particular limitation as long as it is cross-linked. Examples of the crosslinking agent used here include hexamethylene bis- (2,3-epoxypropyldimethylammonium chloride), hexamethylene bis- (2,3-epoxypropyldiethylammonium chloride), and propylene bis- (2,3 -Epoxypropyldimethylammonium chloride), propylene bis- (2,3-epoxypropyldiethylammonium chloride), ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, trimethylene glycol diglycidyl ether, tetramethylene Epoxy crosslinking agents such as glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, epichlorohydrin, hexamethy Diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, naphthalene diisocyanate, 1,4-cyclohexane diisocyanate, 1,4-phenylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate and other isocyanate-based crosslinking agents, Etc.

また、粒状多孔質架橋キトサンの粒子径は特に限定されるものではないが、大きすぎると表面積が小さくなるので、酵素反応の効率が悪くなり、小さすぎると、処理が困難になることから、70〜3000μmの粒子径であることが好ましく、120〜1200μmが特に好ましい。
孔径についても大きすぎると表面積が小さくなってしまい酵素反応の効率が悪くなり、小さすぎると、酵素反応における物質の多孔質内拡散速度が低下し、みかけの酵素活性が低下してしまう事から、100〜7500オングストロームが好ましく、1000〜2000オングストロームが特に好ましい。
Further, the particle diameter of the granular porous crosslinked chitosan is not particularly limited, but if it is too large, the surface area becomes small, so that the efficiency of the enzyme reaction is deteriorated. If it is too small, the treatment becomes difficult. A particle diameter of ˜3000 μm is preferable, and 120 to 1200 μm is particularly preferable.
If the pore size is too large, the surface area becomes small and the efficiency of the enzyme reaction deteriorates.If it is too small, the diffusion rate of the substance in the porous reaction in the enzyme reaction decreases, and the apparent enzyme activity decreases. 100 to 7500 angstroms are preferable, and 1000 to 2000 angstroms are particularly preferable.

本発明における鉄イオン溶液中の、第一鉄イオン、および、第二鉄イオンのイオン源としては、塩酸塩、硫酸塩、クエン酸塩、および、酢酸塩など、それぞれに相当する汎用、市販の塩であれば、何れも使用できるが、コストや入手簡便性、廃物利用(鋼板の酸洗浄工程で発生する)の観点から、それぞれの塩化物であることが好ましい。
本発明における鉄イオン溶液は、第一鉄イオンと第二鉄イオンの混合水溶液であり、第一鉄イオンと第二鉄イオンの比率としては、第一鉄イオンと第二鉄イオンの総モル数に対する第一鉄イオンの割合が、30mol%から80mol%の範囲にある事が好ましく、45mol%〜80mol%の範囲にあることがより好ましい。第一鉄イオンが30mol%に満たないと十分な磁力が得られず、磁石に近付けてもその捕集は出来ない。逆に、第一鉄イオンの割合が80mol%より大きいと磁石で捕集は出来ても酵素の固定化量が減少する。
As an ion source of ferrous ions and ferric ions in the iron ion solution in the present invention, there are general-purpose and commercially-available products corresponding to hydrochloride, sulfate, citrate, acetate, etc., respectively. Any salt can be used, but from the viewpoint of cost, availability, and utilization of waste (generated in the acid cleaning step of the steel sheet), each chloride is preferable.
The iron ion solution in the present invention is a mixed aqueous solution of ferrous ions and ferric ions, and the ratio of ferrous ions to ferric ions is the total number of moles of ferrous ions and ferric ions. It is preferable that the ratio of the ferrous ion to is in the range of 30 mol% to 80 mol%, and more preferably in the range of 45 mol% to 80 mol%. If the ferrous ion is less than 30 mol%, a sufficient magnetic force cannot be obtained, and it cannot be collected even if it is close to a magnet. On the other hand, if the ratio of ferrous ions is greater than 80 mol%, the amount of immobilized enzyme will decrease even if it can be collected with a magnet.

本発明における塩化第一鉄イオンと塩化第二鉄イオンの混合物の仕込み量は、粒状多孔質架橋キトサン25mLに対して、0.4×10-2mol以上3×10-2mol以下の範囲にあり、さらに、灰分率が2%以上23%以内の範囲にあることが必要である。鉄イオンの総モル量が0.4×10-2molに満たない場合、若しくは、灰分の増分が2%に満たない場合は、酵素固定化量や固定化酵素活性には問題ないが、磁石を近付けても捕集する性能が不十分となる。また、鉄イオンの総モル量が3×10-2molを超える場合、若しくは、灰分の増分が23%を超えた場合は、磁性体の生成斑により、磁性体が脱離しやすくなり、好ましくない。尚、本発明に於ける灰分率とは、後述のように絶乾した磁性化粒子を形成させたキトサン系酵素固定化用担体の重量と、該キトサン系酵素固定化用担体の焼成後残分重量とを測定して得られた値である。 The charged amount of the mixture of ferrous chloride ion and ferric chloride ion in the present invention is in the range of 0.4 × 10 −2 mol to 3 × 10 −2 mol with respect to 25 mL of granular porous crosslinked chitosan. In addition, the ash content must be in the range of 2% to 23%. If the total molar amount of iron ions is less than 0.4 × 10 -2 mol, or if the increment of ash is less than 2%, there is no problem with the amount of immobilized enzyme or the activity of the immobilized enzyme. Even if it approaches, the performance to collect becomes insufficient. Further, when the total molar amount of iron ions exceeds 3 × 10 −2 mol, or when the increment of ash exceeds 23%, it is not preferable because the magnetic substance is likely to be detached due to generation spots of the magnetic substance. . The ash content in the present invention refers to the weight of the carrier for immobilizing chitosan-based enzyme on which magnetized particles that have been completely dried as described later are formed, and the residue after firing of the carrier for immobilizing the chitosan-based enzyme. It is a value obtained by measuring the weight.

