JP5126774B2 - A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material. - Google Patents

A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material. Download PDF

Info

Publication number
JP5126774B2
JP5126774B2 JP2007185043A JP2007185043A JP5126774B2 JP 5126774 B2 JP5126774 B2 JP 5126774B2 JP 2007185043 A JP2007185043 A JP 2007185043A JP 2007185043 A JP2007185043 A JP 2007185043A JP 5126774 B2 JP5126774 B2 JP 5126774B2
Authority
JP
Japan
Prior art keywords
emulsion
gel beads
gel
polymer gel
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007185043A
Other languages
Japanese (ja)
Other versions
JP2009017861A (en
Inventor
泰雄 幡手
昌弘 吉田
恵宣 河野
孝行 武井
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2007185043A priority Critical patent/JP5126774B2/en
Priority to PCT/JP2008/062292 priority patent/WO2009011245A1/en
Publication of JP2009017861A publication Critical patent/JP2009017861A/en
Application granted granted Critical
Publication of JP5126774B2 publication Critical patent/JP5126774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • C05G5/27Dispersions, e.g. suspensions or emulsions

Description

本発明は、有用な微生物を失活させずに担持した微生物内包高分子ゲルビーズの製造方法と、この製造方法にて得られたゲルビーズを含む土壌改質材に関する。   The present invention relates to a method for producing microorganism-encapsulating polymer gel beads carrying useful microorganisms without inactivating them, and a soil modifying material containing gel beads obtained by this production method.

微生物を利用して土壌や水系の改質、各種廃水や汚染土壌の浄化、有用物質の合成や精製あるいは分離等を行う場合、その処理効率及び操作性を高める上で、該微生物を適当な担体に固定化させて用いる必要がある。従来より、このような担体には、微生物に良好な生育環境を提供できる点から、ポリビニルアルコール(以下、PVAと略称する)の如き水溶性合成樹脂やアルギン酸塩の如き水溶性高分子多糖類の多孔質ゲル粒子が多用されている。   When using microorganisms to modify soil and water systems, purifying various wastewaters and contaminated soil, and synthesizing, purifying or separating useful substances, the microorganisms are used as an appropriate carrier in order to improve the treatment efficiency and operability. It is necessary to immobilize and use. Conventionally, such a carrier is provided with a water-soluble synthetic resin such as polyvinyl alcohol (hereinafter abbreviated as PVA) or a water-soluble polymer polysaccharide such as alginate from the viewpoint of providing a good growth environment for microorganisms. Porous gel particles are frequently used.

このような多孔質ゲル粒子としては、微生物の活性を持続的に発揮させるために、粒子自体が構造的に安定で崩壊しにくく、そのゲル構造中に微生物を逸散しにくく且つ代謝を妨げない状態で捕捉し得ることが肝要であるが、加えて工業的に利用する上で、微生物担持物としての量産性、原材料及び工程面からの経済性、製造及び使用中の安全性等が要求され、更に処理効率面から微生物の担持密度が高く、また多様な用途及び使用条件に対応して粒度のコントロールが容易であることも望まれる。   As such porous gel particles, in order to continuously exert the activity of microorganisms, the particles themselves are structurally stable and difficult to disintegrate, and it is difficult for microorganisms to dissipate in the gel structure and to prevent metabolism. It is important that it can be captured in the state, but in addition to being industrially used, mass production as a microorganism support, economic efficiency from raw materials and processes, safety during production and use, etc. are required. Furthermore, from the viewpoint of processing efficiency, it is also desired that the supporting density of microorganisms is high and that the particle size can be easily controlled in accordance with various uses and use conditions.

従来、多糖類系の多孔質ゲル粒子を得る手段としては、該多糖類の水溶液を塩化カルシウム水溶液中に滴下してゲル粒子を生成させる方法が一般的である。また、PVA系の多孔質ゲル粒子を得る手段としては、PVA及びアルギン酸ナトリウムを溶解した水溶液を塩化カルシウム水溶液中に滴下して球状のゲル粒子を形成する方法(特許文献1)、微生物を含むアルギン酸ナトリウムの水溶液を塩化カルシウム水溶液中に滴下してゲル粒子を形成したのち、該ゲル粒子を可溶性固形分の高濃度溶液に浸漬して収縮させる方法(特許文献2)、多孔質核体に塩化カルシウム水溶液を浸透させたのち、PVA系重合体及びアルギン酸ナトリウムを溶解した水溶液に浸漬して該核体の外側にゲル層を形成し、次いで該核体を架橋剤含有液に浸漬してPVA系重合体の架橋を行い、更に水酸化ナトリウム水溶液に浸漬してアルギン酸カルシウムゲルを溶解除去する方法(特許文献3)等が提案されている。   Conventionally, as a means for obtaining polysaccharide-based porous gel particles, a method in which an aqueous solution of the polysaccharide is dropped into an aqueous calcium chloride solution to generate gel particles is generally used. Moreover, as means for obtaining PVA-based porous gel particles, a method of forming spherical gel particles by dropping an aqueous solution in which PVA and sodium alginate are dissolved into an aqueous calcium chloride solution (Patent Document 1), alginic acid containing microorganisms A method in which an aqueous solution of sodium is dropped into an aqueous calcium chloride solution to form gel particles, and then the gel particles are immersed in a high-concentration solution of soluble solids to contract (Patent Document 2). After infiltrating the aqueous solution, it is immersed in an aqueous solution in which a PVA polymer and sodium alginate are dissolved to form a gel layer on the outer side of the core, and then the core is immersed in a liquid containing a crosslinking agent. A method of dissolving the calcium alginate gel by immersing it in a sodium hydroxide aqueous solution and further dissolving and removing the calcium alginate gel has been proposed (Patent Document 3).

しかるに、これらの方法では、ゲル形成用ポリマーの水溶液を塩化カルシウム水溶液中に滴下することから、平均粒度が数mm以上といった大きいゲル粒子は生成するが、例えば土壌改質材等として好適な平均粒度が数十μmといった微小なゲル粒子は得られない上、製法的に量産性に乏しいため、土壌や水系の改質、廃水処理といった大量消費される用途には供給能力及びコストの両面で不適である。   However, in these methods, since an aqueous solution of a gel-forming polymer is dropped into an aqueous calcium chloride solution, large gel particles having an average particle size of several millimeters or more are generated. For example, an average particle size suitable as a soil modifier or the like. However, it is not suitable for both large capacity consumption applications such as soil and water system reforming and wastewater treatment, both in terms of supply capacity and cost. is there.