本発明は、上記の粒状多孔質架橋キトサンを、第一鉄イオンと第二鉄イオンを含む鉄イオン溶液中に添加混合するが、添加混合の方法は特に制限されず、鉄イオンが十分に、粒状多孔質架橋キトサンの内部に浸透するようにすればよい。一例を挙げれば、30〜80℃位で100〜300ストローク/分で振とうしながら1〜6時間程度処理すれば良い。なお、当該処理において、共沈鉄の凝集に伴う沈殿等を抑制するため、保護コロイドとしての役割を担うデキストラン等を系内に加えても良い。
次に、本発明では、上記の添加、混合処理の後、アルカリ水溶液を加え、粒状多孔質架橋キトサンに磁性化粒子を形成させる。このとき用いるアルカリ水溶液としては、従来既存の塩基性物質の水溶液であれば何れも使用できるが、中でも、アンモニア水や水酸化ナトリウム水溶液を使用することが好ましい。なお、アルカリ水溶液の量は、反応系のpHが8以上になるように適宜選択すればよいが、過度に用いると、粒状多孔質架橋キトサンの架橋基や改質基の脱離、および、孔の収縮が起こり、酵素固定化量が減少することがあるため好ましくない。
アルカリ水溶液を加えた後の処理についても、先の通り、30〜80℃位で100〜300ストロークで振とうしながら1〜6時間程度処理すれば良い。
In the present invention, the above-mentioned granular porous crosslinked chitosan is added and mixed in an iron ion solution containing ferrous ions and ferric ions, but the method of addition mixing is not particularly limited, and iron ions are sufficient. What is necessary is just to make it osmose | permeate the inside of a granular porous bridge | crosslinking chitosan. For example, the treatment may be performed for about 1 to 6 hours while shaking at 100 to 300 strokes / minute at about 30 to 80 ° C. In this process, dextran or the like that plays a role as a protective colloid may be added to the system in order to suppress precipitation associated with coagulation of coprecipitated iron.
Next, in the present invention, after the above addition and mixing treatment, an alkaline aqueous solution is added to form magnetized particles in the granular porous crosslinked chitosan. As the alkaline aqueous solution used at this time, any conventional aqueous solution of a basic substance can be used, but among them, aqueous ammonia or aqueous sodium hydroxide is preferably used. The amount of the aqueous alkali solution may be appropriately selected so that the pH of the reaction system is 8 or more. However, if it is used excessively, the elimination of the cross-linking groups and modifying groups of the granular porous cross-linked chitosan, and the pores. This is not preferable because the amount of enzyme immobilization may be reduced.
The treatment after adding the alkaline aqueous solution may also be conducted for about 1 to 6 hours while shaking at 100 to 300 strokes at about 30 to 80 ° C. as described above.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、実施例、および、比較例において、反応斑、磁性、キトサン系酵素固定化用担体の形態、灰分率、タンパク質吸着率、および、固定化酵素の固定化率、発現力価、発現率については、以下の方法より測定、または、評価した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, reaction spots, magnetism, chitosan enzyme immobilization carrier form, ash content, protein adsorption rate, and immobilized enzyme immobilization rate, expression titer, and expression rate Was measured or evaluated by the following method.

(1) 反応斑(外観評価)
実施例に示す方法で調製したキトサン系酵素固定化用担体の色調を目視観察し、その色斑から反応斑を評価した。色斑が無く均質性に優れる場合は○、色斑はあるが品質的に許容できる範囲内である場合は△、色斑が大きく、品質的に許容できない場合は×として評価した。
(2) 磁石への付着(外観評価)
実施例に示す方法で調製したキトサン系酵素固定化用担体をガラスシャーレに移し、キトサン系酵素固定化用担体が水没するまでRO水を加えた後、磁束密度0.3Tの回転子取り出し棒(アズワン社製)を系中に挿入して磁石への付着状況、および、引き寄せられる状況を目視観察により評価した。評価結果は、付着する場合は○、付着しない、あるいは、系外に取り出すことが出来ない場合は×で示した。
(3) 走査型電子顕微鏡(SEM)観察
実施例に示す方法で調製したキトサン系酵素固定化用担体をRO水、メタノール、エタノール、そして、t−ブチルアルコールの順に洗浄、溶媒交換し、凍結乾燥した。凍結乾燥後、表面に金をスパッタリングし、日本電子製JSM6060LVを用いて、5000倍で観察した。
(1) Reaction spots (appearance evaluation)
The color tone of the carrier for immobilizing chitosan-based enzyme prepared by the method shown in Examples was visually observed, and reaction spots were evaluated from the color spots. When there was no color spot and excellent homogeneity, it was evaluated as ◯, when there was a color spot but within the range acceptable in quality, Δ, and when color spot was large and quality was unacceptable, it was evaluated as x.
(2) Adhesion to magnet (appearance evaluation)
The chitosan-based enzyme immobilization support prepared by the method shown in the Examples was transferred to a glass petri dish, and RO water was added until the chitosan-based enzyme immobilization support was submerged. (As One Co., Ltd.) was inserted into the system, and the state of adhesion to the magnet and the state of being attracted were evaluated by visual observation. The evaluation results are indicated by ○ when attached, and × when not attached or cannot be taken out of the system.
(3) Scanning electron microscope (SEM) observation
The carrier for immobilizing chitosan-based enzyme prepared by the method shown in the Examples was washed with RO water, methanol, ethanol, and t-butyl alcohol in this order, solvent exchanged, and lyophilized. After freeze-drying, gold was sputtered on the surface and observed at 5000 times using JSM 6060LV manufactured by JEOL.