一方、本発明者らは先に、微生物を内包する微小なマイクロカプセルの製造方法をいくつか提案している。その一つ目は、マイクロカプセルの外壁材となるポリマーを溶かした有機溶媒中に、微生物を内包したアルギン酸ナトリウム等の高分子ビーズを乳化分散させ、このS/Oエマルジョンを水溶液中に移して有機溶媒を徐々に除去することにより、微生物内包の芯物質が外壁材被膜で覆われたマイクロカプセルを得る方法(特許文献4)である。また二つ目は、良溶剤として壁材ポリマーを溶解した有機溶剤Aと、これよりも高沸点で該壁材ポリマーに対する貧溶剤となる有機溶剤Bとからなる油相中に、微生物及び水中でのゲル形成性を有する保護材ポリマーを含有する水溶液を添加して乳化させることにより、微生物を内包する保護材ポリマーを含有する水滴微粒子が有機相中に分散したW/Oエマルジョンを調製し、これを水相に添加して乳化させて得られるW/O/Wエマルジョンの加温又は加温・減圧により、前記良溶剤及び貧溶剤を順次に蒸発・除去して壁材ポリマーを結晶化させる方法である(特許文献5)。更に三つ目は、壁材ポリマーとなる生分解性ポリマーを含有する有機溶媒からなる油相中に、微生物及び水中でのゲル形成性を有する保護材ポリマーを含有する水溶液を添加し乳化させることにより、微生物を内包する保護材ポリマーを含有する水滴微粒子が有機相中に分散したW/Oエマルジョンを調製し、これを水相に添加して乳化させて得られるW/O/Wエマルジョンの加温又は加温・減圧により、有機溶剤を蒸発・除去して壁材ポリマーを結晶化させる方法である(特許文献6)。
特開平8−116974号公報 特開2005−224160号公報 特開2005−42037号公報 特開2003−88747号公報 特開2004−329159号公報 特開2006−67956号公報
On the other hand, the present inventors have previously proposed several methods for producing minute microcapsules enclosing microorganisms. The first is that polymer beads such as sodium alginate containing microorganisms are emulsified and dispersed in an organic solvent in which a polymer used as the outer wall material of the microcapsule is dissolved. This is a method of obtaining microcapsules in which the core substance of microorganisms is covered with an outer wall material coating by gradually removing the solvent (Patent Document 4). Secondly, in an oil phase composed of an organic solvent A in which a wall material polymer is dissolved as a good solvent and an organic solvent B having a higher boiling point and a poor solvent for the wall material polymer, An aqueous solution containing a protective material polymer having a gel-forming property is added and emulsified to prepare a W / O emulsion in which water droplet fine particles containing a protective material polymer containing microorganisms are dispersed in an organic phase. A method of crystallizing a wall material polymer by sequentially evaporating and removing the good solvent and the poor solvent by heating or warming / depressurizing a W / O / W emulsion obtained by emulsifying and adding water to an aqueous phase (Patent Document 5). Furthermore, the third is to add and emulsify an aqueous solution containing a protective material polymer having gel-forming properties in microorganisms and water in an oil phase composed of an organic solvent containing a biodegradable polymer as a wall material polymer. Thus, a W / O emulsion in which water droplet fine particles containing a protective material polymer encapsulating microorganisms are dispersed in an organic phase is prepared, added to the aqueous phase and emulsified, and added to the W / O / W emulsion. This is a method of crystallizing the wall material polymer by evaporating and removing the organic solvent by heating or heating / reducing pressure (Patent Document 6).
JP-A-8-116974 JP-A-2005-224160 JP 2005-42037 A JP 2003-88747 A JP 2004-329159 A JP 2006-67956 A

本発明者らの提案に係る前記3つの方法によれば、有用な微生物を内包し、平均粒度が数十μmといった微小な粒子サイズであって、且つ物理的及び化学的に安定なマイクロカプセル(ゲルビーズ)を製出できることが実証されている。しかしながら、前記一つ目の方法では、微生物を内包した高分子ビーズを調製する固形化工程が別途必要であり、全体として製造工程が長くなることから、生産能率面での難点があった。また、他の2つの方法でも、壁材ポリマーの他に保護材ポリマーを用いるため、それだけ材料コストが高く付くという難点があった。更に、これらの何れの方法においても、有機溶剤を用い、最後に加温下で該有機溶剤を蒸発させるため、作業環境面での問題もあった。   According to the above three methods according to the proposal of the present inventors, a microcapsule (including a useful microorganism, having an average particle size of a small particle size of several tens of μm, and being physically and chemically stable ( It has been demonstrated that (gel beads) can be produced. However, the first method requires a separate solidification step for preparing polymer beads encapsulating microorganisms, and the manufacturing process becomes longer as a whole. Also, in the other two methods, since the protective material polymer is used in addition to the wall material polymer, there is a problem that the material cost increases accordingly. Further, in any of these methods, since an organic solvent is used and finally the organic solvent is evaporated under heating, there is a problem in terms of work environment.

本発明は、上述の情況に鑑み、非常に簡便な方法により、有用な微生物を高密度で且つ高活性に固定化した高性能な微粒のゲルビーズを、能率よく低コストで且つ安全に量産できると共に、粒子サイズを広い範囲で任意に調整できる手段と、該ゲルビーズを用いた土壌改質材とを提供することを目的としている。   In view of the above-mentioned circumstances, the present invention enables mass production of high-performance fine gel beads, in which useful microorganisms are immobilized at high density and high activity, efficiently and at low cost and safely by a very simple method. An object of the present invention is to provide means capable of arbitrarily adjusting the particle size in a wide range and a soil conditioner using the gel beads.

上記目的を達成するために、本発明の請求項1に係る微生物内包高分子ゲルビーズの製造方法は、油相中に有用微生物及びゲル形成用水溶性ポリマーを含む水溶液を分散させた第一のW/Oエマルジョンと、油相中に前記のゲル形成用水溶性ポリマーをゲル化させる多価陽イオンを含む水溶液を分散させた第二のW/Oエマルジョンとを調製し、両W/Oエマルジョンの一方を攪拌し、この攪拌下にある一方のW/Oエマルジョンに対して他方のW/Oエマルジョンを添加して攪拌混合することにより、両W/Oエマルジョン中の分散相の液滴同士を衝突させて内部に有用微生物を固定化したゲルビーズを生成させることを特徴としている。 In order to achieve the above object, a method for producing a microbially encapsulated polymer gel bead according to claim 1 of the present invention is the first W / in which an aqueous solution containing a useful microorganism and a water-soluble polymer for gel formation is dispersed in an oil phase. An O emulsion and a second W / O emulsion in which an aqueous solution containing a polyvalent cation that gels the water-soluble polymer for gel formation is dispersed in an oil phase, and one of both W / O emulsions is prepared. Stirring, adding the other W / O emulsion to the one W / O emulsion under stirring and mixing by stirring, thereby causing the droplets of the dispersed phases in both W / O emulsions to collide with each other. It is characterized by producing gel beads in which useful microorganisms are immobilized.

そして、このような微生物内包高分子ゲルビーズの製造方法の好適態様として、請求項2の発明では第一及び第二のW/Oエマルジョンの油相が有用微生物を害しない天然油脂である構成、請求項3の発明では該請求項2における天然油脂が菜種油である構成、請求項4の発明では第一のW/Oエマルジョンの有用微生物が乳酸菌又は/及び酵母菌である構成、請求項5の発明では第一のW/Oエマルジョンのゲル形成用水溶性ポリマーが水溶性高分子多糖類である構成、請求項6の発明では該請求項5における水溶性高分子多糖類がアルギン酸塩である構成、請求項7の発明では第一のW/Oエマルジョン中に分散安定剤を含む構成、をそれぞれ採用している。   As a preferred embodiment of the method for producing such microbial-encapsulating polymer gel beads, in the invention of claim 2, the oil phase of the first and second W / O emulsions is a natural fat and oil that does not harm useful microorganisms. In the invention of claim 3, the natural fat or oil in claim 2 is rapeseed oil, in the invention of claim 4 the useful microorganism of the first W / O emulsion is lactic acid bacteria or / and yeast, invention of claim 5 Then, the water-soluble polymer for gel formation of the first W / O emulsion is a water-soluble polymer polysaccharide. In the invention of claim 6, the water-soluble polymer polysaccharide in claim 5 is an alginate. The invention of Item 7 employs a configuration in which a dispersion stabilizer is included in the first W / O emulsion.