(4) 灰分率測定
熱風循環式乾燥器中、105℃、4時間の条件で絶乾した試料を風袋重量既知のセラミックるつぼに入れた後、電気炉中で600℃、5時間の条件で灰化した。灰化後は、速やかにデシケータに入れ、デシケータ中で室温まで放冷後、重量を計測し、下式から灰分率を求めた。
灰分率(%)=焼成残分重量(g)/絶乾試料重量(g)×100
(5) アルブミンの吸着
0.01Mリン酸水素二ナトリウムと0.01Mリン酸二水素ナトリウムより調製した0.01Mリン酸バッファー(pH7.4)で置換した各酵素固定化用担体5mlをプラスチック製の密閉容器に量り取り、1%のウシ血清アルブミン(MP Biomedicals, Inc.製)の0.01Mリン酸バッファー(pH7.4)溶液50mlを加え、恒温ロータリーシェーカーを使用して、25℃で4時間振とう(振とう速度:125rpm)した。
(6) ヘモグロビンの吸着
0.01Mリン酸バッファー(pH7.4)で置換した各酵素固定化用担体5mlをプラスチック製の密閉容器に量り取り、1%のウシ血液由来ヘモグロビン(和光純薬製、試薬特級) の0.01Mリン酸バッファー(pH7.4)溶液50mlを加え、恒温ロータリーシェーカーを使用して、25℃で4時間振とう(振とう速度:125rpm)した。
(7) タンパク質吸着率の測定
アルブミン、あるいは、ヘモグロビンを所定時間、各酵素固定化用担体に吸着させた後、反応液5mLを10倍に希釈し、分光光度計(島津製作所製UV-2450)を用いて、280nmの吸光度より吸着量を測定し、下記の式1に基づいて算出した。
(4) Ash content measurement
A sample which had been completely dried in a hot air circulating drier at 105 ° C. for 4 hours was placed in a ceramic crucible with a known tare weight, and then incinerated in an electric furnace at 600 ° C. for 5 hours. After ashing, it was immediately put into a desiccator, allowed to cool to room temperature in the desiccator, weighed, and determined the ash content from the following formula.
Ash content (%) = calcined residue weight (g) / absolute dry sample weight (g) × 100
(5) Albumin adsorption
Weigh out 5 ml of each enzyme immobilization carrier substituted with 0.01 M phosphate buffer (pH 7.4) prepared from 0.01 M disodium hydrogen phosphate and 0.01 M sodium dihydrogen phosphate into a plastic sealed container. Add 50 ml of 0.01 M phosphate buffer (pH 7.4) solution of 1% bovine serum albumin (MP Biomedicals, Inc.) and shake for 4 hours at 25 ° C. using a constant temperature rotary shaker. Speed: 125 rpm).
(6) Adsorption of hemoglobin
Weigh 5 ml of each enzyme immobilization carrier substituted with 0.01 M phosphate buffer (pH 7.4) in a plastic closed container, and add 0.1% of 1% bovine blood-derived hemoglobin (manufactured by Wako Pure Chemicals, reagent special grade). 50 ml of a 01M phosphate buffer (pH 7.4) solution was added, and the mixture was shaken at 25 ° C. for 4 hours (shaking speed: 125 rpm) using a constant temperature rotary shaker.
(7) Measurement of protein adsorption rate After adsorbing albumin or hemoglobin to each enzyme immobilization support for a predetermined time, dilute 5 mL of the reaction solution 10 times and spectrophotometer (UV-2450, manufactured by Shimadzu Corporation). The amount of adsorption was measured from the absorbance at 280 nm, and calculated based on the following formula 1.

〔実施例1〕
粒径840〜1,190μm、比表面積110〜130m2/gのキトサン系酵素固定化用担体(富士紡ホールディングス社製キトパールBCW−2510)25mLをプラスチック製の密閉容器に量り取り、スポイトで水分を軽く除去した。ここに、あらかじめ調製しておいた磁性化溶液(塩化第一鉄・四水和物2.78g(1.40×10-2mol)、塩化第二鉄・六水和物4.17g(1.54×10-2mol)、および、デキストラン1.81gを40.0gのRO水に溶解させた溶液)を全量投入し、良く混合した。次いで、反応系を振とう恒温水槽を用いて60℃に昇温し、125ストローク/分で2時間、浸とう、混合した。所定時間経過後、反応系に28%アンモニア水(和光純薬製)5.75gを43.61gのRO水で希釈した溶液を添加し、良く混合した。なお、この時点で系は褐色化した。その後、再び、振とう恒温水槽を用いて反応系を60℃に昇温し、125ストローク/分で1時間、浸とう、混合した。所定時間経過後、系を濾別、水洗して目的物を得た。目的物は、RO水中、5℃で保管した。
[Example 1]
Weigh 25 mL of a carrier for immobilizing chitosan-based enzyme having a particle size of 840 to 1,190 μm and a specific surface area of 110 to 130 m 2 / g (Fitobo Holdings Co., Ltd. Chitopearl BCW-2510) into a plastic sealed container, and use a dropper to remove moisture. Lightly removed. Here, a magnetized solution (ferrous chloride tetrahydrate 2.78 g (1.40 × 10 −2 mol), ferric chloride hexahydrate 4.17 g (1 .54 × 10 −2 mol) and a solution prepared by dissolving 1.81 g of dextran in 40.0 g of RO water were added and mixed well. Next, the temperature of the reaction system was raised to 60 ° C. using a constant temperature water bath, and the mixture was immersed and mixed at 125 strokes / minute for 2 hours. After a predetermined time, a solution obtained by diluting 5.75 g of 28% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) with 43.61 g of RO water was added to the reaction system and mixed well. At this point, the system turned brown. Thereafter, the temperature of the reaction system was raised to 60 ° C. again using a shaking water bath, and the mixture was immersed and mixed at 125 strokes / minute for 1 hour. After a predetermined time, the system was separated by filtration and washed with water to obtain the desired product. The object was stored at 5 ° C. in RO water.

処理前のキトサン系酵素固定化用担体をSEM観察した様子を図1、得られた目的物をSEM観察した様子を図2に示す。図1、図2のSEM写真から分かる様に、処理後もキトサン系酵素固定化用担体が元来有する多孔質構造が、そのまま保持されていた。目的物を焼成、灰化し、灰分率を評価すると22.4%であった。なお、磁性化前の灰分率はほぼ0であった。このるつぼ残存成分をSEM観察した様子が図3であるが、焼成により細孔の収縮、消失が起こったものの、その構造は、元の酵素固定化用担体の形状をトレースしていた。磁性化処理後の湿潤にあるキトサン系酵素固定化用担体に磁石を近づけると、担体粒子は図4に示すように磁石に引き寄せられ、付着した。よって、本願の目的の一つである、磁性を有するキトサン系酵素固定化用担体が得られた。
アルブミン、および、ヘモグロビンの吸着率を評価したところ、それぞれ46.9mg/ml、22.8mg/mlであり、酵素固定化用担体としての性能を十分に保持していた。よって、本願の目的である磁性と酵素固定可能の同時具備が達せられたといえる。実施例1〜3及び比較例1〜3による磁性化処理後のキトサン系酵素固定化用担体の性状及び評価結果を、表1にまとめた。
FIG. 1 shows a state of SEM observation of a carrier for immobilizing chitosan-based enzyme before treatment, and FIG. 2 shows a state of SEM observation of the obtained target product. As can be seen from the SEM photographs of FIGS. 1 and 2, the porous structure originally possessed by the support for immobilizing chitosan-based enzyme was maintained as it was even after the treatment. The target product was calcined and ashed, and the ash content was evaluated to be 22.4%. The ash content before magnetization was almost zero. FIG. 3 shows a state in which the remaining components of the crucible were observed by SEM. Although the pores contracted and disappeared by firing, the structure traced the shape of the original enzyme immobilization support. When the magnet was brought close to the moist chitosan-based enzyme immobilization support that had been magnetized, the carrier particles were attracted and adhered to the magnet as shown in FIG. Therefore, a carrier for immobilizing a chitosan-based enzyme having magnetism, which is one of the objects of the present application, was obtained.
When the adsorption rates of albumin and hemoglobin were evaluated, they were 46.9 mg / ml and 22.8 mg / ml, respectively, and the performance as a carrier for enzyme immobilization was sufficiently maintained. Therefore, it can be said that the object of the present application is the simultaneous provision of magnetism and enzyme immobilization. Table 1 summarizes the properties and evaluation results of the chitosan-based enzyme immobilization carriers after the magnetizing treatment in Examples 1 to 3 and Comparative Examples 1 to 3.

尚、アルブミン、および、ヘモグロビンの吸着率は、以下のようにして測定した。
磁性化酵素固定化用担体5mlに対し、RO水に150Uの力価を持つように溶解、調製した水溶液(天野エンザイム株式会社製アシラーゼアマノ水溶液)10mlを加え、室温で2時間振とうしてアシラーゼを固定化した。反応液5mlを系から量り取り、10倍に希釈した後、280nmにおける吸光度を測定した。磁性化酵素固定化用担体を入れずに同様の操作を行ったものをブランクとし、ブランク吸光度との差から固定化アシラーゼ量を求めた。
The adsorption rate of albumin and hemoglobin was measured as follows.
To 5 ml of the carrier for immobilizing the magnetizing enzyme, 10 ml of an aqueous solution (acylase amano aqueous solution manufactured by Amano Enzyme Co., Ltd.) dissolved and prepared to have a titer of 150 U in RO water is added, and the acylase is shaken at room temperature for 2 hours. Was fixed. After weighing 5 ml of the reaction solution from the system and diluting it 10 times, the absorbance at 280 nm was measured. What carried out the same operation without putting the support | carrier for magnetizing enzyme immobilization was made into the blank, and the amount of immobilized acylases was calculated | required from the difference with a blank light absorbency.