一方、請求項8の発明に係る土壌改質材は、上記請求項1〜7のいずれかに記載の製造方法によって得られる微生物内包高分子ゲルビーズを含むものとしている。また、このような土壌改質材の好適態様として、請求項9の発明は微生物内包高分子ゲルビーズが乳酸菌及び酵母菌の一方又は両方を内包する構成を採用している。   On the other hand, the soil modifying material according to the invention of claim 8 includes microbial inclusion polymer gel beads obtained by the production method according to any of claims 1 to 7. As a preferred embodiment of such a soil modifying material, the invention of claim 9 employs a configuration in which the microorganism-encapsulating polymer gel beads enclose one or both of lactic acid bacteria and yeasts.

請求項1の発明に係る微生物内包高分子ゲルビーズの製造方法によれば、第一のW/Oエマルジョンの分散相である有用微生物及びゲル形成用水溶性ポリマーを含む水滴粒子と、第二のW/Oエマルジョンの分散相である多価陽イオンを含む水滴粒子とが両W/Oエマルジョンの攪拌混合によって衝突合体するが、その合体した液滴同士は連続相である油相で隔てられているから、各液滴単位で前記ポリマーのゲル化反応が進行し、当該液滴粒子がそのまま含水ゲルビーズに転化すると共に、第一のW/Oエマルジョンの水滴粒子に含まれていた有用微生物の全てが漏れなくゲルビーズ中に取り込まれることになる。   According to the method for producing a microbially encapsulated polymer gel bead according to the invention of claim 1, water droplet particles containing a useful microorganism which is a dispersed phase of the first W / O emulsion and a water-soluble polymer for gel formation, and a second W / O The water droplet particles containing polyvalent cations that are the dispersed phase of the O emulsion collide with each other by stirring and mixing the two W / O emulsions, but the combined droplets are separated by the oil phase that is the continuous phase. The gelation reaction of the polymer proceeds in each droplet unit, and the droplet particles are directly converted into hydrogel beads, and all the useful microorganisms contained in the water droplet particles of the first W / O emulsion leak. Without being incorporated into the gel beads.

従って、得られるゲルビーズは、攪拌混合中におけるエマルジョンの分散相としての粒子サイズを反映した微粒子になると共に、両W/Oエマルジョンの調製時の攪拌速度、W/O比、分散安定剤を使用する場合の当該分散安定剤の濃度等の設定により、その粒径を3μm〜900μmといった広範囲で任意にコントロールすることが可能であり、しかも有用微生物を100〜200億個/gといった高密度で固定化できる。また、上述のように各液滴単位でゲル化反応が進行することから、生成したゲルビーズは、外殻部が内包する微生物の代謝に要する物質の出入りを妨げない適度な粗さの多孔質構造となり、もって微生物を長期にわたって失活させずに安定的に保持できる高性能な微生物担持体として機能する。   Therefore, the resulting gel beads become fine particles reflecting the particle size as the dispersed phase of the emulsion during stirring and mixing, and the stirring speed, W / O ratio, and dispersion stabilizer are used when preparing both W / O emulsions. Depending on the setting of the concentration of the dispersion stabilizer, the particle size can be arbitrarily controlled in a wide range of 3 μm to 900 μm, and useful microorganisms are immobilized at a high density of 10 to 20 billion / g. it can. In addition, since the gelation reaction proceeds in units of droplets as described above, the generated gel beads have an appropriately rough porous structure that does not prevent the entry and exit of substances required for metabolism of microorganisms contained in the outer shell. Thus, it functions as a high-performance microorganism carrier that can stably hold microorganisms without inactivating them over a long period of time.

更に、この製造方法では、2種のW/Oエマルジョンを単に攪拌混合するだけで所望の微生物内包高分子ゲルビーズを一挙に量産できるから、操作的に極めて簡便であると共に高い生産能率で製造コストを低減でき、また芯材や保護材のような格別な材料を必要とせず、それだけ材料コストも少なくて済むという利点もある。   Furthermore, in this production method, the desired microorganism-encapsulating polymer gel beads can be mass-produced at once by simply stirring and mixing the two types of W / O emulsions. Therefore, the production cost is extremely simple in operation and high production efficiency. In addition, there is an advantage that a special material such as a core material or a protective material is not required and the material cost can be reduced accordingly.

しかして、このような微生物内包高分子ゲルビーズの製造方法において、請求項2の発明の如く第一及び第二のW/Oエマルジョンの油相に有用微生物を害しない天然油脂を用いれば、有機溶剤のような危険性や有害性がないから、安全に操業できると共に環境保全面でも問題を生じない。特に該天然油脂として請求項3の発明の如く菜種油を用いれば、固定化した微生物の生育に非常に好都合であると共に、菜種油が安価に入手できるので材料コストを低減できる利点もある。   Thus, in such a method for producing a microbe-incorporating polymer gel bead, if natural oils and fats that do not harm useful microorganisms are used in the oil phases of the first and second W / O emulsions as in the invention of claim 2, an organic solvent is used. There are no dangers and hazards like the above, so that it can operate safely and does not cause any problems in terms of environmental conservation. In particular, if rapeseed oil is used as the natural fat and oil as in the invention of claim 3, it is very convenient for the growth of immobilized microorganisms, and rapeseed oil can be obtained at low cost, so that there is an advantage that the material cost can be reduced.

なお、有用微生物として請求項4の発明の如く乳酸菌や酵母菌を用いれば、得られる微生物内包高分子ゲルビーズを発酵性材料として好適に利用できる。また、第一のW/Oエマルジョンのゲル形成用水溶性ポリマーに請求項5の発明の如く水溶性高分子多糖類、特に請求項6の発明のようにアルギン酸塩を用いれば、固定化した微生物の生育により好都合である。   If lactic acid bacteria or yeasts are used as useful microorganisms as in the invention of claim 4, the obtained microorganism-encapsulating polymer gel beads can be suitably used as a fermentable material. In addition, if a water-soluble polymer polysaccharide as in the invention of claim 5 is used as the water-soluble polymer for gel formation of the first W / O emulsion, particularly an alginate as in the invention of claim 6, More convenient for growth.

更に、請求項7の発明のように、第一のW/Oエマルジョン中に分散安定剤を含むことにより、当該エマルジョンの乳化・分散状態が安定化し、最終的に得られる微生物内包高分子ゲルビーズが均一性に優れたものとなる。   Furthermore, as in the invention of claim 7, by including a dispersion stabilizer in the first W / O emulsion, the emulsification / dispersion state of the emulsion is stabilized, and finally the microbially encapsulated polymer gel beads obtained are obtained. Excellent uniformity.