次に、固定化アシラーゼの活性を調べるために下記の操作を行った。
上記操作により調製したアシラーゼ固定化担体を280nmにおける吸光度が0.025以下になるまで充分に洗浄し未反応の酵素を除去した。得られた磁性化担体、あるいは、非磁性化担体1mlをスクリュー管に入れ、クエン酸バッファー(pH5.0)2ml、0.5mM塩化コバルト水溶液1mlを加え、37℃で5分間反応させた。続いて、基質溶液として、N−アセチル−DL−メチオニン溶液1mlを系に加え、試験管ミキサーで攪拌後、37℃で15分間反応させた。反応混合物をろ過した後、ろ液から1mlを分取し、3分間80℃の湯浴中で加熱することにより反応を停止させた。反応液を流水で冷却後、後述する方法で調製したニンヒドリン溶液1ml、および、第一塩化スズ溶液0.05mlを加え、90℃の湯浴中で20分間強熱した。流水で冷却後、50%2−プロパノール水溶液を5ml加え、570nmにおける吸光度を測定した。酵素固定化用担体を入れないで同様の操作を行った系をブランクとして用意し、吸光度を測定した。なお、反応に使用したN−アセチル−DL−メチオニン、ニンヒドリン溶液、および、第一塩化スズ水溶液は以下の様に調製した。
N−アセチル−DL−メチオニン溶液:N−アセチル−DL−メチオニン(和光純薬工業株式会社製試薬特級、MW=191.25)0.478gを量り、RO水10mlと1N−水酸化ナトリウム液2mlを加え、溶解した。その後、系中にN/10−水酸化ナトリウム液を加えることによって、pHを8.0に調整し、さらにRO水を加え25mlとした。
ニンヒドリン溶液:ニンヒドリン(和光純薬工業株式会社製アミノ酸自動分析用、8.14)1.0gを量り、25mlのエチレングリコールモノメチルエーテル(和光純薬工業株式会社製試薬特級、MW=76.1)を加え、溶解した後、クエン酸−水酸化ナトリウム緩衝液(pH5.0)を25ml加えて振とうした。
第一塩化スズ水溶液:塩化第一スズ(和光純薬工業株式会社製試薬特級、MW=225.63)0.1gを量り、クエン酸−水酸化ナトリウム緩衝液(pH5.0)を6.2ml加えて溶解した。
Next, in order to examine the activity of the immobilized acylase, the following operation was performed.
The acylase-immobilized carrier prepared by the above operation was sufficiently washed until the absorbance at 280 nm was 0.025 or less to remove unreacted enzyme. 1 ml of the obtained magnetized carrier or non-magnetized carrier was put in a screw tube, 2 ml of citrate buffer (pH 5.0) and 1 ml of 0.5 mM cobalt chloride aqueous solution were added and reacted at 37 ° C. for 5 minutes. Subsequently, 1 ml of an N-acetyl-DL-methionine solution was added to the system as a substrate solution, stirred at a test tube mixer, and allowed to react at 37 ° C. for 15 minutes. After filtering the reaction mixture, 1 ml was collected from the filtrate, and the reaction was stopped by heating in a hot water bath at 80 ° C. for 3 minutes. After cooling the reaction solution with running water, 1 ml of a ninhydrin solution prepared by the method described later and 0.05 ml of stannous chloride solution were added and ignited in a 90 ° C. hot water bath for 20 minutes. After cooling with running water, 5 ml of 50% 2-propanol aqueous solution was added, and the absorbance at 570 nm was measured. A system in which the same operation was performed without adding the enzyme immobilization carrier was prepared as a blank, and the absorbance was measured. The N-acetyl-DL-methionine, ninhydrin solution, and aqueous stannous chloride solution used for the reaction were prepared as follows.
N-acetyl-DL-methionine solution: N-acetyl-DL-methionine (Wako Pure Chemical Industries, Ltd., reagent grade, MW = 191.25) weighed 0.478 g, RO water 10 ml and 1N sodium hydroxide solution 2 ml Was added and dissolved. Thereafter, N / 10-sodium hydroxide solution was added to the system to adjust the pH to 8.0, and RO water was added to make 25 ml.
Ninhydrin solution: 1.0 g of ninhydrin (for automatic amino acid analysis by Wako Pure Chemical Industries, Ltd., 8.14) is weighed and 25 ml of ethylene glycol monomethyl ether (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd., MW = 76.1). After adding and dissolving, 25 ml of citrate-sodium hydroxide buffer (pH 5.0) was added and shaken.
Stannous chloride aqueous solution: stannous chloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd., MW = 225.63) 0.1 g, 6.2 ml of citric acid-sodium hydroxide buffer (pH 5.0) In addition, it was dissolved.

〔実施例2〕
塩化第一鉄・四水和物1.39g(0.70×10-2mol)、塩化第二鉄・六水和物2.09g(0.77×10-2mol)、および、デキストラン0.90gを42.5gのRO水に溶解させた磁性化溶液を用いた以外は、実施例1と同様の作業を行った。表1に示す様に、本発明の目的を満足する担体が得られた。
[Example 2]
Ferric chloride tetrahydrate 1.39 g (0.70 × 10 −2 mol), ferric chloride hexahydrate 2.09 g (0.77 × 10 −2 mol), and dextran 0 The same operation as in Example 1 was performed except that a magnetized solution obtained by dissolving 90 g in 42.5 g RO water was used. As shown in Table 1, a carrier satisfying the object of the present invention was obtained.

〔実施例3〕
塩化第一鉄・四水和物0.70g(0.35×10-2mol)、塩化第二鉄・六水和物1.04g(0.38×10-2mol)、および、デキストラン0.45gを43.8gのRO水に溶解させた磁性化溶液を用いた以外は、実施例1と同様の作業を行った。表1に示す様に、本発明の目的を満足する担体が得られた。
Example 3
Ferrous chloride tetrahydrate 0.70 g (0.35 × 10 −2 mol), ferric chloride hexahydrate 1.04 g (0.38 × 10 −2 mol), and dextran 0 The same operation as in Example 1 was performed except that a magnetized solution obtained by dissolving 0.45 g in 43.8 g of RO water was used. As shown in Table 1, a carrier satisfying the object of the present invention was obtained.

〔実施例4〕
鉄イオン源として、塩化第一鉄・四水和物を1.27g(0.64×10-2mol)、塩化第二鉄・六水和物を0.43g(0.16×10-2mol)使用し、デキストラン0.45gを42.9gのRO水に溶解させた磁性化溶液を用いた以外は実施例1と同様の作業を行い、本発明の目的を満足する担体を得た。実施例4〜6及び比較例4,5による磁性化処理後のキトサン系酵素固定化用担体の性状及び評価結果を、表2にまとめた。
Example 4
As an iron ion source, 1.27 g (0.64 × 10 −2 mol) of ferrous chloride / tetrahydrate and 0.43 g (0.16 × 10 −2 mol) of ferric chloride / hexahydrate were used. mol) was used, and the same operation as in Example 1 was performed except that a magnetized solution in which 0.45 g of dextran was dissolved in 42.9 g of RO water was obtained to obtain a carrier satisfying the object of the present invention. Table 2 summarizes the properties and evaluation results of the chitosan-based enzyme immobilization carriers after the magnetizing treatments in Examples 4 to 6 and Comparative Examples 4 and 5.

〔実施例5〕
鉄イオン源として、塩化第一鉄・四水和物を0.85g(0.43×10-2mol)、塩化第二鉄・六水和物を0.85g(1.27×10-2mol)使用し、デキストラン0.45gを42.9gのRO水に溶解させた磁性化溶液を用いた以外は実施例1と同様の作業を行った。表2に示す様に、本発明の目的を満足する担体が得られた。
Example 5
As an iron ion source, 0.85 g (0.43 × 10 −2 mol) of ferrous chloride tetrahydrate and 0.85 g (1.27 × 10 −2 mol) of ferric chloride hexahydrate. mol), and the same operation as in Example 1 was performed except that a magnetized solution in which 0.45 g of dextran was dissolved in 42.9 g of RO water was used. As shown in Table 2, a carrier satisfying the object of the present invention was obtained.

〔実施例6〕
鉄イオン源として、塩化第一鉄・四水和物を0.43g(0.22×10-2mol)、塩化第二鉄・六水和物を1.27g(0.47×10-2mol)使用し、デキストラン0.45gを42.9gのRO水に溶解させた磁性化溶液を用いた以外は実施例1と同様の作業を行った。表2に示す様に、本発明の目的を満足する担体が得られた。
Example 6
As an iron ion source, 0.43 g (0.22 × 10 −2 mol) of ferrous chloride / tetrahydrate and 1.27 g (0.47 × 10 −2 mol) of ferric chloride / hexahydrate were used. mol), and the same operation as in Example 1 was performed except that a magnetized solution in which 0.45 g of dextran was dissolved in 42.9 g of RO water was used. As shown in Table 2, a carrier satisfying the object of the present invention was obtained.

〔実施例7〕
キトサン系酵素固定化用担体として、粒径840〜1,190μm、比表面積120〜150m2/gのキトサン系酵素固定化用担体(富士紡ホールディングス社製キトパールBCW−3010)を用いた以外、実施例1と同様にして磁性化酵素固定化用担体を作製した。
Example 7
Implementation was performed except that a chitosan enzyme immobilization carrier (chitopearl BCW-3010 manufactured by Fujibo Holdings Co., Ltd.) having a particle size of 840 to 1,190 μm and a specific surface area of 120 to 150 m 2 / g was used as the chitosan enzyme immobilization carrier. A carrier for immobilizing a magnetizing enzyme was produced in the same manner as in Example 1.

上記実施例7及び実施例8の方法により得た磁性化処理後のキトサン系酵素固定化用担体の測定した固定化アシラーゼの活性について、下式に基づき担体試料の固定化率、固定化力価、および発現力化、さらに発現率を数2〜4により算出した。結果、表3から明らかなように、本発明による磁性化担体は、磁性化していない担体と各種性能が同程度であり、磁性化による性能低下がないことが示された。   Regarding the activity of immobilized acylase measured by the carrier for immobilizing chitosan-based enzyme obtained by the method of Example 7 and Example 8 above, the immobilization rate of the carrier sample, the immobilization titer based on the following formula And expression enhancement, and the expression rate was calculated by Equations 2-4. As a result, as is apparent from Table 3, it was shown that the magnetized carrier according to the present invention has the same performance as that of the non-magnetized carrier and there is no performance degradation due to magnetization.

なお、上記式中の各種ファクターは、以下の通りである。
330.94:L−メチオニンで作成した検量線より求めた吸光度差1.000となるL−メチオニン量
149:L−メチオニン1μmolに対する重量(μg)
16:試料希釈倍数×単位換算係数
W:活性測定に用いた固定化酵素担体量(g)
The various factors in the above formula are as follows.
330.94: L-methionine amount that gives an absorbance difference of 1.000 determined from a calibration curve prepared with L-methionine 149: Weight (μg) relative to 1 μmol of L-methionine
16: Sample dilution multiple x unit conversion factor W: amount of immobilized enzyme carrier used for activity measurement (g)

〔実施例8〕
キトサン系酵素固定化用担体として、粒径840〜1,190μm、比表面積150〜200m2/g)のキトサン系酵素固定化用担体(富士紡ホールディングス社製キトパールBCW−3510)を用いた以外は、実施例7と同様の操作を行い磁性化アシラーゼ固定化担体の性能を評価した。結果、表3から明らかなように、本発明による磁性化担体は、磁性化していない担体と各種性能が同程度であり、磁性化による性能低下がないことが示された。
Example 8
A chitosan enzyme immobilization carrier (chitopearl BCW-3510 manufactured by Fujibo Holdings Co., Ltd.) having a particle size of 840 to 1,190 μm and a specific surface area of 150 to 200 m 2 / g was used as the chitosan enzyme immobilization carrier. The same operations as in Example 7 were performed to evaluate the performance of the magnetized acylase-immobilized support. As a result, as is apparent from Table 3, it was shown that the magnetized carrier according to the present invention has the same performance as that of the non-magnetized carrier and there is no performance degradation due to magnetization.