一方、請求項8の発明に係る土壌改質剤は、上記製造方法によって得られる微生物内包高分子ゲルビーズを含むから、土壌中に混和したり地表面に散布することにより、土壌に対して内包する微生物による発酵等の微生物活性作用を長期にわたって安定的に発揮できる。そして、請求項9の発明のように微生物内包ゲルビーズとして乳酸菌及び酵母菌の一方又は両方を内包するものを用いた土壌改質材は、作物の生育に好適な発酵型土壌形成に非常に有用である。   On the other hand, since the soil modifier according to the invention of claim 8 includes the microbial inclusion polymer gel beads obtained by the above production method, it is included in the soil by being mixed in the soil or sprayed on the ground surface. Microbial activity such as fermentation by microorganisms can be stably exhibited over a long period of time. And, as in the invention of claim 9, the soil modifying material using one or both of lactic acid bacteria and yeast as microbial inclusion gel beads is very useful for the formation of fermented soil suitable for crop growth. is there.

以下、本発明に係る微生物内包高分子ゲルビーズの製造方法について、その各工程における具体的操作及び使用材料を含めた実施形態を具体的に説明する。   Hereinafter, embodiments of the method for producing a microbially encapsulated polymer gel bead according to the present invention including specific operations and materials used in each step will be specifically described.

本発明の製造方法では、既述のように、油相中に有用微生物及びゲル形成用水溶性ポリマーを含む水溶液を分散させた第一のW/Oエマルジョンと、油相中に前記のゲル形成用水溶性ポリマーをゲル化させる多価陽イオンを含む水溶液を分散させた第二のW/Oエマルジョンとを攪拌混合することにより、両W/Oエマルジョン中の分散相の液滴同士を衝突させて内部に有用微生物を固定化したゲルビーズを生成させる。 In the production method of the present invention, as described above, the first W / O emulsion in which an aqueous solution containing a useful microorganism and a gel-forming water-soluble polymer is dispersed in the oil phase, and the gel-forming water in the oil phase. By stirring and mixing with a second W / O emulsion in which an aqueous solution containing a polyvalent cation that gels a soluble polymer is dispersed, the droplets in the dispersed phase in both W / O emulsions collide with each other to create an interior. To produce gel beads on which useful microorganisms are immobilized.

第一のW/Oエマルジョンに用いるゲル形成用水溶性ポリマーは、最終的に得られるゲルビーズのゲル構造を形成する成分であり、目的とする微生物に対する適合性を有し、水中でのゲル形成能を持つものであれば特に制限されないが、アルギン酸ナトリウムの如きアルギン酸塩、κ−カラギーナンの如き水溶性高分子多糖類や、ポリビニルピロリドン、ポリビニルアルコールの如き水溶性合成樹脂が挙げられるが、特に水溶性高分子多糖類が乳酸菌や酵母菌等の微生物との適合性に優れる点で好適であり、その中でもアルギン酸塩が最も推奨される。   The water-soluble polymer for gel formation used in the first W / O emulsion is a component that forms the gel structure of the gel beads finally obtained, has compatibility with the target microorganism, and has the ability to form a gel in water. It is not particularly limited as long as it has, but water-soluble high molecular polysaccharides such as alginates such as sodium alginate, κ-carrageenan, and water-soluble synthetic resins such as polyvinylpyrrolidone and polyvinyl alcohol are mentioned. Molecular polysaccharides are preferable in that they are excellent in compatibility with microorganisms such as lactic acid bacteria and yeasts. Among them, alginates are most recommended.

第一のW/Oエマルジョンに用いる有用微生物は、目的とするゲルビーズの用途に応じて選択すればよく、全く制約はないが、特に発酵作用が目的であれば乳酸菌と酵母菌が推奨される。また、これら乳酸菌と酵母菌は各々を単独で使用する以外に、ゲルビーズの用途によっては両者を併用してもよい。   The useful microorganisms used in the first W / O emulsion may be selected according to the intended use of the gel beads, and are not limited at all. However, lactic acid bacteria and yeasts are particularly recommended for the purpose of fermentation. Moreover, these lactic acid bacteria and yeasts may be used together depending on the use of the gel beads, in addition to using each of them alone.

また、該エマルジョンの連続相をなす油相成分としては、目的とする微生物を害しないものであればよいが、微生物に対する適合性の面より菜種油等の天然油脂が好適であり、これらの中でも該適合性に特に優れて且つ安価に入手できる菜種油が推奨される。   Further, the oil phase component forming the continuous phase of the emulsion may be any oil-free component as long as it does not harm the target microorganism, but natural fats and oils such as rapeseed oil are preferred from the viewpoint of compatibility with microorganisms. Rapeseed oil that is particularly excellent in compatibility and available at low cost is recommended.

そして、第一のW/Oエマルジョンを調製するには、上記ポリマーの水溶液に有用微生物を添加混合し、この微生物を含むポリマー水溶液を油相中に添加混合して乳化させればよい。このとき、ポリマー水溶液のポリマー濃度としては1〜5重量%程度が好適であり、またW/O比つまり水溶液/油相の重量比は0.1〜10程度の範囲がよい。   In order to prepare the first W / O emulsion, a useful microorganism is added to and mixed with the polymer aqueous solution, and the polymer aqueous solution containing the microorganism is added and mixed in the oil phase to be emulsified. At this time, the polymer concentration of the polymer aqueous solution is preferably about 1 to 5% by weight, and the W / O ratio, that is, the weight ratio of the aqueous solution / oil phase is preferably about 0.1 to 10.

なお、この第一のW/Oエマルジョンの調製においては、エマルジョンを安定状態として最終的に製出させるゲルビーズを均一なものにするために、系内に分散安定剤を含有させることが望ましい。このような分散安定剤のエマルジョン中の含有量は、目的とするゲルビーズの粒度、ゲル形成用水溶性ポリマーの種類及び濃度、W/O比等によって好適値が異なるが、0.1〜5重量%の範囲がよい。   In the preparation of the first W / O emulsion, it is desirable to contain a dispersion stabilizer in the system in order to make the gel beads finally produced in a stable state. The content of such a dispersion stabilizer in the emulsion varies according to the particle size of the target gel beads, the type and concentration of the water-soluble polymer for gel formation, the W / O ratio, etc., but is 0.1 to 5% by weight. The range is good.

上記の分散安定剤としては、例えば、ポリオキシエチレンが付加したトリあるいはジスチリルフェニルエーテル、ポリオキシエチレンが付加したアルコールエーテル、ポリオキシエチレンが付加したソルビタンオレエートの如きツイーン系界面活性剤、ソルビタンオレエートの如きスパン系界面活性剤、アルキルナフタレンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシル硫酸ナトリウム、リグニンするナトリウム、アルキルナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物、フェノールスルホン酸ナトリウムのホルムアルデヒド縮合物、イソブチレン−無水マレイン酸共重合体、ポリカルボン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ポリグリセノール縮合リシノレイン酸エステル、モノラウリン酸デカグリセリン、ゼラチン、アラビアゴム、カゼイン、デキストリン、ペクチン、アルギン酸ナトリウム、メチルセルロース、エチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、第三リン酸カルシウム、L−グルタミン酸ジオレイルリビトール等が挙げられる。しかして、これらの分散安定剤は、その一種を単独使用してもよいし、二種以上を併用してもよい。   Examples of the dispersion stabilizer include tri- or distyryl phenyl ether added with polyoxyethylene, alcohol ether added with polyoxyethylene, tween surfactant such as sorbitan oleate added with polyoxyethylene, sorbitan Spun surfactants such as oleate, sodium alkylnaphthalene sulfonate, sodium lauryl sulfate, sodium dodecyl sulfate, sodium lignin, formaldehyde condensate of sodium alkyl naphthalene sulfonate, formaldehyde condensate of sodium phenol sulfonate, isobutylene-anhydrous Maleic acid copolymer, sodium polycarboxylate, sodium alkylbenzene sulfonate, polyglycenol condensed ricinoleate, monolaurate Glycerin, gelatin, gum arabic, casein, dextrin, pectin, sodium alginate, methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, tribasic calcium phosphate, L- glutamic acid dioleyl ribitol and the like. These dispersion stabilizers may be used alone or in combination of two or more.