〔比較例1〕
塩化第一鉄・四水和物11.1g(5.58×10-2mol)、塩化第二鉄・六水和物16.7g(6.18×10-2mol)、および、デキストラン7.23gを25.0gのRO水に溶解させた磁性化溶液を用いた以外は、実施例1と同様の作業を行った。結果、表1に示す様に、磁石への付着が観られず、本発明の目的を満足する担体は得られなかった。
[Comparative Example 1]
Ferrous chloride tetrahydrate 11.1 g (5.58 × 10 −2 mol), ferric chloride hexahydrate 16.7 g (6.18 × 10 −2 mol), and dextran 7 The same operation as in Example 1 was performed, except that a magnetized solution in which 23 g was dissolved in 25.0 g of RO water was used. As a result, as shown in Table 1, adhesion to the magnet was not observed, and a carrier satisfying the object of the present invention was not obtained.

〔比較例2〕
塩化第一鉄・四水和物5.56g(2.80×10-2mol)、塩化第二鉄・六水和物8.35g(3.09×10-2mol)、および、デキストラン3.62gを35.0gのRO水に溶解させた磁性化溶液を用いた以外は、実施例1と同様の作業を行った。結果、表1に示す様に、磁石への付着が観られず、本発明の目的を満足する担体は得られなかった。
[Comparative Example 2]
Ferrous chloride tetrahydrate 5.56 g (2.80 × 10 −2 mol), ferric chloride hexahydrate 8.35 g (3.09 × 10 −2 mol), and dextran 3 The same operation as in Example 1 was performed except that a magnetized solution obtained by dissolving 0.62 g in 35.0 g of RO water was used. As a result, as shown in Table 1, adhesion to the magnet was not observed, and a carrier satisfying the object of the present invention was not obtained.

〔比較例3〕
塩化第一鉄・四水和物0.35g(0.18×10-2mol)、塩化第二鉄・六水和物0.50g(0.18×10-2mol)、および、デキストラン0.23gを44.4gのRO水に溶解させた磁性化溶液を用いた以外は、実施例1と同様の作業を行った。結果、表1に示す様に、磁石への付着が観られず、本発明の目的を満足する担体は得られなかった。
[Comparative Example 3]
Ferrous chloride tetrahydrate 0.35 g (0.18 × 10 −2 mol), ferric chloride hexahydrate 0.50 g (0.18 × 10 −2 mol), and dextran 0 The same operation as in Example 1 was performed except that a magnetized solution obtained by dissolving 0.23 g in 44.4 g of RO water was used. As a result, as shown in Table 1, adhesion to the magnet was not observed, and a carrier satisfying the object of the present invention was not obtained.

〔比較例4〕
鉄イオン源として、塩化第一鉄・四水和物1.70g(0.86×10-2mol)のみ使用し、デキストラン0.45gを42.9gのRO水に溶解させた磁性化溶液を用いた以外は実施例1と同様の作業を行った。結果、表2に示す様に、磁性化は可能であったが、ヘモグロビンの吸着率が低下し、本発明の目的を満足する担体は得られなかった。
[Comparative Example 4]
As an iron ion source, a magnetized solution in which only 1.70 g (0.86 × 10 −2 mol) of ferrous chloride tetrahydrate was used and 0.45 g of dextran was dissolved in 42.9 g of RO water was used. The same operation as in Example 1 was performed except that it was used. As a result, as shown in Table 2, although magnetization was possible, the adsorption rate of hemoglobin decreased and a carrier satisfying the object of the present invention could not be obtained.

〔比較例5〕
鉄イオン源として、塩化第二鉄・六水和物1.70g(0.63×10-2mol)のみ使用し、デキストラン0.45gを42.9gのRO水に溶解させた磁性化溶液を用いた以外は実施例1と同様の作業を行った。結果、表2に示す様に、磁石への付着が観られず、本発明の目的を満足する担体は得られなかった。
[Comparative Example 5]
As an iron ion source, a magnetized solution in which only 1.70 g (0.63 × 10 −2 mol) of ferric chloride hexahydrate was used and 0.45 g of dextran was dissolved in 42.9 g of RO water was used. The same operation as in Example 1 was performed except that it was used. As a result, as shown in Table 2, adhesion to the magnet was not observed, and a carrier satisfying the object of the present invention was not obtained.

キトサン系酵素固定化用担体には様々な官能基を導入させることが出来るため、性質の異なる個々の酵素に対応させることが可能である。さらに、酵素の固定化方法も吸着法、架橋法、活性化法の3種より適宜選択することができ、糖質、タンパク質関連酵素の固定化などにおいて、安定性の高い固定化方法を選択可能である。本発明によって得られた担体は、上述したキトサンの酵素固定化能を持ちつつ、磁力による反応生成物との分離、および、固定化酵素の回収が容易であり、酵素反応を必要とする様々な用途に使用、応用が期待できる。   Since various functional groups can be introduced into the chitosan-based enzyme immobilization support, it is possible to cope with individual enzymes having different properties. In addition, the enzyme immobilization method can be selected from among the adsorption method, crosslinking method, and activation method as appropriate, and a highly stable immobilization method can be selected for immobilization of carbohydrates and protein-related enzymes. It is. The carrier obtained by the present invention has the above-described enzyme-immobilizing ability of chitosan, can be easily separated from the reaction product by magnetic force, and the immobilized enzyme can be easily recovered. Use and application can be expected for applications.

処理前のキトサン系酵素固定化用担体の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the support | carrier for chitosan type enzyme immobilization before a process. 本発明によるキトサン系酵素固定化用担体の断面を示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing a cross section of a carrier for immobilizing a chitosan enzyme according to the present invention. 本発明によるキトサン系酵素固定化用担体を焼成、灰化した後のるつぼ残存成分の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a crucible remaining component after calcining and ashing the chitosan enzyme immobilization support according to the present invention. 本発明によるキトサン系酵素固定化用担体が磁石に引き寄せられ、付着する様子を示す写真である。2 is a photograph showing a state in which a support for immobilizing chitosan-based enzyme according to the present invention is attracted to and adhered to a magnet.