第二のW/Oエマルジョンの分散相とする水溶液の多価陽イオンは、前記第一のW/Oエマルジョンに用いるゲル形成用水溶性ポリマーをゲル化させる成分であり、例えばカルシウムやアルミニウムのような多価金属イオンが好適なものとして挙げられる。   The polyvalent cation of the aqueous solution used as the dispersed phase of the second W / O emulsion is a component that gels the water-soluble polymer for gel formation used in the first W / O emulsion, such as calcium or aluminum. Multivalent metal ions are preferred.

また、該エマルジョンの連続相をなす油相成分は、前記第一のW/Oエマルジョンに用いるものと同様に、微生物に対する適合性の面より天然油脂が好適であり、特に菜種油が推奨されるが、第一のW/Oエマルジョンの油相成分と同じものを用いるのよい。   As the oil phase component forming the continuous phase of the emulsion, natural oils and fats are preferable from the viewpoint of compatibility with microorganisms, as in the case of the first W / O emulsion, and rapeseed oil is particularly recommended. The same oil phase component as that of the first W / O emulsion may be used.

しかして、従って、第二のW/Oエマルジョンを調製するには、塩化カルシウムや硫酸アルミニウムなど多価金属塩の水溶液を油相中に添加混合して乳化させればよい。このとき、上記多価金属塩の水溶液の濃度としては1〜20重量%程度、またエマルジョンのW/O重量比は0.01〜1程度の範囲がよい。   Therefore, in order to prepare the second W / O emulsion, an aqueous solution of a polyvalent metal salt such as calcium chloride or aluminum sulfate may be added and mixed in the oil phase and emulsified. At this time, the concentration of the aqueous solution of the polyvalent metal salt is preferably about 1 to 20% by weight, and the W / O weight ratio of the emulsion is preferably about 0.01 to 1.

本発明の製造方法では、上述した第一のW/Oエマルジョンと第二のW/Oエマルジョンとを攪拌混合することにより、内部に有用微生物を固定化したゲルビーズを生成させる。このとき、第一のW/Oエマルジョンに対する第二のW/Oエマルジョンの配合比(重量)は、0.1〜1程度の範囲とするのがよい。生成したゲルビーズは、適当な濾過手段で油相から分離し、水洗を施して回収する。   In the production method of the present invention, the first W / O emulsion and the second W / O emulsion described above are stirred and mixed to generate gel beads in which useful microorganisms are immobilized. At this time, the blending ratio (weight) of the second W / O emulsion to the first W / O emulsion is preferably in the range of about 0.1 to 1. The produced gel beads are separated from the oil phase by an appropriate filtration means, washed with water and collected.

なお、上記の攪拌混合は、攪拌下にある一方のW/Oエマルジョン(通常は第一のW/Oエマルジョン)に、他方のW/Oエマルジョンを添加する形で行う。また、攪拌混合手段は特に制約されないが、攪拌翼のような回転式の攪拌装置を用いる場合は攪拌速度(回転速度)を50〜15000rpm程度の範囲で設定するのがよい。 The above stirring and mixing is performed by adding the other W / O emulsion to one W / O emulsion under stirring (usually the first W / O emulsion). The stirring and mixing means is not particularly limited, but when a rotary stirring device such as a stirring blade is used, the stirring speed (rotational speed) is preferably set in the range of about 50 to 15000 rpm.

かくして第一のW/Oエマルジョンと第二のW/Oエマルジョンとを攪拌混合すれば、両W/Oエマルジョン中の分散相の液滴同士が衝突して合体し、その合体した液滴中のゲル形成用ポリマーに多価陽イオンが作用してゲル化反応を生じるが、液滴同士は連続相である油相で隔てられているために該ゲル化反応が液滴単位で進行し、もって当該液滴粒子がそのまま含水ゲルビーズに転化すると共に、第一のW/Oエマルジョンの水滴粒子に含まれていた有用微生物の全てが漏れなくゲルビーズ中に取り込まれることになる。   Thus, if the first W / O emulsion and the second W / O emulsion are stirred and mixed, the droplets of the dispersed phases in both W / O emulsions collide with each other and coalesce. A polyvalent cation acts on the gel-forming polymer to cause a gelation reaction. However, since the droplets are separated by an oil phase that is a continuous phase, the gelation reaction proceeds in units of droplets. The droplet particles are directly converted into water-containing gel beads, and all useful microorganisms contained in the water droplet particles of the first W / O emulsion are incorporated into the gel beads without leakage.

従って、本発明の製造方法においては、得られるゲルビーズの大きさが攪拌混合中におけるエマルジョンの分散相としての粒子サイズを反映することになるから、両W/Oエマルジョンとりわけ第一のW/Oエマルジョンの調製時の攪拌速度、W/O比、分散安定剤使用時の当該分散安定剤の濃度等の設定により、生成させるゲルビーズの粒径をコントロールできる。すなわち、攪拌速度が速いほど、またW/O比が低いほど、更に分散安定剤の濃度が高いほど、ゲルビーズが小さくなる。しかして、本発明によれば、これら制御因子の調整により、ゲルビーズの粒径を3μm〜900μmといった広範囲で任意に設定できることが実証されている。   Therefore, in the production method of the present invention, since the size of the gel beads obtained reflects the particle size as the dispersed phase of the emulsion during stirring and mixing, both W / O emulsions, particularly the first W / O emulsion, are used. The particle size of the gel beads to be generated can be controlled by setting the stirring speed at the time of preparation, W / O ratio, the concentration of the dispersion stabilizer when using the dispersion stabilizer, and the like. That is, the faster the stirring speed, the lower the W / O ratio, and the higher the concentration of the dispersion stabilizer, the smaller the gel beads. Thus, according to the present invention, it has been demonstrated that the particle size of the gel beads can be arbitrarily set in a wide range of 3 μm to 900 μm by adjusting these control factors.

また、本発明の製造方法によれば、上述のように、第一及び第二のエマルジョンの攪拌混合中における液滴がそのまま含水ゲルビーズに転化し、第一のW/Oエマルジョンの水滴粒子に含まれていた有用微生物が漏れなく含水ゲルビーズ中に取り込まれるから、有用微生物を100〜200億個/gといった高密度で固定化することができる。そして、得られたゲルビーズは、上述のような各液滴単位でのゲル化反応によって外殻部が適度な粗さの多孔質構造となるため、内包する微生物の代謝に要する物質の出入りが妨げられず、もって該微生物を長期にわたって失活させずに保持できるから、安定した良好な微生物活性を持続的に発揮する高性能な微生物担持体として機能する。   In addition, according to the production method of the present invention, as described above, the droplets during the stirring and mixing of the first and second emulsions are directly converted into the hydrogel beads and are contained in the water droplet particles of the first W / O emulsion. Since the useful microorganisms that have been taken in are incorporated into the hydrogel beads without omission, the useful microorganisms can be immobilized at a high density of 10 to 20 billion / g. The gel beads thus obtained have a porous structure with an appropriate roughness in the outer shell due to the gelation reaction in units of droplets as described above, thus preventing the entry and exit of substances required for metabolism of the contained microorganisms. Therefore, since the microorganism can be retained without being deactivated for a long period of time, it functions as a high-performance microorganism carrier that continuously exhibits good and stable microorganism activity.

更に、本発明の製造方法によれば、2種のW/Oエマルジョンを単に攪拌混合するだけで微粒状をなす所望の微生物内包高分子ゲルビーズを一挙に量産できるから、操作的に極めて簡便である上、高い生産能率で製造コストを低減でき、またゲル形成のために芯材や保護材のような格別な材料を必要とせず、それだけ材料コストも少なくて済む。   Furthermore, according to the production method of the present invention, the desired microorganism-encapsulated polymer gel beads that form fine particles can be mass-produced at once by simply stirring and mixing the two types of W / O emulsions. In addition, the manufacturing cost can be reduced with high production efficiency, and no special material such as a core material or a protective material is required for gel formation, and the material cost can be reduced accordingly.

このような微生物内包高分子ゲルビーズは、固定化した有用微生物の種類に応じて様々な用途に供し得るが、その好適な用途の一つに土壌改質材がある。すなわち、該微生物内包高分子ゲルビーズを含む土壌改質材は、土壌中に混和したり地表面に散布することにより、土壌に対して内包する微生物による発酵等の微生物活性作用を長期にわたって安定的に発揮できる。特に微生物内包ゲルビーズとして乳酸菌及び酵母菌の一方又は両方を内包するものを用いた土壌改質材によれば、これら乳酸菌や酵母菌がゲルビーズから土壌中へ長期にわたって徐放されるから、腐敗菌の多い土壌であっても作物の生育に適した発酵型土壌へ徐々に転換し、病虫害の抑制、作物品質及び収穫の向上、連作障害の軽減等を期待できる。   Such a microbe-encapsulating polymer gel bead can be used in various applications depending on the type of immobilized useful microorganisms, and one suitable application is a soil modifier. That is, the soil modifying material containing the polymer-encapsulating polymer gel beads is stably mixed for a long period of time with a microbial activity such as fermentation by microorganisms encapsulated in the soil by being mixed in the soil or sprayed on the ground surface. Can demonstrate. In particular, according to the soil modifier using microbial encapsulated gel beads containing one or both of lactic acid bacteria and yeast, since these lactic acid bacteria and yeast are gradually released from the gel beads into the soil, Even if there is a lot of soil, it can be gradually converted to a fermented soil suitable for crop growth, and it can be expected to suppress disease and pest damage, improve crop quality and harvesting, and reduce continuous cropping damage.

なお、このような土壌改質材は、上記のような微生物内包高分子ゲルビーズのみからなるものでもよいが、該ゲルビーズと共に堆肥、緑肥、草、稲わら、麦わら、残滓、米ぬか、籾殻、硫安等を配合してもよい。   In addition, such a soil modifier may consist only of the above-mentioned microorganism-encapsulated polymer gel beads, but together with the gel beads, compost, green manure, grass, rice straw, straw, residue, rice bran, rice husk, ammonium sulfate, etc. May be blended.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は実施例に限定されるものではない。なお、以下において%とあるは、いずれも重量%(w/w)を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to an Example. In the following description,% means weight% (w / w).

実施例1
第一の内水相として乳酸菌(ラクドバチリス・ブルガリックス)を7.7×108cells/mlの割合で懸濁させた2%アルギン酸ナトリウム水溶液、第二の内水相として10%塩化カルシウム水溶液、油相として0.5%の分散安定剤(ソルビタンモノオレート: 和光純薬社製のSpan80)を溶解させた菜種油、をそれぞれ用意した。そして、油相5000mlに第一の内水相1000mlを加え、攪拌翼を用いて180rpmの速度で40℃にて1時間攪拌することにより、第一のW/Oエマルジョンを調製した。また、同じく油相1500mlに第二の内水相150mlを加え、振動乳化器を用いて室温にて乳化させることによって第二のW/Oエマルジョンを調製した。次に、液温30℃において攪拌翼にて150rpmの速度で攪拌している第一のW/Oエマルジョン中に第二のW/Oエマルジョンを添加し、30℃を維持しつつ同じ攪拌速度で15時間の攪拌混合を行ったのち、生成した乳酸菌内包アルギン酸カルシウムゲルビーズを桐山ロートにて濾過し、蒸留水で洗浄した上で回収した。得られたゲルビーズの平均粒度は約100μm、回収量は498.5gであった。
Example 1
2% sodium alginate aqueous solution in which lactic acid bacteria (Raccobacilis bulgaricus) are suspended at a rate of 7.7 × 10 8 cells / ml as a first inner aqueous phase, 10% calcium chloride aqueous solution as a second inner aqueous phase, Rapeseed oil in which 0.5% of a dispersion stabilizer (sorbitan monooleate: Span 80 manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was prepared as an oil phase. Then, 1000 ml of the first inner aqueous phase was added to 5000 ml of the oil phase, and the mixture was stirred at 40 ° C. for 1 hour at a speed of 180 rpm using a stirring blade to prepare a first W / O emulsion. Similarly, a second W / O emulsion was prepared by adding 150 ml of the second inner aqueous phase to 1500 ml of the oil phase and emulsifying at room temperature using a vibration emulsifier. Next, the second W / O emulsion is added to the first W / O emulsion stirred at a speed of 150 rpm with a stirring blade at a liquid temperature of 30 ° C., and the same stirring speed is maintained while maintaining 30 ° C. After stirring and mixing for 15 hours, the produced lactic acid bacteria-encapsulated calcium alginate gel beads were filtered with a Kiriyama funnel, washed with distilled water, and then collected. The average particle size of the obtained gel beads was about 100 μm, and the recovered amount was 498.5 g.

実施例2〜4
第一のW/Oエマルジョンの調製時の攪拌速度を実施例2では50rpm、実施例3では100rpm、実施例4では250rpmにそれぞれ変更した以外は、実施例1と同様にして乳酸菌内包アルギン酸カルシウムゲルビーズを製造した。得られたゲルビーズの平均粒度は、実施例2では約800μm、実施例3では約300μm、実施例4では約5μmであった。
Examples 2-4
Lactic acid bacteria-encapsulated calcium alginate gel beads in the same manner as in Example 1 except that the stirring speed during preparation of the first W / O emulsion was changed to 50 rpm in Example 2, 100 rpm in Example 3, and 250 rpm in Example 4. Manufactured. The average particle size of the obtained gel beads was about 800 μm in Example 2, about 300 μm in Example 3, and about 5 μm in Example 4.