Claims (2)

粒状多孔質架橋キトサンに、第一鉄イオンと第二鉄イオンの総モル数に対する第一鉄イオンの割合が30mol%から80mol%の範囲にある鉄イオン溶液を、粒状多孔質架橋キトサン25mLに対して鉄塩の総モル数が0.4×10-2molから3.0×10-2molの範囲で接触、析出させて得られる第一鉄イオンと第二鉄イオンよりなる磁性化粒子の灰分率の増分が2%〜23%の範囲である磁性を有するキトサン系酵素固定化用担体。 An iron ion solution in which the ratio of ferrous ions to the total number of moles of ferrous ions and ferric ions is in the range of 30 mol% to 80 mol% is added to granular porous crosslinked chitosan with respect to 25 mL of granular porous crosslinked chitosan. The total number of moles of iron salt is in the range of 0.4 × 10 −2 mol to 3.0 × 10 −2 mol. A carrier for immobilizing a chitosan-based enzyme having magnetism with an increase in ash content in the range of 2% to 23%. 粒状多孔質架橋キトサンに、第一鉄イオンと第二鉄イオンの総モル数に対する第一鉄イオンの割合が30mol%から80mol%の範囲にある鉄イオン溶液を、粒状多孔質架橋キトサン25mLに対して鉄塩の総モル数が0.4×10-2molから3.0×10-2molの範囲で接触させた後、アルカリ溶液で処理して、第一鉄イオンと第二鉄イオンよりなる磁性化粒子の灰分率の増分が2%〜23%の範囲となるように、粒状多孔質架橋キトサンに磁性化粒子を形成させることを特徴とする磁性を有するキトサン系酵素固定化用担体の製造方法。 An iron ion solution in which the ratio of ferrous ions to the total number of moles of ferrous ions and ferric ions is in the range of 30 mol% to 80 mol% is added to granular porous crosslinked chitosan with respect to 25 mL of granular porous crosslinked chitosan. The total number of moles of iron salt is in the range of 0.4 × 10 −2 mol to 3.0 × 10 −2 mol, and then treated with an alkaline solution to obtain ferrous ions and ferric ions. A magnetized chitosan-based enzyme immobilization carrier comprising: a porous porous cross-linked chitosan that forms magnetized particles such that the increase in the ash content of the magnetized particles is in the range of 2% to 23%. Production method.
JP2007185683A 2007-07-17 2007-07-17 Magnetic chitosan-based enzyme immobilization carrier and method for producing the same Active JP5105278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185683A JP5105278B2 (en) 2007-07-17 2007-07-17 Magnetic chitosan-based enzyme immobilization carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185683A JP5105278B2 (en) 2007-07-17 2007-07-17 Magnetic chitosan-based enzyme immobilization carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009022169A JP2009022169A (en) 2009-02-05
JP5105278B2 true JP5105278B2 (en) 2012-12-26

Family

ID=40394630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185683A Active JP5105278B2 (en) 2007-07-17 2007-07-17 Magnetic chitosan-based enzyme immobilization carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP5105278B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107647112B (en) * 2017-09-18 2021-07-02 江苏瑞牧生物科技有限公司 Feed enzyme preparation carrier and preparation method thereof
CN112569907A (en) * 2020-11-24 2021-03-30 大唐环境产业集团股份有限公司 Magnetic crosslinked chitosan, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2009022169A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Fang et al. Immobilization of pectinase onto Fe3O4@ SiO2–NH2 and its activity and stability
Altinkaynak et al. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability
Cheng et al. Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules
Cicco et al. Chemically modified diatoms biosilica for bone cell growth with combined drug‐delivery and antioxidant properties
Lv et al. Immobilization of urease onto cellulose spheres for the selective removal of urea
CN108451924B (en) Method for preparing protein microcapsule by one-step adsorption method
JPH03500457A (en) Modified glass supports for peptide and protein sequencing
CN102068965B (en) Method for preparing chitosan separation medium suitable for protein purification
JP2018510856A (en) Fine particles
CN109810969B (en) Method for constructing artificial multienzyme system based on lanthanide nucleotide complex and DNA directional immobilization technology
CN101955174A (en) Preparation method of magnetic mesoporous phosphorite microsphere material
Liu et al. Progress of recyclable magnetic particles for biomedical applications
Ayhan et al. Highly biocompatible enzyme aggregates crosslinked by L-lysine
JP5105278B2 (en) Magnetic chitosan-based enzyme immobilization carrier and method for producing the same
JP4831313B2 (en) Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same
JP7170989B2 (en) Enzyme immobilization carrier and immobilized enzyme
US20170314008A1 (en) Enzyme immobilization using iron oxide yolk-shell nanostructure
Manzo et al. Chemical improvement of chitosan-modified beads for the immobilization of Enterococcus faecium DBFIQ E36 l-arabinose isomerase through multipoint covalent attachment approach
GB2386905A (en) Carrier for cell culture and method for culturing cells
Akgöl et al. New generation polymeric nanospheres for catalase immobilization
KR20130064909A (en) Branched polymer microspheres with silica shell
CN115356477A (en) Streptavidin magnetic bead and preparation method and application thereof
Ghanbari Adivi et al. Ultrafine agarose-coated superparamagnetic iron oxide nanoparticles (AC-SPIONs): a promising sorbent for drug delivery applications
JP2006258805A (en) Substrate, and method of immobilizing protein
CN113637666B (en) Method for immobilizing laccase by magnetic carbon nano tube composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5105278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250