実施例1〜4の結果から、第一のW/Oエマルジョンの調製時の攪拌速度を除く他の諸条件が全て同じであっても、該攪拌速度が変わることで生成するゲルビーズの粒度が大きく変化し、且つその粒度が攪拌速度に依存して反比例的に変化することが判る。従って、本発明の方法によれば、第一のW/Oエマルジョンの調製時の攪拌速度を変えるだけで、他の諸条件を変えることなく、生成するゲルビーズの粒度を数μmから1mm程度まで極めて簡便にコントロールできることが明らかである。   From the results of Examples 1 to 4, even when all other conditions except the stirring speed at the time of preparation of the first W / O emulsion were all the same, the particle size of the gel beads produced by changing the stirring speed was large. It can be seen that the particle size changes and its particle size varies inversely depending on the stirring speed. Therefore, according to the method of the present invention, the particle size of the gel beads to be generated can be extremely reduced from several μm to about 1 mm by changing the stirring speed at the time of preparing the first W / O emulsion and without changing other conditions. It is clear that it can be easily controlled.

比較例1
既述の特許文献6(特開2006−67956号公報)に開示される微生物内包生分解マイクロカプセルの製造方法に準じ、まず内水相として実施例1と同じ乳酸菌を同じ割合で懸濁させた2%アルギン酸ナトリウム水溶液12.5ml、有機相として5%のポリεカプロラクタム及び3%のソルビタンモノオレートを溶解させたジクロロメタン25ml、外水相として1%のポリビニルアルコール及び30%の第三リン酸カルシウムを含むスラリーを蒸留水に10%の割合で混合したもの600ml、をそれぞれ用意した。そして、マグネチックスターラーで攪拌している外水相に内水相を加え、5℃にて10分間攪拌してW/Oエマルジョンを調製し、このW/Oエマルジョンを攪拌下にある5℃の外水相に添加し、30分攪拌することによってW/O/Wエマルジョンを調製した。次いで、このW/O/Wエマルジョンを攪拌しながら25℃まで昇温し、この温度で1時間攪拌後、更に30℃まで昇温し、700hPaに減圧して3時間攪拌することにより、ジクロロメタンを除去して乳酸菌内包マイクロカプセルを生成させた。そして、該マイクロカプセルを含む系に0.1M塩酸水溶液600gを添加し、10分間攪拌したのち桐山ロートで濾過し、蒸留水で洗浄した上で該マイクロカプセルを回収した。
Comparative Example 1
In accordance with the method for producing microbial encapsulated biodegradable microcapsules disclosed in Patent Document 6 (Japanese Patent Laid-Open No. 2006-67956) described above, first, the same lactic acid bacteria as in Example 1 were suspended in the same ratio as the inner aqueous phase. Contains 12.5 ml of 2% aqueous sodium alginate solution, 25 ml of dichloromethane in which 5% polyε caprolactam and 3% sorbitan monooleate are dissolved as the organic phase, 1% polyvinyl alcohol and 30% calcium triphosphate as the outer aqueous phase 600 ml of a slurry mixed with distilled water at a ratio of 10% was prepared. Then, the inner aqueous phase is added to the outer aqueous phase that is being stirred with a magnetic stirrer, and stirred at 5 ° C. for 10 minutes to prepare a W / O emulsion. The W / O emulsion is stirred at 5 ° C. A W / O / W emulsion was prepared by adding to the outer aqueous phase and stirring for 30 minutes. Next, the W / O / W emulsion was heated to 25 ° C. while stirring, stirred at this temperature for 1 hour, further heated to 30 ° C., reduced in pressure to 700 hPa, and stirred for 3 hours, whereby dichloromethane was removed. The lactic acid bacteria inclusion microcapsule was produced by removal. Then, 600 g of 0.1 M hydrochloric acid aqueous solution was added to the system containing the microcapsules, stirred for 10 minutes, filtered through a Kiriyama funnel, washed with distilled water, and then recovered.

〔乳酸菌の回収〕
実施例1で得られたゲルビーズ5gを55mMクエン酸三ナトリウム水溶液に投入し、5分間攪拌することによってゲルビーズを溶解させたのち、この溶液を遠心分離器(国産遠心器株式会社製)にかけて8000rpmで遠心分離して乳酸菌を回収した。一方、比較例1で得られたマイクロカプセル5gを乳鉢で擦り潰し、これを生理食塩水に懸濁させたのち、上記同様に遠心分離して乳酸菌を回収した。
[Recovery of lactic acid bacteria]
After 5 g of the gel beads obtained in Example 1 were put into 55 mM trisodium citrate aqueous solution and the gel beads were dissolved by stirring for 5 minutes, this solution was applied to a centrifuge (made by Kokusan Centrifuge Co., Ltd.) at 8000 rpm. Centrifugation was performed to collect lactic acid bacteria. On the other hand, 5 g of the microcapsules obtained in Comparative Example 1 were crushed with a mortar, suspended in physiological saline, and then centrifuged in the same manner as above to collect lactic acid bacteria.

〔乳酸菌の活性試験〕
上述した実施例1のゲルビーズ及び比較例1のマイクロカプセルより回収した乳酸菌2×108cells を、それぞれ803培地〔10%ポリペプトン、0.5%酵母エキス、5%グルコース、0.2%ラクトース、0.05%Teen80(和光純薬社製のポリオキシエチレンソルビタンモノオレート)、0.1%硫酸マグネシウム七水和物〕100mlに添加し、これをインキュベーター(37℃)内で静置させ、1日後のグルコースの乳酸への転化率を高速液体クロマトグラフィーにて分析することにより、乳酸菌の乳酸生成に基づく活性を調べた。その結果、比較例1のマイクロカプセルより回収した乳酸菌の乳酸生成量が0.5mMであったのに対し、実施例1のゲルビーズより回収した乳酸菌の乳酸生成量は3mMであった。この結果から、内包する乳酸菌への障害性は、実施例1で得られるゲルビーズの方が比較例1で得られるマイクロカプセルよりも格段に低いことが明らかである。
[Activity test of lactic acid bacteria]
Lactic acid bacteria 2 × 10 8 cells recovered from the gel beads in Example 1 and the microcapsules in Comparative Example 1 were added to 803 medium [10% polypeptone, 0.5% yeast extract, 5% glucose, 0.2% lactose, 0.05% Teen 80 (polyoxyethylene sorbitan monooleate manufactured by Wako Pure Chemical Industries, Ltd., 0.1% magnesium sulfate heptahydrate) is added to 100 ml, and this is allowed to stand in an incubator (37 ° C.). The activity of lactic acid bacteria based on lactic acid production was examined by analyzing the conversion rate of glucose to lactic acid after the day by high performance liquid chromatography. As a result, the amount of lactic acid produced by the lactic acid bacteria collected from the microcapsules of Comparative Example 1 was 0.5 mM, whereas the amount of lactic acid produced by the lactic acid bacteria collected from the gel beads of Example 1 was 3 mM. From this result, it is clear that the obstruction to the lactic acid bacteria to be encapsulated is much lower in the gel beads obtained in Example 1 than in the microcapsules obtained in Comparative Example 1.

Claims (9)

油相中に有用微生物及びゲル形成用水溶性ポリマーを含む水溶液を分散させた第一のW/Oエマルジョンと、油相中に前記のゲル形成用水溶性ポリマーをゲル化させる多価陽イオンを含む水溶液を分散させた第二のW/Oエマルジョンとを調製し、両W/Oエマルジョンの一方を攪拌し、この攪拌下にある一方のW/Oエマルジョンに対して他方のW/Oエマルジョンを添加して攪拌混合することにより、両W/Oエマルジョン中の分散相の液滴同士を衝突させて内部に有用微生物を固定化したゲルビーズを生成させることを特徴とする微生物内包高分子ゲルビーズの製造方法。 A first W / O emulsion in which an aqueous solution containing a useful microorganism and a gel-forming water-soluble polymer is dispersed in an oil phase, and an aqueous solution containing a polyvalent cation that gels the gel-forming water-soluble polymer in the oil phase. A second W / O emulsion in which the W / O emulsion is dispersed, one of the two W / O emulsions is stirred, and the other W / O emulsion is added to the one W / O emulsion under stirring. A method for producing a microbial-encapsulated polymer gel bead characterized in that, by stirring and mixing, droplets of dispersed phases in both W / O emulsions collide with each other to generate gel beads in which useful microorganisms are immobilized. 第一及び第二のW/Oエマルジョンの油相が、前記有用微生物を害しない天然油脂である請求項1に記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing microorganism-encapsulated polymer gel beads according to claim 1, wherein the oil phases of the first and second W / O emulsions are natural fats and oils that do not harm the useful microorganisms. 前記天然油脂が菜種油である請求項2に記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing microbial-encapsulated polymer gel beads according to claim 2, wherein the natural fat is rapeseed oil. 第一のW/Oエマルジョンの有用微生物が乳酸菌又は/及び酵母菌である請求項1〜3のいずれかに記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing a microorganism-encapsulating polymer gel bead according to any one of claims 1 to 3, wherein useful microorganisms of the first W / O emulsion are lactic acid bacteria and / or yeasts. 第一のW/Oエマルジョンのゲル形成用水溶性ポリマーが水溶性高分子多糖類である請求項1〜4のいずれかに記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing microbial-encapsulated polymer gel beads according to any one of claims 1 to 4, wherein the water-soluble polymer for gel formation of the first W / O emulsion is a water-soluble polymer polysaccharide. 前記水溶性高分子多糖類がアルギン酸塩である請求項5に記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing microbial-encapsulated polymer gel beads according to claim 5, wherein the water-soluble polymer polysaccharide is an alginate. 第一のW/Oエマルジョン中に分散安定剤を含む請求項1〜6のいずれかに記載の微生物内包高分子ゲルビーズの製造方法。   The method for producing microbial-encapsulated polymer gel beads according to any one of claims 1 to 6, wherein the first W / O emulsion contains a dispersion stabilizer. 前記請求項1〜7のいずれかに記載の製造方法によって得られる微生物内包高分子ゲルビーズを含む土壌改質材。   A soil modifying material comprising microorganism-encapsulated polymer gel beads obtained by the production method according to any one of claims 1 to 7. 微生物内包高分子ゲルビーズが乳酸菌及び酵母菌の一方又は両方を内包する請求項8に記載の土壌改質材。   The soil modifying material according to claim 8, wherein the microorganism-encapsulating polymer gel beads enclose one or both of lactic acid bacteria and yeast.
JP2007185043A 2007-07-13 2007-07-13 A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material. Expired - Fee Related JP5126774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007185043A JP5126774B2 (en) 2007-07-13 2007-07-13 A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material.
PCT/JP2008/062292 WO2009011245A1 (en) 2007-07-13 2008-07-07 Process for producing microorganism-containing polymer gel bead and soil-improving material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185043A JP5126774B2 (en) 2007-07-13 2007-07-13 A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material.

Publications (2)

Publication Number Publication Date
JP2009017861A JP2009017861A (en) 2009-01-29
JP5126774B2 true JP5126774B2 (en) 2013-01-23

Family

ID=40259583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185043A Expired - Fee Related JP5126774B2 (en) 2007-07-13 2007-07-13 A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material.

Country Status (2)

Country Link
JP (1) JP5126774B2 (en)
WO (1) WO2009011245A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087786A (en) * 2012-10-04 2014-05-15 Sekisui Chem Co Ltd Method for manufacturing microcapsule and microcapsule
JP2014223608A (en) * 2013-04-17 2014-12-04 積水化学工業株式会社 Production method of microcapsule and microcapsule
JP2015057277A (en) * 2013-08-12 2015-03-26 日本合成化学工業株式会社 Microcapsule, solid material-including microcapsule, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133567B2 (en) * 2003-05-12 2008-08-13 独立行政法人科学技術振興機構 Method for producing microorganism-immobilized microcapsules
JP3818384B2 (en) * 2004-03-30 2006-09-06 独立行政法人食品総合研究所 Emulsion production apparatus, reaction apparatus, microcapsule production method using the reaction apparatus, microtube production method, and microtube
JP4657658B2 (en) * 2004-09-06 2011-03-23 日本有機株式会社 Method for producing useful microorganism-immobilized biodegradable microcapsules

Also Published As

Publication number Publication date
JP2009017861A (en) 2009-01-29
WO2009011245A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CA2683642C (en) Preparation of polysaccharide beads
US9487595B2 (en) Method for producing porous cellulose beads
CA2132344C (en) Super porous polysaccharide gels
US5744337A (en) Internal gelation method for forming multilayer microspheres and product thereof
US20160355662A1 (en) Method for manufacturing porous cellulose particles and porous cellulose particles
CN101979633B (en) Method for preparing Fe3O4 magnetotactic bacterial cellulose spheres
JPS63146792A (en) Beads having alginate outer shell of milimeter dimension, production thereof and apparatus for producing said beads
CN108851019A (en) A kind of pik woods pair lotions and preparation method thereof that bacteria cellulose is stable
JP5126774B2 (en) A method for producing microorganism-encapsulated polymer gel beads and a soil modifying material.
CN109304141A (en) It is a kind of for adsorbing diatomite/molecular sieves compound material preparation method of volatile organic contaminant
CN110327894A (en) A kind of blood purification polymer microsphere of high adsorption capacity and preparation method thereof
CN109134890A (en) A kind of preparation method and application of cellulose microsphere carrier
JP4133567B2 (en) Method for producing microorganism-immobilized microcapsules
CN1304101C (en) Size-uniform agarose gel microball and its preparing method
CN108014658A (en) A kind of graphene oxide(GO)Stable Pickering lotions prepare the preparation method of porous gelatin film
JP2010022287A (en) Method for producing microorganism-including polymeric gel bead, and soil-conditioning material
JP2003088747A (en) Microcapsule with hollow and porous shell, its production method, and method for encapsulating active substance
CN101613692B (en) Method for preparing immobilized cell carrier from tamarind seed gum and sodium alginate complex gel
CN112980043A (en) Homogeneous core-shell structure porous chitosan microsphere and preparation method and application thereof
US6660829B1 (en) Collagen-based dispersions and macroporous structures
CN113896910B (en) Nano starch-based microgel microspheres and preparation method and application thereof
JP4272372B2 (en) Microcapsule and manufacturing method thereof
CN1833725A (en) Chitosan pellet/microsac and prepn. thereof
JPH02180706A (en) Phosphorus compound grain assemblage and its production
CN115260566B (en) Preparation method of agarose porous microspheres based on ZIF-8

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees